The Role of

in Smart Sustainable Cities

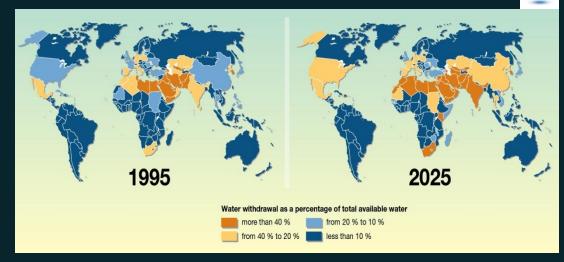
8th ITU Symposium on ICTs, the Environment and Climate Change

May 5, 6 2013 Turin, Italy

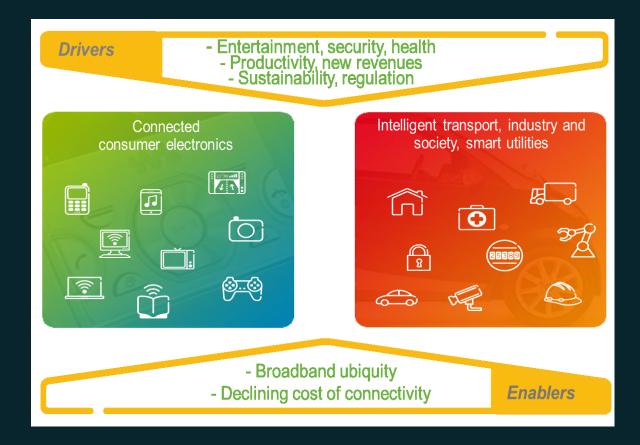
Sekhar N. Kondepudi Ph.D.

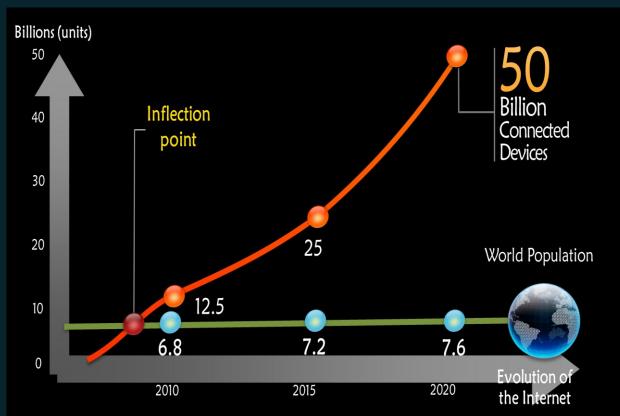
Associate Professor Smart Buildings & Smart Cities National University of Singapore


Agenda

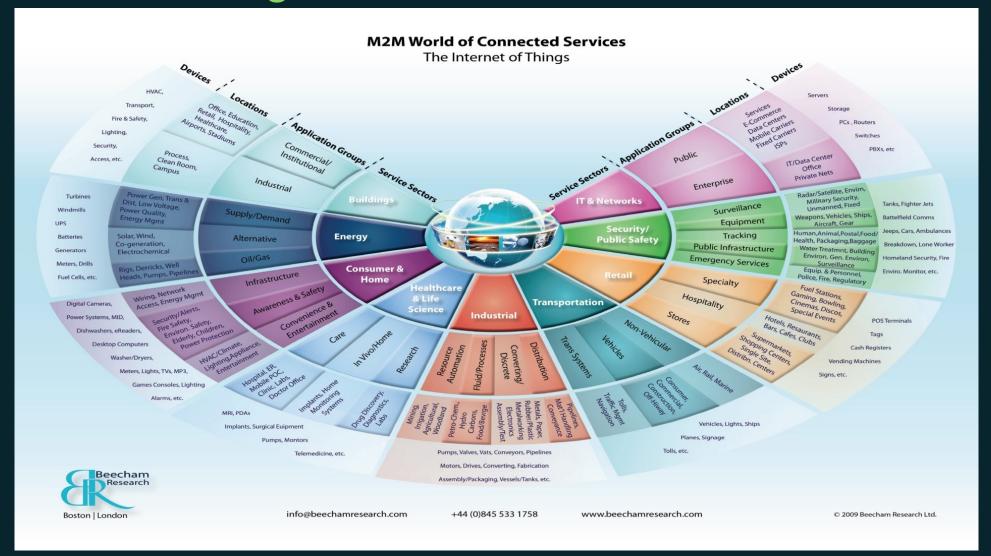


Population, Energy & Water



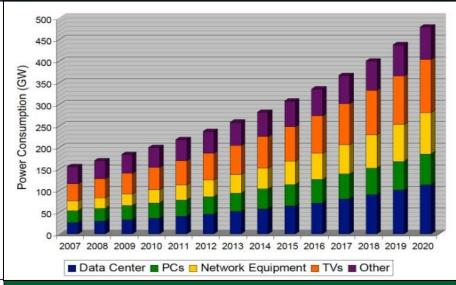


Scope of ICT Today - Pervasive


Everything Will be Connected

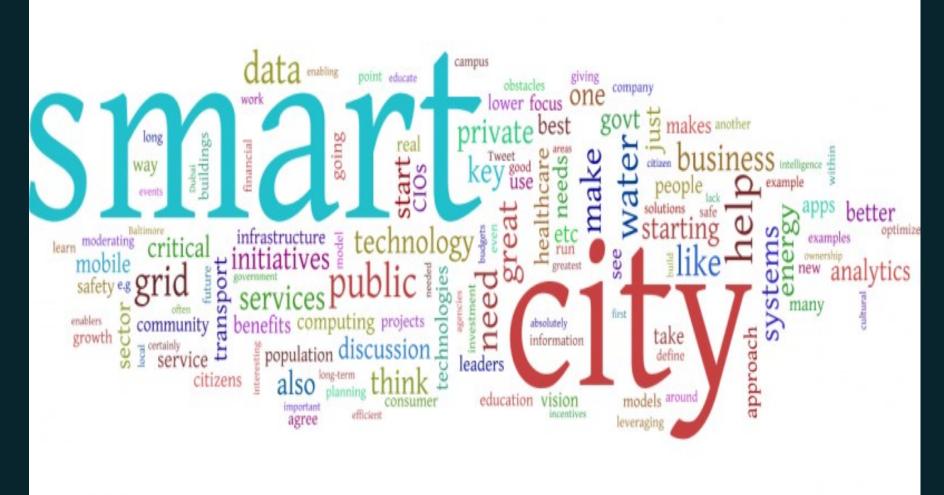
Source - CISCO

Internet of Things


BIG DATA

- Every day, the world creates 2.5 Quintillion (a Billion Billion) bytes of data
- 90 % of all the Data today has been created in the last 2 years (2011-2012)
- In the 11 years between 2009 and 2020, the size of the "Digital Universe" will increase 44 fold. That's a 41% increase in capacity every year.
- In addition, only 5% of this data being created is structured and the remaining 95% is largely unstructured, or at best semi-structured.
- Sources of this data: Sensors, social media posts, pictures posted, videos posted, comments, transactions, GPS data etc.

ICT & GHG



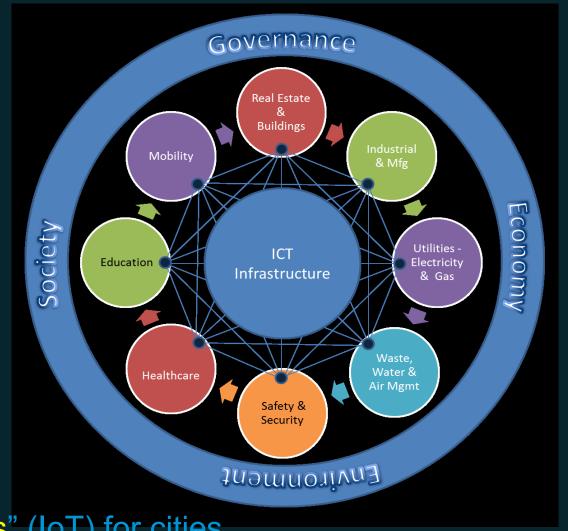
ICT's Greatest Role is in ENABLING Energy Efficiencies in Other Sectors

City / Community = Equildings

Attributes of a "Smart City"

INTEROPERABILITY

SCALABILITY



Smart Cities as a Network

Smart Cities are well managed, integrated physical and digital infrastructures that provide optimal services in a reliable, cost effective, and sustainable manner while maintaining and improving the quality of life for its citizens.

"Internet of Things" (IoT) for cities

Foundational Aspects

Economy

- Employment
- GDP
- Market GLocal
- Viability
- Investment
- PPP
- Value Chain
- Risk
- Productivity
- Innovation
- Compensation

Governance

- Regulatory
- Compliance
- Processes
- Structure
- Authority
- Transparency
- Communication
- Dialog
- Policies
- Standards
- Citizen Services

Environment

- Sustainable
- Renewable
- Land Use
- Bio-Diversity
- Water / Air
- Waste
- Workplace

Society

- People
- Culture
- Social Networks
- Tech Savvy
- Demographics
- Quality of Life
- User Experiences
- Equal Access
- End Consumers
- Community Needs
- The City as a Database

'Vertical Infrastructure – What's Missing?

Real Estate Industrial Utilities

Water,
Waste & Air

Healthcare Education Safety

Some of these infrastructure verticals are "obvious"

What additional verticals should we consider that are missing?

Real Estate & Buildings

- ... solutions that turn buildings into living organisms: networked, intelligent, sensitive and adaptable ...
- ... synergies between energy efficiency, comfort and safety and security
- Building as a Network Integration of Multiple Technologies (HVAC, Lighting, Plug Loads, Fire, Safety, Mobility, Renewable, Storage, Materials, IAQ etc)
- Software Efficiency, Automation & Control, Analytics & (Big?) Data Management
- Integration with Smart Grid
- Distributed Energy
- Coexist with Productivity, Efficiency, CSR, Sustainability and GHG reduction goals

Industrial & Manufacturing

- Data Interoperability
- Sustainable Production
- Zero Emissions
- Plant Optimization
- Networked Sensors
- Cloud Computing
- Intelligent & Integrated Processes
- Factories of the Future

- Smart Grid Generation / Distribution
- Smart Meters Measurement & Integration of smart capabilities
- Wireless Communications
- Analytics & Policies
- Decentralized and Co-generation
- Load Balancing
- Increased Efficiency
- Communications networks— utility-wide voice and data communications networks and services
- Intelligent utility network

Waste, Water & Air Mgmt

Smart Water

New Distribution Approaches for Stable and Continuous Water Supply

New Water Purification Technologies

Water Treatment / Re-Use / Re-Cycle

Wireless Sensors / Smart Metering for Optimal Usage / Analysis

Smart Air

Pollution Sensors – Outdoor Air Quality

Waste Management

Sensors to detect toxicity

Improving Efficiency of Waste Collection

Auto Sorting / Tracking - Reuse & Recycling

Bio-Medical Waste



Mobility

- Intelligent Transportation Technologies in the Age of Smart Cities:
- Traffic Management Monitoring & Routing
- Smart Charging
- Intelligent Public Transit
- Real Time Travel Information
- Transit signal priority
- Centralized fleet vehicle management
- Real Time Linkage to Emissions, Traffic Patterns, Reduced Fuel Consumption

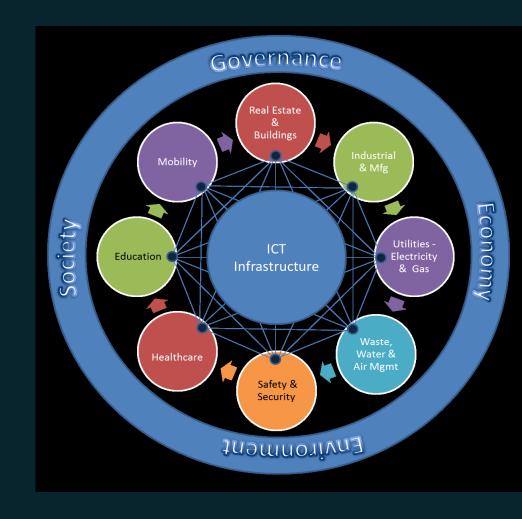
Safety & Security

- Video Surveillance
- Video Analytics
- Workflow
- Situational Awareness
- Enhanced Emergency Systems
- Natural Disasters
- Intra-Agency Communications

Healthcare

- Smart Hospitals
- Gaining real-time line of sight and responses to individualized health information.
- Smart" Communications Patient to Clinician
- Intelligent & Efficient Public Health
- Real Time Healthcare including Analytics
- Privacy and protection of patient information
- Home & Remote HealthCare incl. Monitoring
- Health Waste Management
- Electronic Records Management

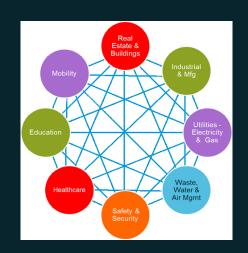
Education



- Flexible learning in an interactive earning environment
- Delivering education through different devices from televisions to ipods to mobile phones to netbooks – beyond our schools and into homes
- Accessing world class digital content online
- Adaptive learning programs and learning portfolios
- Collaborative technologies and digital learning resources
- A digital learning portfolio including online learning & testing that gives students, teachers and parents an integrated view
- MOOCs

ICT - The City as a Network

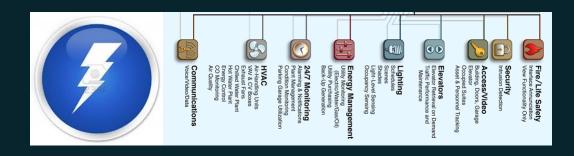
- The multiple systems within a city can be thought of as subnetworks of a larger network ie "System of Systems" or a "network of networks"
- When these sub-systems are integrated with one another, they can be thought of as the "Internet of Things" (IoT) for cities.
- All of these systems comprise of sub-systems, components & devices which have nodes, end points and behave like a network in terms of their end use characteristics and interactivity with other nodes.
- This is completely analogous to an IT or DataCom network


ICT is at the CORE acting as the "NERVE CENTER"

Cross-Vertical Coordination

 A smart city will be constantly tuning itself, honing the individual efficiencies of the different vertical infrastructure operations such as real estate, industry, utilities (energy), water, waste, education, healthcare and mobility.

• However to achieve a higher order of optimization, these very seemingly "independent " vertical infrastructure silos will need to <u>coordinate with each other</u> in order to making living more convenient and comfortable while at the same time balancing the fragile environment.



Smart Water - Energy

- A smart system which coordinates water availability and price with the use of energy and power
- For example, when actual fresh water is in low supply, making real time decisions to use recycled water OR water from a desalination plant (all of which use power).
- Such optimization / smart decisions can reduce water treatment costs, make power consumption more efficient, and realize a variety of other synergistic effects

Smart Energy - Buildings

- A Smart System which knows how to "arbitrate" and dispense power to critical areas in the building in the case of a power outage or at high electricity prices
- The ability to intelligently arbitrate according to a preset (or dynamic) priority needs these seeming disparate subsystems to communicate with another.
- For example, a building has many siloed sub-systems –
 HVAC, Lighting, Elevators etc and during a power outage,
 critical areas need to be given higher priority. A Data
 Center may need to have higher priority within a building
 compared to a cafeteria and within the cafeteria,
 refrigerated space for food may have a high priority.

Analytics, Informatics & Dashboards

- Wireless Sensor Networks
- Energy & Environmental Data
 View, Compare, Share
- Analytics

 Prediction
 Energy Savings Strategies
 Operational Optimization
- Real-time Information / "Pulse"

Software Applications For Smart Cities

Smart City Applications

City Dashboard

Smart Air & Smart Water

Smart Waste

Smart Parking & Traffic

Smart Utilities

Smart Lighting

Smart Noise

Smart HealthCare

.

Smart City & Building "Social" Applications

Marry "Facebook" type Social Applications to the City Infrastructure

Overarching Themes

ICT is the Core

 Goal is to achieve an economically sustainable urban environment without sacrificing comfort and convenience / quality of life of citizenry.

• ICT is the "great equalizer" (human to human, human to machine and machine to machine) to connect a variety of everyday living services to public infrastructures, such as utilities, mobility and water.

Areas to Focus On

Foundational Aspects

 Establish the Foundational Aspects as they relate to the Digital & Physical Infrastructure elements (Economy, Social, Environmental and Governance) – include models for this such a PPP (Public-Private Partnerships) for successful city administration & business models.

Vertical Infrastructure Areas

- Focus on the various vertical digital & physical infrastructure components including technology details which make up a smart sustainable city (Buildings, Utilities, Water, etc).
- Discuss potential new vertical areas as needed –for example, should we look at "Training"

Use Case Scenarios

- Identify a series of "use case scenarios" which establish the "interconnected" nature of the Smart Sustainable City to better establish the different "touch points" between the different vertical infrastructures.
- Include the touch points between the Verticals AND the Foundational Aspects as well.

Cities of the Future

Recognizes you and customizes itself based on your preferences

Intelligent

Efficient

Uses hard & soft resources optimally while increasing productivity

Secure

Assures both information & physical security at all times

Collaborative

Ensures that you stay connected to the right people & the right information in real time

Experiential

Delivers goodness in the way you work & live

Construction EUPHORIA China – Constructing 1 Japan EVERY 3 YEARS

CHINA

Adding 18-20 Billion sq. feet of construction every year

6000 Empire States EVERY YEAR

Year	# Japans
2012	1
2015 2018	2 3
2021	4
2024	5

Thank You

Sekhar Kondepudi Ph.D.

Smart Buildings & Smart Cities National University of Singapore

sekhar.kondepudi@nus.edu.sg

+65 9856 6472

+65 6601 2819