

Energy Efficiency, Clean Power as Engine for Sustainable Growth

Rakesh Kumar Bhatnagar, Advisor (Technology), & P K Panigrahi, Sr. DDG, Department of Telecommunications, Government of India.

l

सत्यमेय जयते

Agenda

- Telecom Growth in India
- Power Challenges
- Energy Efficiency Telecom System
- Clean Telecom Strategies
- Need for Clean Telecom
- Key benefits of Clean Telecom
- Regulatory Framework on Clean Telecom India
- Summary

- Unprecedented growth in the Telecommunication sector in recent years, Particularly in Mobile Telecom
- Manifold increase in mobile voice & data traffic =>
 - Exponential increase in a number of cellular towers in India and more & more towers erected each year.

Telecom subscribers in India:	892 Million (Wireless segment is the Growth Key Driver with 861.7 Million subscribers)	
Tele-density:	75.5% (Wireless 73%, wired line 2.5%)	
	40% Rural India	

February 2013 data

Indian Telecom Initiatives - Challenges

- Power availability on 24X7 Basis Major Challenge
- Rural India (Major Part of Country) face power problems:
 - Dismal State of Rural Electrification
 - Non-availability of Grid Power in rural areas
 - Grid far away
 - Poor power quality
 - Unreliable & Erratic Power behavior
- Normally Power availability 6-12 hours a day.

Mobile BTS : 7,42,000

Mobile Towers : 5,85,000

Power Requirement : 1 - 3 KW (24X7)

• 15-20 KVA Diesel Generator as a power backup.

Diesel Consumption : 4 Litres / hour.

Diesel Running Hours : 8 - 16 Hours / day (Normally)

Powering -Cellular Towers

- Major hurdles in operating Diesel Generator sets:
 - Transportation,
 - Storage,
 - Pilferage,
 - High cost of Diesel
- Energy is a dominant cost component for Telecom operation:

Energy Cost - Urban : 30% of OPEX

Energy Cost - Rural : 50% of OPEX

Carbon emission : 0.84 Kg/ unit of Grid supply

: 2.68 Kg/litre diesel consumption

Average fuel consumption of 8760 litres diesel every year per tower assuming 8 hours of operation by Diesel Generator sets.

[Source Telecom Regulatory Authority of India (TRAI)]

To Curb the Power Issues and Sustainable Growth & Development - An Imperative need for:

Integration of Energy Efficient &

Clean power considerations
for
Telecom operations
to
provide best possible Quality of Service
in Telecom sector.

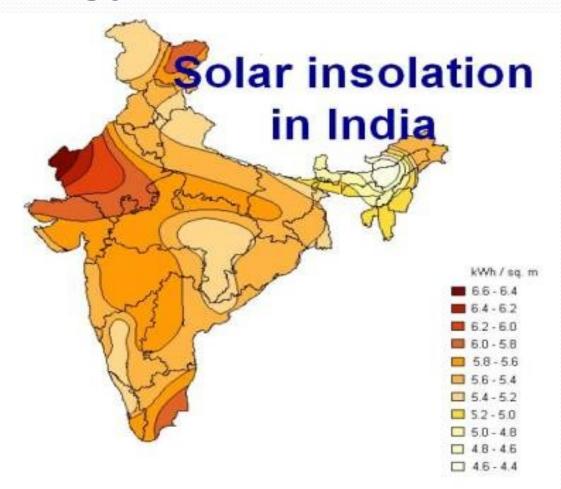
Energy Efficiency Techniques

- Minimization of Energy Consumption in Telecom Networks -
 - Energy Efficient Technologies
 - Energy Conservation Technologies & Protocols
- Optimize Network Efficiency & Reduce Energy Usage
- Transitioning to Renewable Energy Technology
- Evolving a Carbon Credit Policy
- Adoption of Energy Efficiency Analysis
- Infrastructure Sharing <u>Active</u> & <u>Passive</u>

- Sharing of:
 - Land,
 - Cellular Tower,
 - Power Supply (Grid & Diesel Generator),
 - SMPS &
 - Battery.

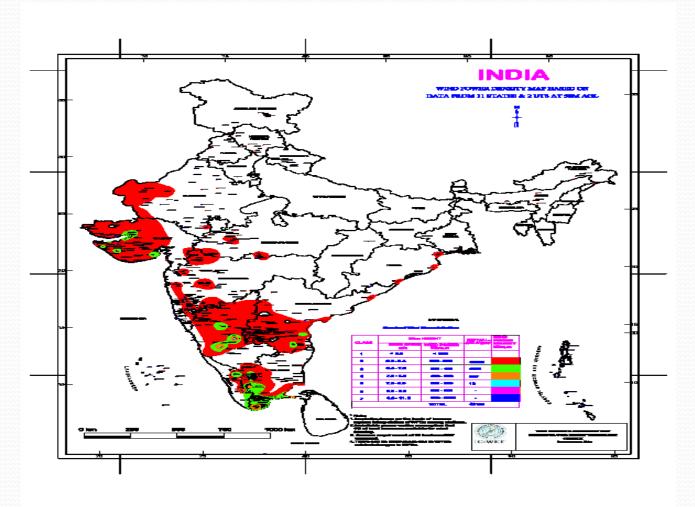
Need for Clean Telecom

- Helps to <u>Penetrate</u> in Rural / off grid areas
- Reduction in Telecom Network Power Consumption
- Reduction in Carbon Foot Prints
- Protect Environment & Save Natural resources
- Sustainable Growth
- Meet Regulatory Requirements
- Social Responsibility



Rural GSM Solution

- Low Power Solution
- Telecom Standards (Generic Requirements) from TEC
- Indigenous Manufacturing
- Low Power solution supports Solar Power Solution
- Rural Areas : Absence of Roads/ Diesel delivery problems
- Conventional Solution more expensive
- Differences in Technical Requirements
- Cost reduction to one third level
- Will Ensure Mobile coverage to uncovered villages


Solar Energy – A Natural Gift to India

Pilot Project - I

Solar Photovoltaic Project

OFF Grid site:

Service Providers: Reliance / BSNL / Vodafone.

Average Energy : 1530 Units / Month

: 51 Units/day.

20 KVA D.G. set running : 16 hours / day.

Solar array capacity: 10 KWP

Average unit generated daily: 40.69 units/day.

Units Generated during a month: 1220.60 Units.

Pilot Project I – Results

S. No.	Items	DG Set	SPV With DG Set	Savings
1.	20 KVA DG Set running	16 Hours/day	2 Hours/day	14 Hours/day
2.	Fuel	1320 litres / month	165 litres / month	1065 litres / month
	Consumption	Rs. 52800 / month	Rs. 6600 / month	(Rs. 46,200 / month)
	(2.75 litres/hour)			Rs 5,54,400 / annum
3.	Carbon Emission	3537 Kg/ month	442 Kg/month	3095 Kg/month
				37140 Kg/annum

Grid site:

Service Providers

Average Energy Required

Grid Supply

20 KVA D.G. set running

Solar array capacity
WTG Capacity
Average unit generated
Unit Generated

:Airtel/BSNL/Vodafone.

: 2200 Units/Month.

:72(36+36) Units/day

: 6 hours / day

: 10 hours / day.

: 10 KWP

: 5 KW

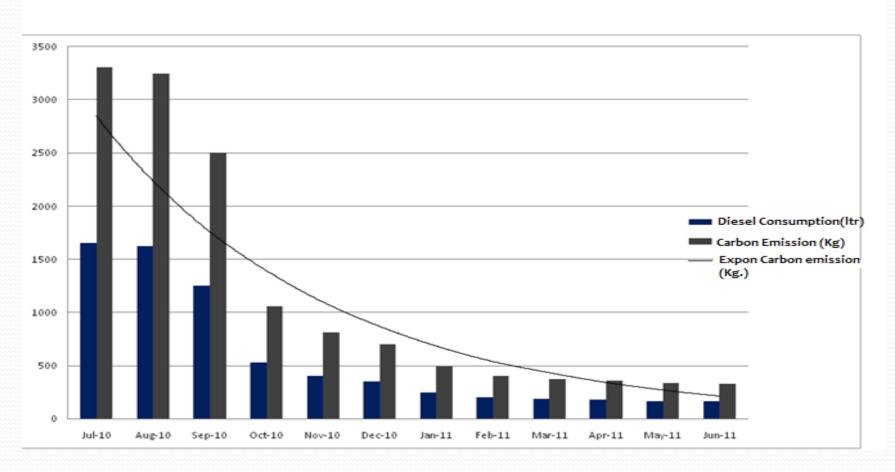
: 49 (37+12) Units/day

:1470(1110+360)/month

Contd..

Pilot Project II – Results

~						
S.NO.	Items	Before	Solar-Wind Hybrid with DG Set	Savings		
1.	20 KVA DG Set running	1022 units/month	448 units / month	574 units/month		
2.	Fuel Consumption (2.75 litres/hour)	865 litres/ month Rs. 34626 / month	231 Litres Rs. 9260 / month.	634 Litres / month. Rs. 25366 / month.		
3	Carbon Emission	2318 Kg/month	619 Kg/month	20387 Kg/annum		
4.	Grid Supply	1209 Units / Month Rs. 8003 / month	547 Units / Month Rs. 3607 / month	662 Units /Month Rs. 4396 / month.		
5.	Total Savings			Rs. 29762/- per month Rs. 3,57,144 / annum		


Trend of Monthly reduction of Diesel Consumption and increase in Solar generation

Monthly Trend in reduction of Diesel Consumption and Carbon Emission

Key Benefits of Clean Telecom

- Continual Quality Power availability
- Networking the Globe:
 - Off Grid Connectivity
 - Grid Connected Solar Power
- Reducing Total Cost of Ownership; TCO (CAPEX + OPEX)
- Conserving & Protecting the Environment
 - A one KW SPV system every month prevents 136 kg CO2 from entering the environment.
- No noise pollution
- Independent of power tariff variation
- Quality of Service (QOS)

Regulatory Framework on Clean Telecom - India

Government Directives

(To adopt measures to clean the Telecom Sector in India)

- At least 50% of rural towers and 20% of urban towers to be powered by hybrid power by 2015 (RET + Grid Power) &
- Minimum 75% of rural towers and 33% of urban towers are to be powered by hybrid power by 2020 (RET + Grid Power).
- All Telecom Products, Equipments and Services in Telecom Network energy and performance assessed.
- Certified green passport utilizing ECR rating by 2015.
- All service providers to declare the carbon footprint of their network operation twice in a year.

- Service providers to adopt voluntary code of practice encompassing energy efficient network planning, infrastructure sharing, deployment of energy efficient technology and adoption of renewable energy technology.
- Network operator to induct carefully design and optimized energy efficient radio networks that reduce overall power and energy consumption.
- Service provider to endeavour to ensure that total power consumption of each BTS of 2+2+2 configuration will not exceed 500 watt by 2020.

- Telecom service providers to have their cell sites particularly in rural areas powered by hybrid renewable sources:
- wind energy, solar energy, fuel cells or combination thereof
 [To ensure that around 50% of all towers in rural areas are powered by hybrid renewable sources by 2015.]
- Service providers to evolve a carbon credit policy in line with carbon credit norms to the ultimate objective of achieving:
 - a maximum of 50% over the carbon footprint levels of the base year 2011 in rural areas and maximum of 66% in urban areas by the year 2020.

- The service providers should aim at carbon emission reduction target for the mobile networks:
 - 5% by the year 2012-2013
 - 8% by the year 2014-2015
 - 12% by the year 2016-2017
 - 17% by the year 2018-2019

Monitoring Mobile network

Parameters:

- (a) Units / mobile connection / month
- (b) Units / mobile traffic / month
- (c) Units / revenue generation / month
- (d) Units / Cell site / month
- (e) Carbon (Kg) / Cell site / month

Comparability of performance results shall improve the quality / energy efficiency of different operators turns into **Cleaning / Greening the Telecom.**

Monitoring Mechanism

Clean Energy Implementation & Carbon Reduction Targets

- Web Based Cloud application to:
 - Facilitate for uploading the Data by Telecom Operators
 - Monitor the progress for Implementation Renewable Energy Technology
 - Keep Track of Carbon Emission Reduction Targets
 - Analyse & examine various scenario & generate reports.

Summary

- Energy efficient & clean Energy solutions are imperative need of the time for sustainability.
- The renewable energy for powering Cellular BTS towers -Technically feasible and Financially viable.
- Payback period from the cost analysis of DG operated system vs. SPV system is approximately 3 - 4 years.
- Sharing of the passive infrastructure in a BTS site having more than one operator has resulted in low CAPEX and 30% energy savings. For new operators this will result in faster roll out of network.

<u>Summary</u>

- Substantial Reduction of Green House Gas (GHG) emissions.
- Quality of Service maintained.
- A one kilowatt PV system each month:
 - Saves 68 kg coal
 - prevents 136 kg CO2 entering into the atmosphere
 - keeps around 568 litres water from being consumed
 - keeps NO and SO2 from being released into the environment

THANK YOU

Phone: +91-11- 23372325
Fax : +91-11- 23372329
E-mail: srddgbw-dot@nic.in