Page 131 - First special issue on The impact of Artificial Intelligence on communication networks and services
P. 131

,78 -2851$/  ,&7 'LVFRYHULHV  9RO        0DUFK





                  MACHINE INTELLIGENCE TECHNIQUES FOR NEXT-GENERATION
                                 CONTEXT-AWARE WIRELESS NETWORKS



                                                        ,
                                 7DGLOR (QGHVKDZ %RJDOH   ;LDQELQ :DQJ DQG /RQJ %DR /H

                                            :HVWHUQ 8QLYHUVLW\  /RQGRQ  &DQDGD
                                    ,QVWLWXWH 1DWLRQDO GH OD 5HFKHUFKH 6FLHQWLILTXH  ,156

                                           8QLYHUVLWH GX 4XHEHF  0RQWUHDO  &DQDGD
                                  (PDLO  WDGLOR ERJDOH#HPW LQUV FD, [LDQELQ ZDQJ#XZR FD
                                                 DQG ORQJ OH#HPW LQUV FD

           Abstract – Next generation wireless networks (i.e., 5G and beyond), which will be extremely dynamic
           and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), pose many critical
           challenges for network planning, operation, management and troubleshooting. At the same time, the
           generation and consumption of wireless data are becoming increasingly distributed with an ongoing
           paradigm shift from people-centric to machine-oriented communications, making the operation of future
           wireless networks even more complex. In mitigating the complexity of future network operation, new
           approaches of intelligently utilizing distributed computational resources with improved context
           awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture
           aiming to distribute computing, storage, control, communication, and networking functions closer to
           end users, has a great potential for enabling efficient operation of future wireless networks. These
           promising architectures make the adoption of artificial intelligence (AI) principles, which incorporate
           learning, reasoning and decision-making mechanisms, natural choices for designing a tightly integrated
           network. To this end, this article provides a comprehensive survey on the utilization of AI integrating
           machine learning, data analytics and natural language processing (NLP) techniques for enhancing the
           efficiency of wireless network operation. In particular, we provide comprehensive discussion on the
           utilization of these techniques for efficient data acquisition, knowledge discovery, network planning,
           operation and management of next generation wireless networks. A brief case study utilizing the AI
           techniques for this network has also been provided.

           Keywords – $UWLILFLDO  PDFKLQH  LQWHOOLJHQFH  FRQWH[W DZDUH ZLUHOHVV  PDFKLQH OHDUQLQJ  RQWRORJ\


           1. INTRODUCTION                                    DQWLFLSDWHG         IROG     FDSDFLW\    LQFUHDVH
                                                              FRVW HIIHFWLYHO\  )RU LQVWDQFH  WKH PL[HG XVH RI SODQQHG
           7KH  DGYHQW  RI  WKH  ILIWK  JHQHUDWLRQ    *   ZLUHOHVV   DQG  FHQWUDOO\  FRQWUROOHG  PDFUR %6V  DQG  UDQGRPO\
           QHWZRUN DQG LWV FRQYHUJHQFH ZLWK YHUWLFDO DSSOLFDWLRQV   GHSOR\HG  ZLUHOHVV  ILGHOLW\   :L)L   DFFHVV  SRLQWV  RU
           FRQVWLWXWH WKH IRXQGDWLRQ RI D IXWXUH FRQQHFWHG VRFLHW\   IHPWR %6V  LQ  WKH  XOWUD GHQVH  KHWHURJHQHRXV  QHWZRUN
           ZKLFK  LV  H[SHFWHG  WR  VXSSRUW       ELOOLRQ  GHYLFHV  E\    +HW1HW  UDLVHV VHYHUDO XQH[SHFWHG RSHUDWLRQ VFHQDULRV
                 ,+6 0DUNLW   $V WKHVH DSSOLFDWLRQV DQG GHYLFHV   ZKLFK DUH QRW SRVVLEOH WR HQYLVLRQ DW WKH QHWZRUN GHVLJQ
           DUH IHDWXUHG E\ XELTXLWRXV FRQQHFWLYLW\ UHTXLUHPHQWV    VWDJH  7KLV UHTXLUHV IXWXUH ZLUHOHVV QHWZRUNV WR KDYH
           IXWXUH   *  DQG  EH\RQG  QHWZRUNV  DUH  EHFRPLQJ  PRUH   VHOI RUJDQL]LQJ   FRQILJXULQJ  DQG  KHDOLQJ  FDSDELOLWLHV
           FRPSOH[  $VLGH IURP WKH FRPSOH[LW\ LQFUHDVH RI EDVH   EDVHG  RQ  WKH  RSHUDWLRQDO  FRQGLWLRQ  WKURXJK  WKH  WLJKW
           VWDWLRQV   %6V   DQG  XVHU  HTXLSPHQW   8(    VLJQLILFDQW   FRRUGLQDWLRQ  DPRQJ  GLIIHUHQW  QRGHV   WLHUV  DQG
           FKDOOHQJHV DULVH IURP WKH LQLWLDO QHWZRUN SODQQLQJ WR WKH   FRPPXQLFDWLRQ OD\HUV  7KHVH FKDOOHQJHV KLJKOLJKW WKDW
           GHSOR\PHQW  DQG  VLWXDWLRQ GHSHQGHQW  RSHUDWLRQ  DQG   H[LVWLQJ QHWZRUN GHVLJQ VWUDWHJLHV  ZKLFK XWLOL]H D IDLUO\
           PDQDJHPHQW VWDJHV                                  VLPSOH  VWDWLVWLFV  H[SHULHQFH   GHOLYHUV  XQDFFHSWDEOH
                                                              SHUIRUPDQFH   IRU  H[DPSOH   LQ  WHUPV  RI  VSHFWUXP DQG
           7KH  QHWZRUN  DUFKLWHFWXUH  RI   *  DQG  EH\RQG  ZLOO  EH   HQHUJ\ HIILFLHQF\  FRYHUDJH  GHOD\ DQG FRVW  > @  > @
           LQHYLWDEO\   KHWHURJHQHRXV   DQG   PXOWL WLHU   ZLWK
           XOWUD GHQVH  GHSOR\PHQW  RI  VPDOO  FHOOV  WR  DFKLHYH  WKH






                                             ‹ ,QWHUQDWLRQDO 7HOHFRPPXQLFDWLRQ 8QLRQ
   126   127   128   129   130   131   132   133   134   135   136