Page 29 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 7 – Terahertz communications
P. 29

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 7




           [75] B. Aazhang, P. Ahokangas, H. Alves, M.‑S. Alouini,  [86] Y .  Sun,  M.  Peng,  Y .  Zhou,  Y .  Huang,  and  S.  Mao,
               J. Beek, H. Benn, M. Bennis, J. Bel iore, E. Stri‑    “Application of Machine Learning in Wireless Net‑
               nati, F. Chen, K. Chang, F. Clazzer, S. Dizit,        works:  Key  Techniques  and  Open  Issues,”  IEEE
               D. Kwon, M. Giordiani, W. Haselmayr, J. Haapola,      Communications  Surveys  Tutorials,  vol.  21,  no.  4,
               E. Hardouin, E. Harjula, and P. Zhu, Key Drivers and  pp. 3072–3108, 2019.
               Research Challenges for 6G Ubiquitous Wireless In‑
               telligence (White Paper), 09 2019.                [87] J.  Jagannath,  N.  Polosky,  A.  Jagannath,  F .  Restuc‑
                                                                     cia,  and  T .  Melodia,  “Machine  Learning  for
           [76] C.  Han  and  I.  F .  Akyildiz,   “Distance‑Aware   Wireless  Communications  in  the  Internet  of
               Bandwidth‑Adaptive   Resource   Allocation   for      Things:  A  Comprehensive  Survey,”  Ad  Hoc  Net‑
               Wireless  Systems  in  the  Terahertz  Band,”  IEEE   works,  vol.  93,  p.  101913,  2019.  [Online].  Avai-

               Transactions on Terahertz Science and Technology,     lable:   https://www.sciencedirect.com/science/
               vol. 6, no. 4, pp. 541–553, 2016.                     article/pii/S1570870519300812
           [77] M.  Yu,  A.  Tang,  X.  Wang,  and  C.  Han,  “Joint
                                                                 [88] L. Zhang, Y . Liang, and D. Niyato, “6G Visions:  Mo‑
               Scheduling and Power Allocation for 6G Terahertz
               Mesh Networks,” in 2020 International Conference      bile  Ultra‑Broadband,  Super  Internet‑of‑Things,
               on  Computing,  Networking  and  Communications       and Arti icial Intelligence,” China Communications,
               (ICNC), 2020, pp. 631–635.                            vol. 16, no. 8, pp. 1–14, 2019.
           [78] C.  Chaccour,  M.  N.  Soorki,  W.  Saad,  M.  Bennis,   [89] G. Gui, M. Liu, F . Tang, N. Kato, and F . Adachi, “6G:
               and  P .  Popovski,  “Can  Terahertz  Provide  High‑   Opening new horizons for integration of comfort,
               Rate  Reliable  Low  Latency  Communications  for     security,  and  intelligence,”  IEEE  Wireless  Commu‑
               Wireless  VR?”  arXiv,  2021.  [Online].  Available:   nications, vol. 27, no. 5, pp. 126–132, 2020.
               https://arxiv.org/abs/2005.00536
                                                                 [90] K.  B.  Letaief,  W.  Chen,  Y .  Shi,  J.  Zhang,  and  Y .  A.
           [79] V . Petrov,  D. Moltchanov,  and Y . Koucheryavy,  “In‑   Zhang, “The Roadmap to 6G: AI Empowered Wire‑
               terference and SINR in Dense Terahertz Networks,”     less  Networks,”  IEEE  Communications  Magazine,
               in 2015 IEEE 82nd Vehicular Technology Conference     vol. 57, no. 8, pp. 84–90, 2019.
               (VTC2015‑Fall), 2015, pp. 1–5.
                                                                 [91] C.‑X. Wang, M. D. Renzo, S. Stanczak, S. Wang, and
           [80] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “In‑
                                                                     E. G. Larsson, “Arti icial intelligence enabled wire‑
               telligent  Re lecting  Surface  Aided  Wireless  Com‑
               munications:  A  Tutorial,”  IEEE  Transactions  on   less  networking  for  5G  and  beyond:  Recent  ad‑
               Communications, pp. 1–1, 2021.                        vances and future challenges,” IEEE Wireless Com‑
                                                                     munications, vol. 27, no. 1, pp. 16–23, 2020.
           [81] NetWorld2020,  “Strategic  Research  and  Innova‑
               tion Agenda 2021‑27: Smart Networks in the Con‑   [92] J.  Du,  C.  Jiang,  J.  Wang,  Y .  Ren,  and  M.  Debbah,
               text  of  NGI,”  European  Technology  Platform  Net‑   “Machine Learning for 6G Wireless Networks: Car‑
               World2020, 2018.                                      rying Forward Enhanced Bandwidth,  Massive Ac‑
                                                                     cess, and Ultrareliable/Low‑Latency Service,” IEEE
           [82] R.  Singh  and  D.  Sicker,  “Thz  Communications  ‑  A
                                                                     Vehicular Technology Magazine,  vol. 15,  no. 4,  pp.
               Boon  and/or  Bane  for  Security,  Privacy,  and  Na‑
               tional Security,” SSRN Electronic Journal, 01 2020.   122–134, 2020.
           [83] J. Ma, R. Shrestha, J. Adelberg, C.‑Y . Yeh, Z. Hossain,  [93] A.  Zappone,  M.  Di  Renzo,  and  M.  Debbah,  “Wire‑
               E. Knightly,  J.  Jornet,  and  D.  Mittleman,  “Security   less Networks design in the Era of Deep Learning:
               and  Eavesdropping  in  Terahertz  Wireless  Links,”   Model‑based,  AI‑Based,  or  Both?”  IEEE  Transac‑
               Nature, vol. 563, 11 2018.                            tions on Communications, vol. 67, no. 10, pp. 7331–
                                                                     7376, 2019.
           [84] X.  Wang,  Y .  Han,  V . C.  M.  Leung,  D.  Niyato,  X.  Yan,
               and X. Chen, “Convergence of Edge Computing and   [94] M. E. Morocho‑Cayamcela, H. Lee, and W. Lim, “Ma‑
               Deep  Learning:  A  Comprehensive  Survey,”  IEEE
                                                                     chine  Learning  for  5G/B5G  Mobile  and  Wireless
               Communications  Surveys  Tutorials,  vol.  22,  no.  2,   Communications:  Potential,  Limitations,  and  Fu‑
               pp. 869–904, 2020.
                                                                     ture Directions,”  IEEE Access,  vol. 7,  pp. 137 184–
           [85]                     P.                               137 206, 2019.
                               of
               Deep Reinforcement Learning in Communications     [95] R. Nikbakht, A. Jonsson, and A. Lozano, “Unsuper-
               and Networking: A Survey,” IEEE Communications        vised Learning for Parametric Optimization,” IEEE
                 Tutorials,            3133–3174,                    Communications  Letters,  vol.  25,  no.  3,  pp.  678–
               2019.                                                 681, 2021.







                                             © International Telecommunication Union, 2021                    17
   24   25   26   27   28   29   30   31   32   33   34