
Tutorial on Fast Web Services

This document provides tutorial material on Fast Web Services (it is equivalent to Annex C of X.892 |
ISO/IEC 24824-2). Some of the advantages of using Fast Web Services are described. The differences
between the conceptual and optimized processing of SOAP messages are highlighted, followed by an
example. The example is based on a simple exchange in which a client sends a request message and
receives a response message. The use of service descriptions is discussed, followed by an example service
description (in WSDL 1.1 – see [2]) that describes the service provided by the messaging example.

C.1 Advantages of Fast Web Services

The Fast Web Services specification is based on the use of an ASN.1 definition of SOAP messages and
their contents, and on the use of binary encodings of those messages. This provides the main advantage
(fast computer processing and low message bandwidth) of Fast Web Services, but a number of further
optimizations of XML SOAP are discussed below.

C.1.1 ASN.1 tools

ASN.1 tools can be used in the development of ASN.1 SOAP processors, whereas XML SOAP processors
are, for the most part, written by hand, with the W3C XML Schema for SOAP used only as a guide, since
XML binding tools are unlikely to aid in the development of optimal XML SOAP processors. The ASN.1
approach allows for a choice of either tools or hand crafting to develop SOAP processors, without any
serious performance penalties, and with potential gains in time-to-market.

C.1.2 Optimized features

ASN.1 SOAP provides a number of optimization features (beyond compaction and efficient processing
offered by the use of ASN.1 and PER – see ITU-T Rec. X.691 | ISO/IEC 8825-2) for SOAP nodes:

a) The body of an ASN.1 SOAP message is explicitly separated from the encoding of the fault
of an ASN.1 SOAP message. This makes faults easier to identify and manage.

b) Recursive fault sub-code values for W3C SOAP messages are flattened to a sequence of
fault sub-code values for ASN.1 SOAP messages. This enables a decoder to know how
many fault sub-codes there are before decoding.

c) ASN.1 relative object identifiers can be used instead of qualified names. Messages for
service descriptions can be annotated with relative object identifiers and such identifiers,
when encoded, are generally much more compact than qualified names, resulting in smaller
message sizes.

d) Default values for all attribute-related ASN.1 SOAP header block components are specified.
e) Enumerated values are used for W3C SOAP-specified fault codes instead of qualified

names.

C.1.3 Compact messages and efficient processing

ASN.1 SOAP messages encoded using the ASN.1 Packed Encoding Rules generally provides Web services
that require less processing power (and hence provide a higher transaction processing rate) and that require
less network bandwidth than use of the character encoding of XML data. This can be advantageous in a
number of domains:

a) Constrained devices, such as mobile phones, smart cards or even Radio-Frequency
Identification (RFID) devices, which have limited processing power, memory and battery
life.

NOTE – There is no equivalent Moore's law for battery technology (battery life is not doubling
every 18 months).

b) Bandwidth-restricted systems, such as wireless networks.
NOTE – Radio frequencies for wireless networks, such as the mobile phone GSM (Global System
for Mobile Communications) network, can be fixed for 10 years. There is no equivalent Moore's
law for radio frequencies (bandwidth is not doubling every 18 months).

c) High throughput transaction systems, such as systems required to process a required number
of SOAP messages per second from many clients.

C.1.4 Efficient processing for SOAP intermediaries

SOAP intermediaries have the potential to process many more SOAP messages than initial SOAP senders
and ultimate SOAP receivers. SOAP intermediaries processing ASN.1 SOAP messages may easily identify
ASN.1 SOAP header blocks for processing (including decoding) while skipping (and copying) other SOAP
header blocks (destined for other SOAP intermediaries or the SOAP ultimate receiver) and the SOAP
body. (This is because the SOAP header blocks and the SOAP body are encoded as a length prefixed
sequence of octets).

NOTE – ASN.1 SOAP intermediaries can also manage faults efficiently, since a fault will always occur at the end
of a message (after the SOAP header blocks) and will be guaranteed to start at a byte boundary if header blocks are
present. Thus it is not necessary for an intermediary to decode the fault unless the intermediary performs processes
not specified by the SOAP processing model.

C.2 Conceptual and optimized processing of ASN.1 SOAP messages

C.2.1 General

C.2.1.1 The conceptual mapping from ASN.1 SOAP messages to W3C SOAP messages and vice versa
ensures that the W3C SOAP processing model can be applied to ASN.1 SOAP messages. The six
following subclauses highlight the conceptual steps required by an initial SOAP sender, a SOAP
intermediary and an ultimate SOAP receiver to process messages, and the optimized steps required for a
SOAP intermediary.

C.2.1.2 An initial SOAP sender (see W3C SOAP Part 1, 1.5.3) implementing the ASN.1 SOAP HTTP
Binding generates ASN.1 SOAP messages in the following steps:

a) create a new W3C SOAP message and insert new embedded ASN.1 abstract values into the
W3C SOAP message; and

e) map the W3C SOAP message to an ASN.1 SOAP message; and
f) encode the ASN.1 SOAP message, using Basic Aligned PER, to a sequence of octets that is

the content of an HTTP request.

C.2.1.3 If the initial SOAP sender uses the SOAP Request-Response Message Exchange Pattern (see
W3C SOAP Part 2, 6.2), then the SOAP sender (see W3C SOAP Part 1, 1.5.3) will wait for a response and
change roles to become an ultimate SOAP receiver (see W3C SOAP Part 1, 1.5.3).

C.2.1.4 A SOAP intermediary (see W3C SOAP Part 1, 1.5.3) implementing the ASN.1 SOAP HTTP
Binding processes ASN.1 SOAP messages in the following steps:

a) decode the sequence of octets, obtained from the content of an HTTP request or response,
using Basic Aligned PER, to obtain an inbound ASN.1 SOAP message; and

b) map the inbound ASN.1 SOAP message to obtain an inbound W3C SOAP message; and
c) identify and process embedded ASN.1 abstract values in the inbound W3C SOAP message;

and
d) modify the inbound W3C SOAP message to become an outbound W3C SOAP message and

insert new embedded ASN.1 abstract values into the outbound W3C SOAP message; and
e) map the outbound W3C SOAP message to an outbound ASN.1 SOAP message; and
f) encode the outbound ASN.1 SOAP message, using Basic Aligned PER, to a sequence of

octets that is the content of an HTTP response or request.

C.2.1.5 An ultimate SOAP receiver implementing the ASN.1 SOAP HTTP Binding processes ASN.1
SOAP messages in the following steps:

a) decode the sequence of octets, obtained from the content of an HTTP request, using Basic
Aligned PER, to obtain an ASN.1 SOAP message; and

b) map the ASN.1 SOAP message to obtain a W3C SOAP message; and
c) identify and process embedded ASN.1 abstract values in the W3C SOAP message.

C.2.1.6 If the ultimate SOAP receiver uses the SOAP Request-Response Message Exchange Pattern,
then the SOAP node will change roles to become an initial SOAP sender and will send an ASN.1 SOAP
message in reply.

C.2.1.7 The conceptual steps to map to and from W3C SOAP messages and process embedded ASN.1
values (identify and process in a W3C SOAP message and insert into a W3C SOAP message) are specified
in clauses 6 to 9 of ITU-T Rec. X.891 | ISO/IEC 24824-2. A SOAP node may, however, choose to
optimize the process by skipping the conceptual steps as long as the results are the same as if the
conceptual steps were performed. For example steps b) to e) in C.2.1.4 are conceptual steps and the SOAP
intermediary may choose to optimize by processing ASN.1 SOAP messages in the following steps:

a) decode the sequence of octets, obtained from content of the HTTP request, using Basic
Aligned PER, to obtain an inbound ASN.1 SOAP message; and

b) identify and process embedded ASN.1 abstract values in the inbound ASN.1 SOAP
message; and

c) modify the inbound ASN.1 SOAP message to become an outbound ASN.1 SOAP message
(or create a new outbound ASN.1 SOAP message) and insert new embedded ASN.1 abstract
values into the outbound ASN.1 SOAP message; and

d) encode the outbound ASN.1 SOAP message, using Basic Aligned PER, to a sequence of
octets that is the content of the HTTP response.

C.2.2 Example

An example is given in the following subclauses from the perspective of an application sending an ASN.1
SOAP message request and receiving a response. The Fast Web Service is specified in C.3.2 using WSDL
1.1, and is based on the sample W3C SOAP message in W3C SOAP Part 1, 1.4. The service is essentially
one in which an application may request the latest alert concerning some information that is important to
the application (or user of the application). The requesting application will send an empty ASN.1 SOAP
message (with no application-defined content) and receive, in response, an ASN.1 SOAP message with two
pieces application-defined content (specified in C.3.2 using WSDL 1.1) for the alert that corresponds to:

a) a SOAP header block for properties of the alert, namely the priority of the alert and the time
it expires; and

b) a SOAP body content for the alert itself, which is a textual description of the alert.

C.2.2.1 W3C SOAP message request

The application requests the latest alert by executing (using some appropriate programming language, such
as Java) a method call with no input parameters that will return the alert. The initial SOAP sender will
create a W3C SOAP message, with no content, represented in XML as:

 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 </env:Body>
</env:Envelope>

C.2.2.2 ASN.1 SOAP message request

This W3C SOAP message is mapped to an ASN.1 SOAP message request consisting of:

 envelope Envelope ::= {
 header {}
 body-or-fault : body {} }

where the Envelope type is defined in Annex A and subclause 6.1 of ITU-T Rec. X.892 | ISO/IEC 24824-
2.

C.2.2.3 HTTP request

The ASN.1 SOAP message is then encoded, using Basic Aligned PER, to a sequence of octets that is the
content of an HTTP request. The HTTP header field Content-Type is "application/fastsoap" and the action
parameter is set to "urn:alert". The initial SOAP node declares, using the HTTP header field Accept, that
both ASN.1 SOAP messages and XML SOAP messages (in this case SOAP 1.1 messages [1]) are
supported.

 POST /AlertPort HTTP/1.1
Content-Type: application/fastsoap; action="urn:alert"
Accepts: application/fastsoap, application/text+xml
Content-Length:

... sequence of octets …

C.2.2.4 HTTP response

The initial SOAP sender will then change roles and become an ultimate SOAP receiver and waits until it
receives a response to the request. The HTTP header field Content-Type on the response is
"application/fastsoap".

 HTTP/1.1 200 OK
Content-Type: application/fastsoap
Content-Length:

... sequence of octets …

C.2.2.5 ASN.1 SOAP message response

The ASN.1 SOAP message is decoded using Basic Aligned PER, to produce the ASN.1 value:

http://www.w3.org/2003/05/soap-envelope

 envelope Envelope ::= {
 header { {
 role "http://example.org/alertrole",
 content : encoded-value {
 id : qName {
 uri "http://example.org/alertcontrol",
 name "altertcontrol"},
 encoding {......}}}},
 body-or-fault : body {
 content : encoded-value {
 id : qnName {
 uri "http://example.org/alert",
 name "alert"},
 encoding {......}}}}

C.2.2.6 W3C SOAP message response

C.2.2.6.1 The ASN.1 SOAP message is mapped to a W3C SOAP message. The W3C SOAP message
contains an alertcontrol W3C SOAP header block and an alert element (information item) as the child of a
Body EII:

 <env:Envelope
 xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <n:altertcontrol
 xmlns:n="http://example.org/alertcontrol"
 env:role="http://example.org/alertrole"
 env:encodingStyle="urn:fastws:encoding:APER">
 … Base64 content …
 </n:altertcontrol>
 </env:Header>
 <env:Body>
 <m:alert
 xmlns:m=" http://example.org/alert"
 env:encodingStyle="urn:fastws:encoding:APER">
 … Base64 content …
 </m:alert>
 </env:Body>
</env:Envelope>

C.2.2.6.2 The embedded ASN.1 abstract value for the alertcontrol W3C SOAP header block is identified
and processed since the requesting SOAP node operates in the "http://example.org/alertrole" role. The
Identifier value for the alertcontrol W3C SOAP header block and the embedded ASN.1 value, decoded
using Basic Aligned PER from the Base64 content using the ASN.1 type, AlertControl, associated with
the Identifier, are as follows:

alertControlIdentifier Identifier ::= qName : {
 uri "http://example.org/alertcontrol",
 name "altertcontrol" }

alertcontrol Alertcontrol ::= {
 role "http://example.org/alertrole",
 priority 1,
 expires "2001-06-22T14:00:00-05:00" }

C.2.2.6.3 The embedded ASN.1 abstract value for the alert element (information item) is identified and
processed as the SOAP node is an ultimate SOAP receiver. The Identifier value for the alert and the
embedded ASN.1 value, decoded using Basic Aligned PER from the Base64 content using the ASN.1 type
Alert associated with the Identifier are as follows:

alertIdentifier Identifier ::= qName : {
 uri "http://example.org/alert",
 name "alert" }

alert Alert ::= {
 msg "Pick up Mary at school at 2pm" }

C.3 Service descriptions

C.3.1 General

C.3.1.1 Service descriptions expressed in WSDL 1.1 [2] can be used, without modification, for the
description of ASN.1 SOAP endpoints. This increases the scope and usage of Fast Web Services, since the
impact on the Web services developers is minimized.

C.3.1.2 A WSDL 1.1 binding interface for SOAP 1.1 [1] can be reused for an ASN.1 SOAP binding
interface provided the WSDL document is a SOAP-oriented service description and WSDL 1.1 binding
conforms to the clarifications and amendments specified by the WS-I Basic Profile 1.0 [3].

http://www.w3.org/2003/05/soap-envelope

C.3.2 Example

C.3.2.1 The service description (expressed in WSDL 1.1) shown in C.3.3 specifies an ASN.1 SOAP
interface binding for the example in C.2.2.

C.3.2.2 The WSDL document has the two xsd:schema definitions contained in the wsdl:types (specifying
the child content of a Body EII, and W3C SOAP header block for the only response). The equivalent
ASN.1 schema is obtained by applying ITU-T Rec. X.694 | ISO/IEC 8825-5 to the two schemas.

C.3.2.3 The ASN.1 SOAP HTTP Binding will be used because the value of the transport attribute on the
soapbind:binding element (the ASN.1 SOAP interface binding) is equal to
"http://schemas.xmlsoap.org/soap/http/".

C.3.2.4 Fast Web Services support is explicitly specified for the ASN.1 SOAP binding interface by use
of the ASN.1 SOAP interface binding annotation (a fast-service:binding element) in the wsdl:binding element
and after the soapbind:binding element.

C.3.2.5 The style of the ASN.1 SOAP binding interface is the document-style, since the interface
binding conforms to document-literal binding as specified by the WS-I Basic Profile 1.0 [3].

C.3.2.6 The input message definition is empty (no top-level element declaration, since the soapbind:body
in the wsdl:input in the AlertOperation operation binding references, implicitly, no wsdl:parts). However, a
SOAP action URI exists, since the AlertOperation operation binding has a soapAction attribute. The URI
"urn:alert" will be placed in the action parameter of the "application/fastsoap" MIME type for the HTTP
header field Content-Type of the HTTP request (that contains the empty ASN.1 SOAP message).

C.3.2.6 The output message definition has one top-level element declaration, alert:alert (since the
soapbind:body in the wsdl:output in the AlertOperation operation binding references, implicitly, one wsdl:part).

C.3.2.7 A SOAP header block definition (the alertcontrol W3C SOAP header block) is specified for
output of the AlertOperation operation binding with a top-level element declaration alertcontrol:alertcontrol.

C.3.3 Service description expressed in WSDL 1.1

<definitions name="Alert"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/ "
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:fast-service=" urn:fastws:description "
 xmlns:tns="http://example.org/alert/service"
 targetNamespace="http://example.org/alert/service"
 xmlns:alert="http://example.org/alert"
 xmlns:alertcontrol="http://example.org/alertcontrol">

 <types>
 <schema
 targetNamespace="http://example.org/alertcontrol"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 elementFormDefault="qualified">
 <import namespace=" http://schemas.xmlsoap.org/wsdl/soap/"/>
 <element name="alertcontrol">
 <complexType>
 <sequence>
 <element name="priority" type="xsd:integer"/>
 <element name="expires" type="xsd:dateTime"/>
 </sequence>
 <xsd:attribute ref="soap:role"/>
 </complexType>
 </element>
 </schema>
 <schema
 targetNamespace="http://example.org/alert"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <element name="alert">
 <complexType>
 <sequence>
 <element name="msg" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="AlertRequest">
 </message>

 <message name="AlertResponse">
 <part name="header" element="alertcontrol:alertcontrol"/>
 <part name="body" element="alert:alert"/>
 </message>

 <portType name="AlertPortType">
 <operation name="AlertOperation">
 <input message="tns:AlertRequest"/>
 <output message="tns:AlertResponse"/>
 </operation>
 </portType>

 <binding name="AlertBinding" type="tns:AlertPortType">
 <soapbind:binding
 transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <fast-service:binding/>

 <operation name="AlertOperation" soapAction="urn:alert">
 <input message="tns:AlertRequest">
 <soapbind:body use="literal"/>
 </input>
 <output message="tns:AlertResponse">
 <soapbind:body use="literal" parts="body"/>
 <soapbind:header
 use="literal"
 message="tns:AlertResponse"
 part="header"/>
 </output>
 </operation>
 </binding>

 <service name="AlertService">
 <port name="AlertPort" binding="tns:AlertBinding">
 <soapbind:address location="http://example.org/AlertPort"/>
 </port>
 </service>
</definitions>

Bibliography
[1] W3C Note, Simple Object Access Protocol (SOAP) 1.1, Don Box, David Ehnebuske, Gopal
Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Nielsen, Satish Thatte, Dave Winer, 8 May 2000.

[2] W3C Note, Web Services Description Language (WSDL) 1.1, Erik Christensen, Francisco
Curbera, Greg Meredith, Sanjiva Weerawarana, 15 March 2001.

[3] WS-I, Basic Profile Version 1.0, Final Material, 16 April 2004.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

	Tutorial on Fast Web Services
	Tutorial on Fast Web Services
	C.1 Advantages of Fast Web Services
	C.1.1 ASN.1 tools
	C.1.2 Optimized features
	C.1.3 Compact messages and efficient processing
	C.1.4 Efficient processing for SOAP intermediaries
	C.2 Conceptual and optimized processing of ASN.1 SOAP messages
	C.2.1 General
	C.2.2 Example

	Content-Type: application/fastsoap; action="urn:alert"
	Content-Length:
	Content-Type: application/fastsoap
	Content-Length:
	C.3 Service descriptions
	C.3.1 General
	C.3.2 Example
	C.3.3 Service description expressed in WSDL 1.1

	Bibliography

