Page 43 - AI for Good-Innovate for Impact
P. 43

AI for Good-Innovate for Impact



               Use Case – 6: Using AI to Reduce the 6G Standards Barrier for

               African Aontributors                                                                                 6 - FUT












               Country: Nigeria 

               Organization: Federal University of Technology, Minna 

               Contact person: Prof. James Agajo james.agajo@ futminna .edu .ng

               Emmanuel Othniel Eggah, emmanueleggah@ gmail .com
               Ebeledike Chukwubuikem Frank, frankcebeledike@ gmail .com


               Aaron Emmanuel Enejo, aaronemmanuel054@ gmail .com
               Raymond Arome Edibo, raymondedibo1@ gmail .com

               Victor Chukwuebuka Onah, onahvictorc@ gmail .com


               6�1�  Use case summary table


                Domain           LLM for 6G
                Problem to be    Addressing the standards gap between developed and emerging nations
                addressed        in Africa, especially in 6G.
                                 Text to Text Chatbot that predict the new use cases and its architectures,
                                 classify material, including multimedia material from ITU into context
                Key aspects of
                the solution     specific useful classes which can be easily consumed, generate captions
                                 in regional languages and provide answers to queries from students and
                                 scholars.

                Technology
                keywords         6G, standards gaps, LLM

                                 Public (The data is open source and it is available on hugging face Link to
                Data availability 
                                 dataset
                Metadata (type   Text data (Fields:background-text, prompt -text.response -text,
                of data)         Response_correction)

                Model Training   Argilla Space for Dataset annotation, Mistral Model for fine tuning
                and fine tuning 
                Testbeds or pilot   https:// github .com/ CrashingGuru/ FGAN -Build -a -thon/ tree/ main/
                deployments      Notebooks2023










                                                                                                     27
   38   39   40   41   42   43   44   45   46   47   48