Page 131 - First special issue on The impact of Artificial Intelligence on communication networks and services
P. 131
,78 -2851$/ ,&7 'LVFRYHULHV 9RO 0DUFK
MACHINE INTELLIGENCE TECHNIQUES FOR NEXT-GENERATION
CONTEXT-AWARE WIRELESS NETWORKS
,
7DGLOR (QGHVKDZ %RJDOH ;LDQELQ :DQJ DQG /RQJ %DR /H
:HVWHUQ 8QLYHUVLW\ /RQGRQ &DQDGD
,QVWLWXWH 1DWLRQDO GH OD 5HFKHUFKH 6FLHQWLILTXH ,156
8QLYHUVLWH GX 4XHEHF 0RQWUHDO &DQDGD
(PDLO WDGLOR ERJDOH#HPW LQUV FD, [LDQELQ ZDQJ#XZR FD
DQG ORQJ OH#HPW LQUV FD
Abstract – Next generation wireless networks (i.e., 5G and beyond), which will be extremely dynamic
and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), pose many critical
challenges for network planning, operation, management and troubleshooting. At the same time, the
generation and consumption of wireless data are becoming increasingly distributed with an ongoing
paradigm shift from people-centric to machine-oriented communications, making the operation of future
wireless networks even more complex. In mitigating the complexity of future network operation, new
approaches of intelligently utilizing distributed computational resources with improved context
awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture
aiming to distribute computing, storage, control, communication, and networking functions closer to
end users, has a great potential for enabling efficient operation of future wireless networks. These
promising architectures make the adoption of artificial intelligence (AI) principles, which incorporate
learning, reasoning and decision-making mechanisms, natural choices for designing a tightly integrated
network. To this end, this article provides a comprehensive survey on the utilization of AI integrating
machine learning, data analytics and natural language processing (NLP) techniques for enhancing the
efficiency of wireless network operation. In particular, we provide comprehensive discussion on the
utilization of these techniques for efficient data acquisition, knowledge discovery, network planning,
operation and management of next generation wireless networks. A brief case study utilizing the AI
techniques for this network has also been provided.
Keywords – $UWLILFLDO PDFKLQH LQWHOOLJHQFH FRQWH[W DZDUH ZLUHOHVV PDFKLQH OHDUQLQJ RQWRORJ\
1. INTRODUCTION DQWLFLSDWHG IROG FDSDFLW\ LQFUHDVH
FRVW HIIHFWLYHO\ )RU LQVWDQFH WKH PL[HG XVH RI SODQQHG
7KH DGYHQW RI WKH ILIWK JHQHUDWLRQ * ZLUHOHVV DQG FHQWUDOO\ FRQWUROOHG PDFUR %6V DQG UDQGRPO\
QHWZRUN DQG LWV FRQYHUJHQFH ZLWK YHUWLFDO DSSOLFDWLRQV GHSOR\HG ZLUHOHVV ILGHOLW\ :L)L DFFHVV SRLQWV RU
FRQVWLWXWH WKH IRXQGDWLRQ RI D IXWXUH FRQQHFWHG VRFLHW\ IHPWR %6V LQ WKH XOWUD GHQVH KHWHURJHQHRXV QHWZRUN
ZKLFK LV H[SHFWHG WR VXSSRUW ELOOLRQ GHYLFHV E\ +HW1HW UDLVHV VHYHUDO XQH[SHFWHG RSHUDWLRQ VFHQDULRV
,+6 0DUNLW $V WKHVH DSSOLFDWLRQV DQG GHYLFHV ZKLFK DUH QRW SRVVLEOH WR HQYLVLRQ DW WKH QHWZRUN GHVLJQ
DUH IHDWXUHG E\ XELTXLWRXV FRQQHFWLYLW\ UHTXLUHPHQWV VWDJH 7KLV UHTXLUHV IXWXUH ZLUHOHVV QHWZRUNV WR KDYH
IXWXUH * DQG EH\RQG QHWZRUNV DUH EHFRPLQJ PRUH VHOI RUJDQL]LQJ FRQILJXULQJ DQG KHDOLQJ FDSDELOLWLHV
FRPSOH[ $VLGH IURP WKH FRPSOH[LW\ LQFUHDVH RI EDVH EDVHG RQ WKH RSHUDWLRQDO FRQGLWLRQ WKURXJK WKH WLJKW
VWDWLRQV %6V DQG XVHU HTXLSPHQW 8( VLJQLILFDQW FRRUGLQDWLRQ DPRQJ GLIIHUHQW QRGHV WLHUV DQG
FKDOOHQJHV DULVH IURP WKH LQLWLDO QHWZRUN SODQQLQJ WR WKH FRPPXQLFDWLRQ OD\HUV 7KHVH FKDOOHQJHV KLJKOLJKW WKDW
GHSOR\PHQW DQG VLWXDWLRQ GHSHQGHQW RSHUDWLRQ DQG H[LVWLQJ QHWZRUN GHVLJQ VWUDWHJLHV ZKLFK XWLOL]H D IDLUO\
PDQDJHPHQW VWDJHV VLPSOH VWDWLVWLFV H[SHULHQFH GHOLYHUV XQDFFHSWDEOH
SHUIRUPDQFH IRU H[DPSOH LQ WHUPV RI VSHFWUXP DQG
7KH QHWZRUN DUFKLWHFWXUH RI * DQG EH\RQG ZLOO EH HQHUJ\ HIILFLHQF\ FRYHUDJH GHOD\ DQG FRVW > @ > @
LQHYLWDEO\ KHWHURJHQHRXV DQG PXOWL WLHU ZLWK
XOWUD GHQVH GHSOR\PHQW RI VPDOO FHOOV WR DFKLHYH WKH
,QWHUQDWLRQDO 7HOHFRPPXQLFDWLRQ 8QLRQ

