The Molly Problem

Public Survey Results (preliminary)

Sample dates: 11-20th October 2020

The Molly Problem was created by ADA to provide insight on the public expectations for safety critical ethics, behaviour and explainability for Al software used for self-driving vehicles.

This survey was conducted in collaboration with the Technical University of Munich as part of the ITU Focus Group on Al for Autonomous and Assisted Driving (FG-AI4AD) and the AI for Good Global Summit Webinar Series.

For more details please follow the link below;
https://www.itu.int/en/ITU-T/focusgroups/ai4ad/Pages/MollyProblem.aspx

The Molly Problem: Background

These preliminary survey results are based upon responses obtained between 11-20th October 2020 from 296 respondents (70% male, 25\% female);

Aged between 18 and 73 yrs (mean age of 41 yrs)
Living in rural, city, suburban but mainly urban environments
94\% hold a drivers license
Three quarters of respondents were excited and willing to travel in an automated vehicle.

The Molly Problem: Survey Respondents

A young girl called Molly is crossing the road alone and is hit by unoccupied self-driving vehicle.

There are no eye-witnesses.

The Molly Problem for Self-Driving Vehicles

What should happen next?

Respondents have clear expectations for the capability and behaviour of the self-driving software in the case of a pedestrian collision event.

[^0]
97\%

expect the software to be aware of the collision

 2% unsure \& 1% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

94\%

expect the software to stop at the collision site

4% unsure \& 2\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

97\%

expect the software to indicate a hazard to other road users

 2\% unsure \& 1\% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

94\%

expect the software to alert emergency services

5% unsure \& 1\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

What should happen next?

In addition to post-collision behaviour respondents were asked about the information recall capabilities of the self-driving software.

The overwhelming majority had strong and clear expectations for the development of explainable AI for self-driving software.

[^1]
99\%

expect the software to recall the time of the collision

 1% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

99\%

expect the software to recall the location of the collision

 1% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

93\%

expect the software to recall when the collision risk was identified 6\% unsure 1\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

96\%

expect the software to recall if Molly was detected

3\% unsure 1\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

96\%

expect the software to recall when Molly was detected

 2\% unsure 2\% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

91\%

expect the software to recall if Molly was detected as a human 6\% unsure 3\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

90\%

expect the software to recall when Molly was detected as a human

7\% unsure 3\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

98\%

expect the software to recall whether mitigating action was taken

 1\% unsure 1\% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

97\%

expect the software to recall when mitigating action was taken

 2\% unsure 1\% don'tThe Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

96\%

expect the software to recall what mitigating action was taken

3\% unsure 1\% don’t

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied self-
driving vehicle. There are no eye-witnesses. What should happen next? driving vehicle. There are no eye-witnesses. What should happen next?

What should happen next?

Having indicated the preference for information recall, respondents were then asked to consider two extension scenarios;

- Should recall capabilities be available for near-miss events?
- What should happen if recall capability is unavailable?

[^2]
88\%

expect similar recall abilities for near-miss events

5\% unsure 7\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

73\%

expect driving to be prohibited for software without recall capability 15\% unsure 12\% don't

The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses. What should happen next?

The Molly Problem preliminary survey results set clear public expectations for ethical post-collision behaviour and support for the adoption of explainable Al approaches for self-driving software.

Ten key criteria for explainability were supported with the expectation of their recall capability in both collision and near-miss events.

These findings should be considered by self-driving developers, insurers, standards bodies and regulators. In December 2020 the ITU FG-AI4AD members will decide whether to adopt the ten key criteria as requirements for data standardisation used in both recall and continual monitoring.

[^3]

THANK YOU. STAY SAFE. STAY HEALTHY.

Chair ITU FG-AI4AD Bryn Balcombe: bryn@ada.ngo
General mailing list: fgai4ad@lists.itu.int
Dedicated secretariat email: tsbfgai4ad@itu.int
Dedicated webpage: www.itu.int/en/ITU-T/focusgroups/ai4ad

[^0]: The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses.

[^1]: The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses.

[^2]: The Molly Problem: A young girl called Molly is crossing the road alone and is hit by unoccupied selfdriving vehicle. There are no eye-witnesses.

[^3]: The Molly Problem: Preliminary Conclusion

