Page 85 - ITU Journal, ICT Discoveries, Volume 3, No. 1, June 2020 Special issue: The future of video and immersive media
P. 85

ITU Journal: ICT Discoveries, Vol. 3(1), June 2020



              IEEE Conference on Computer Vision and Pattern
              Recognition, pages 5687–5695, 2017.
          [85] S.-K. Yeom, P. Seegerer, S. Lapuschkin, S. Wiede-
              mann, K.-R. Müller, and W. Samek. Pruning by
              explaining: A novel criterion for deep neural net-
              work pruning. arXiv preprint arXiv:1912.08881,
              2019.

          [86] H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd
              with faster convergence and less communication:
              Demystifying why model averaging works for deep
              learning. In Proceedings of the AAAI Conference
              on Artificial Intelligence, volume 33, pages 5693–
              5700, 2019.

          [87] X. Yu, T. Liu, X. Wang, and D. Tao. On compress-
              ing deep models by low rank and sparse decompo-
              sition. In Proceedings of the IEEE Conference on
              Computer Vision and Pattern Recognition, pages
              7370–7379, 2017.
          [88] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-
              aware async-sgd for distributed deep learning.
              arXiv preprint arXiv:1511.05950, 2015.

          [89] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and
              V. Chandra. Federated learning with non-iid data.
              arXiv preprint arXiv:1806.00582, 2018.



















































                                             © International Telecommunication Union, 2020                    63
   80   81   82   83   84   85   86   87   88   89   90