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Introduction

Approaches in Sensor-based Human Activity Recognition

» Logic and reasoning
= Inherent infeasibility to handle uncertainty

= Limitation of learning ability with logic based techniques
» Probabilistic model

= Generative (e.g., HMM, Bayesian Networks) or discriminative models (e.g., Conditional random fields)
» Data mining-based methods

= Mining a set of pattern of features, activity model

= Skeleton featured-based

e Skeleton feature of human-subjects with different body positions
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Motivation

Learning based Approaches for Vision-based Activity Recognition

> Before Deep Learning

» Hand crafted features (e.g., HOG) from sparsely / densely sampled trajectories
» Hand-crafted vs. learned features

» Bag of words

» Frame level processing
» Post Deep Learning Approaches

» The fusion of spatial and temporal data across streams

» Creation of multi-level loss to handle temporal dependencies in long term
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Skeleton Generation and
Processing 1. Hip Transformation

To make the skeletons invariant to the location
of the subjects,

[x,j» y’j] — [xj_xhipcenter» Yj — yhipcenter]

. N S > + L,
Input 3 2D Skeleton Where X, center aNd Vo center F€Present the hip
center of the input skeleton
Encoder- c ution | Encoder-
onvolution layers .
Decoder Y Decoder 2. Theta Transformation
To make the poses rotation invariant, a rotation operation
The heat-map is is applied on the joints relative to the camera view angle 0.
used to represent a i i _ o _
joint location in 0 = tan~1 Yright_hip — Yleft_hip
skeleton of human- - Xright_hip — Xleft_hip
subject in an image Heat Map
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Figure 2 - Stacked hourglass architecture for 2D skeleton , )
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Feature Vector Optimization

The Fisher Vector (FV) and dimensionality reduction using PCA are applied for the optimization of the features.

The FV encodes the
gradients of the log-
likelihood of the
features under the
Gaussian-Mixture-
Model (GMM), with
respect to the GMM
parameters.
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The PCA is used to preserve
the essential parts that have
more variation of the data and
remove the non-essential parts
with fewer variations.




Implementation Overview

The data sets used to train and evaluate the model:
> MSR Action Dataset
> NTU RGB+D 3D Skeletal Dataset

Implementation using Python programming with

= Flask framework - Web server implementation
= OpenCV library — Processing of video stream at frame level

= Keras library with Tensorflow - Design of convolutional neural
networks

The multi-class classification is carried out by either
(1) A one-vs-rest SVM or

(2) A three-layer multi-layer perceptron (MLP) DNN
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Fig: System display of the
recognized action

Fig. Bounding boxes in two MSR
action data sets




Resu Its The SVM is trained with the help of a feature vector
generated from the MSR Action Data Set.

Table 1: Confusion matrix of the one-vs.-rest SVM Table 2: Performance metrics of the action classifier
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TruePositives

Precision =
(TruePositives + FalsePositives )
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Results (cont.)
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Figure 4 - Precision-recall plot of the proposed
DNN-based classifier.
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It shows the trade-off between precision, a
measure of result relevancy, and recall, a measure
of how many relevant results are returned.

A large area under the curve indicates high recall
and corresponding precision values.

The average precision score of the proposed DNN-
based classifier, micro-averaged over all the action
classes, is 0.85.




Results (cont.)

TP+TN
TP+TN+ FP+FN

where TP =True Positives, TN =True Negatives, FP = False Positives, and FN = False Negatives.

Accuracy =

96 Table 3: Comparison of methods based on accuracy
95
93
92 - Skeleton Feature + SVM
1
2 HGN+DNN 95.6
90
89

Traning Accuracy Test Accuracy

MW Skeleton Feature +SVM  ®m HGN + DNN

Figure 5: Training and test accuracy of SVM and DNN
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Results (cont.)

The classification model is trained on two
types of processed skeleton data.

In the first type,
» the data from each frame of the video is
processed separately and

> the skeleton data is used to extract and
generate the feature vector on which the
classifiers are trained.

In the second type,

» five frames are taken as a sliding window and
the skeleton data obtained from these are
concatenated and

» used to extract the features and generate the
vector.
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Figure 6: Accuracy of different types of Feature vector

When these concatenated frames are used, it improves
the accuracy of both the SVM and DNN model.




Summary

Conclusion

» A combination of two models HGN and DNN to capture the action performed by the human
subject and to recognize the action.

» The proposed system achieved an accuracy of 95.6% in action recognition on two different
standard data sets of MSR Action and NTU RGB+D 3D skeleton.

» It meets the requirements of service description for video surveillance specified in
Recommendation ITU-T F.743.

Future Work

» Standardization as an extension of the intelligent visual surveillance system architecture specified

in Recommendation ITU-T H.626.5.
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