ONLINE2020

7-11 December 2020

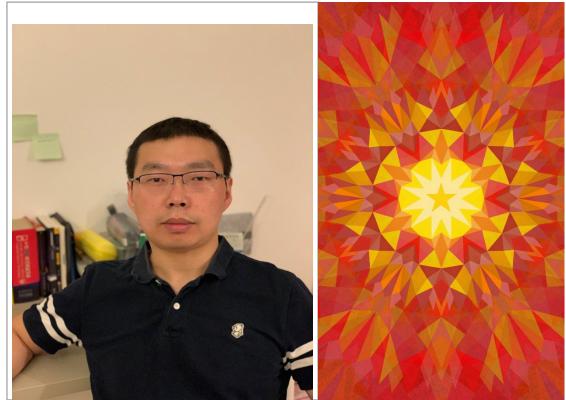
BSR: A BALANCED FRAMEWORK FOR SINGLE IMAGE SUPER RESOLUTION

Dr. Dehui Kong

State Key Laboratory of Mobile Network and Mobile Multimedia Technology, China; ZTE Microelectronics Research Institute, China.

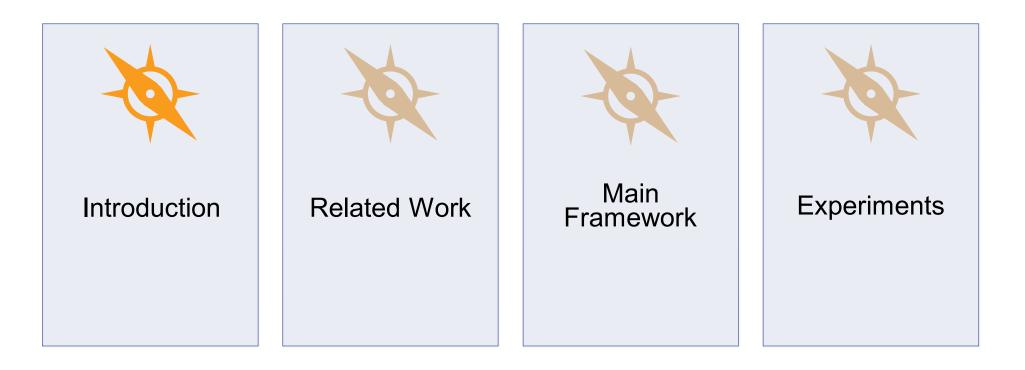
Session 7 – Al, machine learning and digital transformation

Paper S7.3



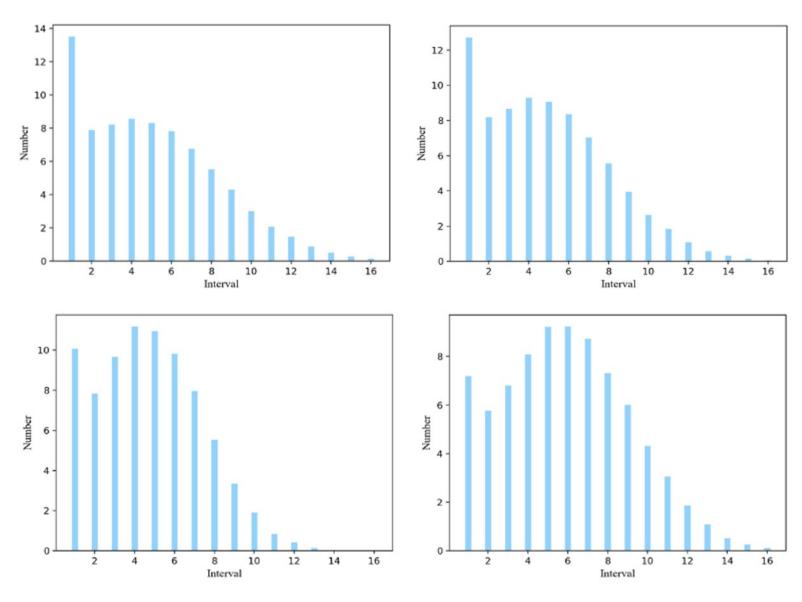
Pay our sincerely respect to medical workers for their brave actions to fight against the new coronavirus!

Contents



Unbalance in SISR

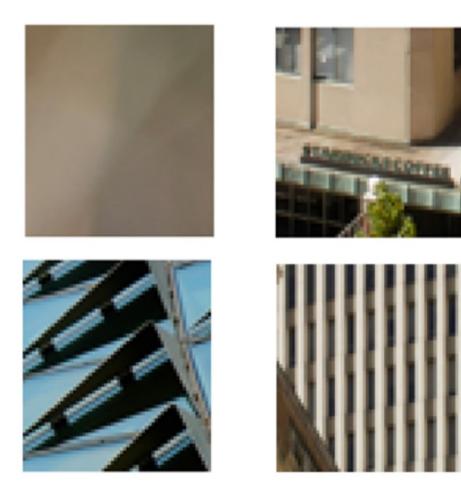
Gradient not evenly distributed and the patches featuring smaller gradients account for the majority



Gradient distribution from random samples of a DIV2K

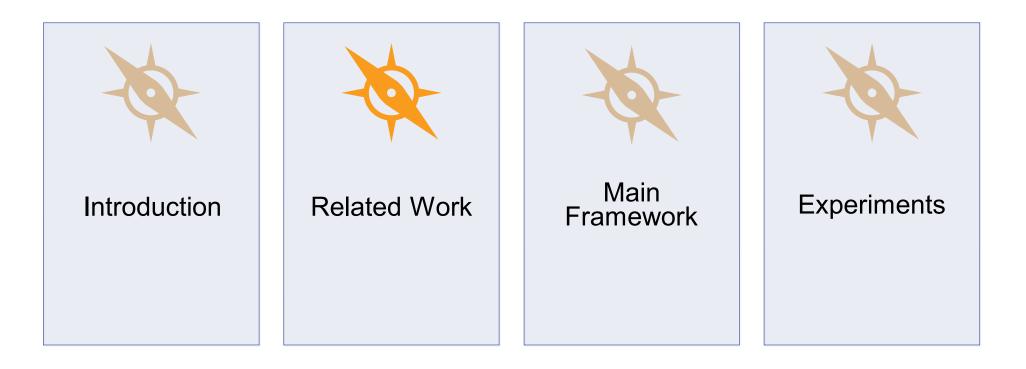
Unbalance in SISR

Examples for different Picture Information Content(PIC).



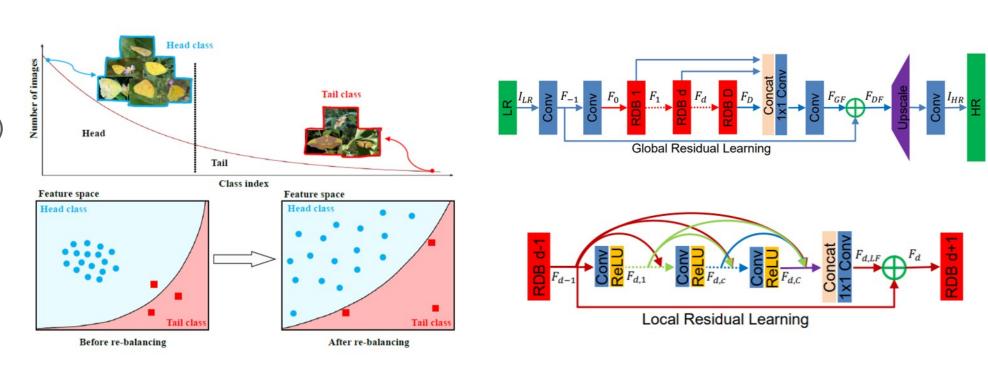
Typical patches with different gradients interval values

Contents

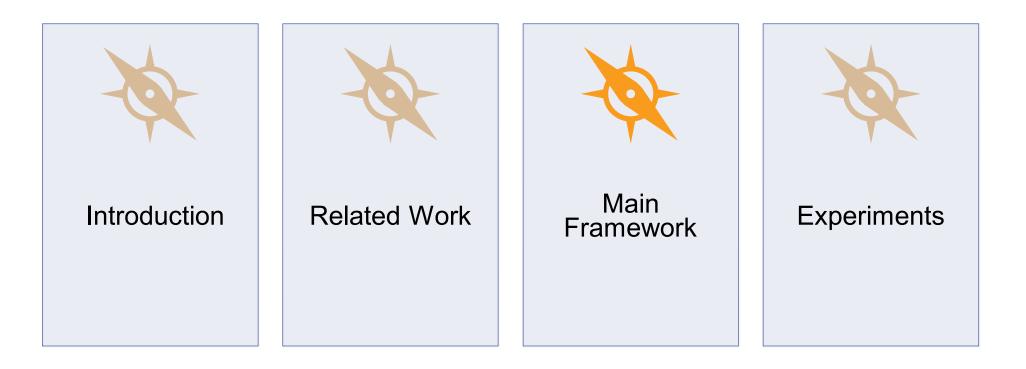


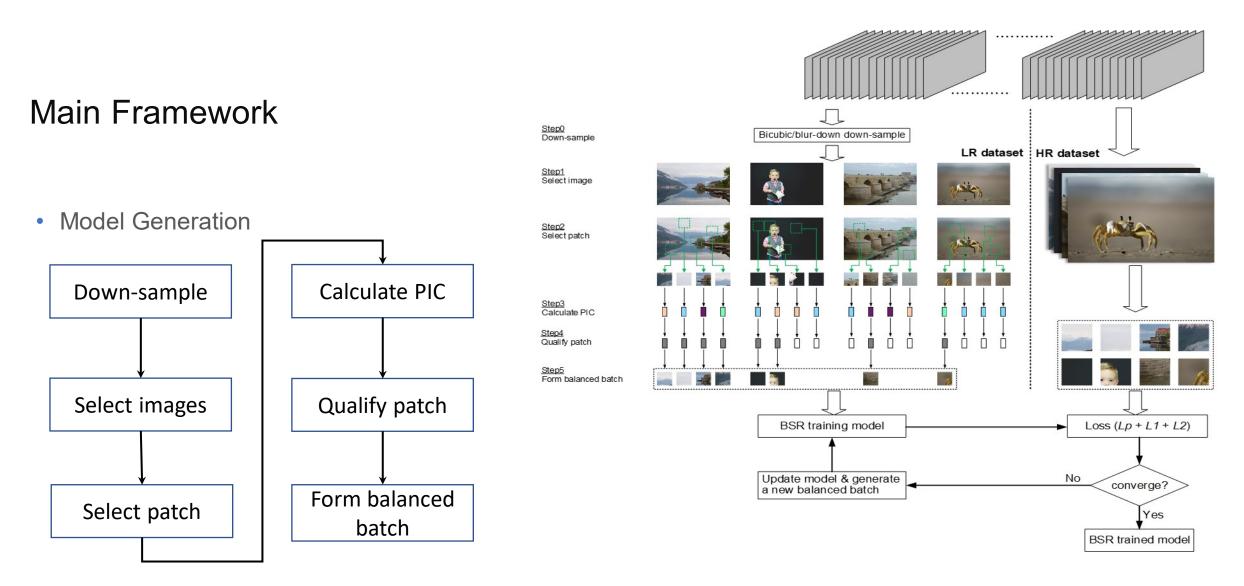
Related Work

- BBN[1](Left)
- RDN[2](Right)



Contents





Main Framework

 Random Filter Sampling (RFS)

$$PIC = \sum_{ch=0}^{2} \sum_{y=0}^{h-1} \sum_{x=0}^{w-1} G_{sobel}[P_{in}(x, y, w, h)]$$

Input: M – number of randomly selected LR candidate images

N – number of patches for each batch

- K set of PIC distribution interval
- T training data set

1. Initialize sampled vector V = [NULL ... NULL]_{1×k}. Randomly select M low resolution images from training data set T. 2. While V \neq K:

2.1) Randomly crop each input image to generate one patch $p_0,\,p_1$... $p_{m\text{-}1}$

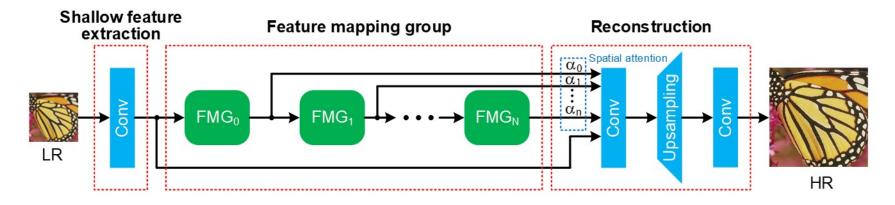
2.2) Compute PIC for each patch as equation (1), and output PIC vector $[PIC_0, PIC_1 \dots PIC_m]$

2.3) For i = 0: k-1:

If PICi \in interval N_i and V_i < K_i:

Put current patch into batch

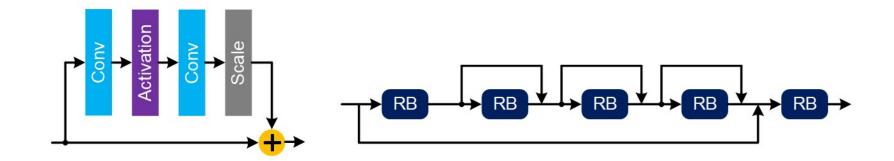
Output: Batch



Main Framework

• Network Architecture

(a) Main architecture of BSR

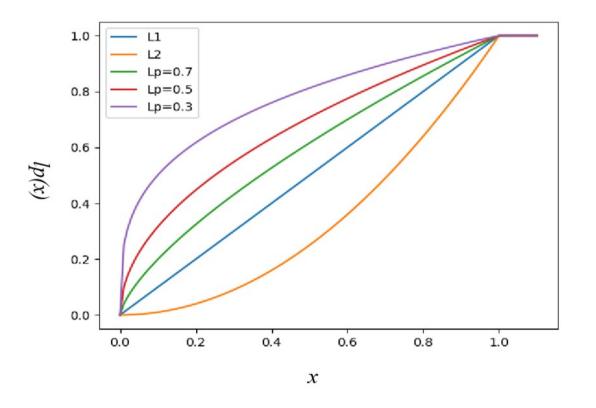


(b) Core module of BSR: Residual Block and FMG

Main Framework

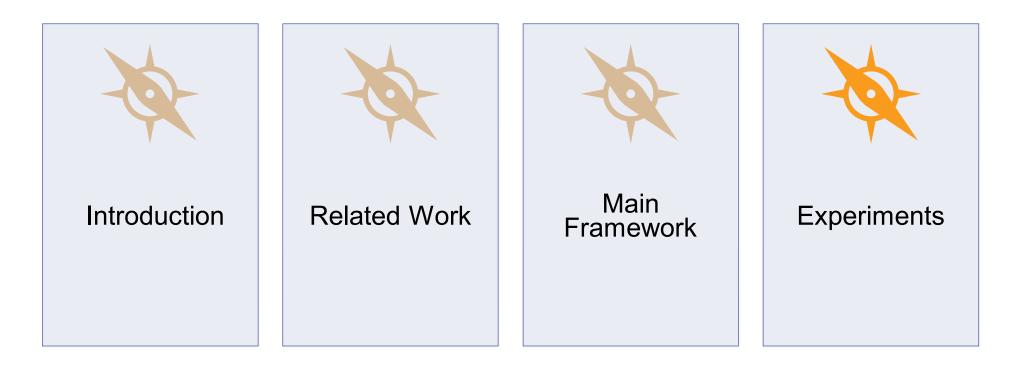
Loss Function

$$f = L_2 + \alpha \times L_1 + \beta \times L_p$$



Output comparison from different norms

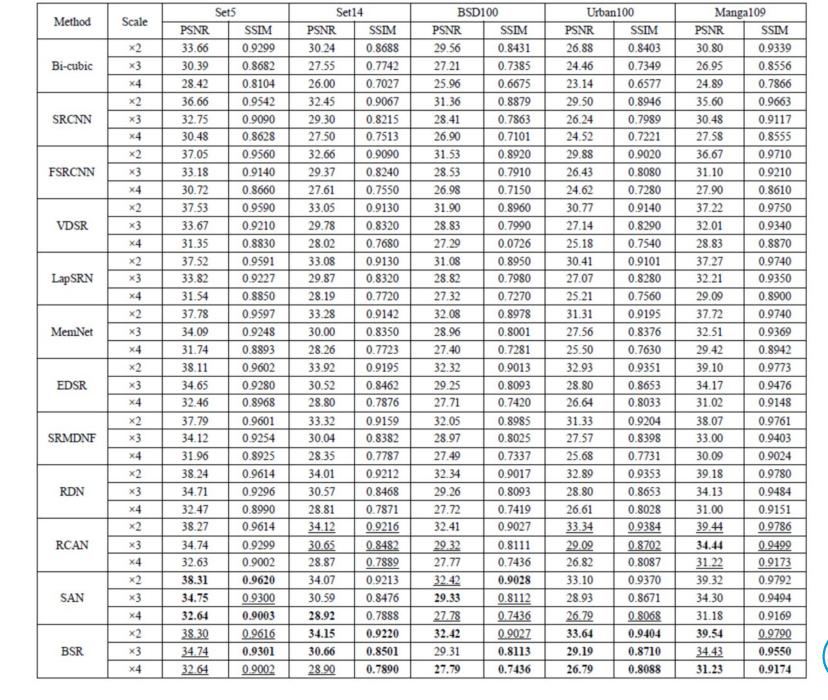
Contents



Settings

- Training Set: DIV2K.
- Testing Set: Set5, Set14, BSD100, Urban100 and Magna 109.
- Objective Index: PSNR/SSIM.
- Platform: Nvidia GeForce RTX2080 + i9-9900k.
- Learning rate: set the initial learning rate as 2e-4 and decrease it by 0.1 after every 100 epochs.
- Data augment: rotated by 90°/180°/270° randomly.

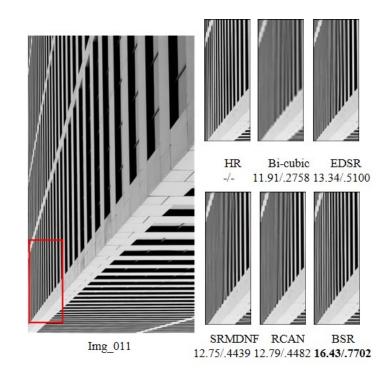
Bi-cubic degradation

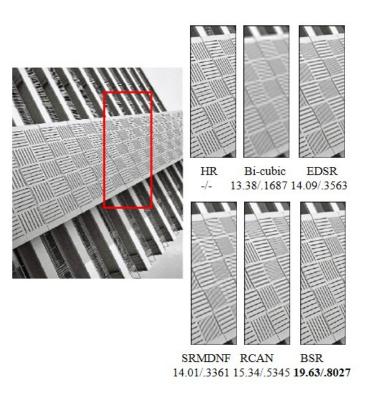


Blur degradation

Method	Scale	Set5		Set14		BSD100		Urban100		Manga109	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Bi-cubic	×3	28.78	0.8308	26.38	0.7271	26.33	0.6918	23.52	0.6862	25.46	0.8149
SPMSR	×3	32.21	0.9001	28.89	0.8105	28.13	0.7740	25.84	0.7856	29.64	0.9003
SRCNN	×3	32.05	0.8944	28.80	0.8074	28.13	0.7736	25.70	0.7770	29.47	0.8924
FSRCNN	×3	26.23	0.8124	24.44	0.7106	24.86	0.6832	22.04	0.6745	23.04	0.7927
VDSR	×3	33.25	0.9150	29.46	0.8244	28.57	0.7893	26.61	0.8136	31.06	0.9234
IRCNN	×3	33.38	0.9182	29.63	0.8281	28.65	0.7922	26.77	0.8154	31.15	0.9245
SRMDNF	×3	34.01	0.9242	30.11	0.8364	28.98	0.8009	27.50	0.8370	32.97	0.9391
RDN	×3	34.58	0.9280	30.53	0.8447	29.23	0.8079	28.46	0.8582	33.97	0.9465
RCAN	×3	34.70	0.9288	30.63	0.8462	29.32	0.8093	28.81	0.8647	34.38	0.9483
SAN	×3	34.75	0.9290	30.68	0.8466	29.33	0.8101	28.83	0.8646	34.46	0.9487
BSR	×3	34.76	0.9292	<u>30.64</u>	0.8464	29.34	0.8100	28.83	0.8648	34.46	0.9488

Subjective comparison





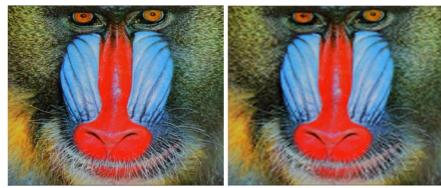
Ablation Study

	Baseline	w/o RFS	w/o SC	L2	L2 + L1
PNSR	32.20	32.15	32.10	32.17	32.19

Subjective comparison

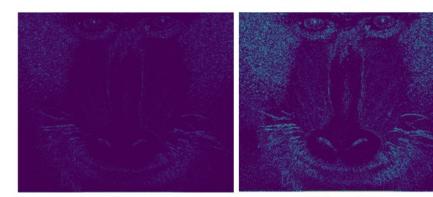
Left: *L1* + *L2* norm (PSNR/SSIM = 22.73/0.4988)

Right: *L1* + *Lp* norm (PSNR/SSIM = 22.74/0.5015)



(a) Ground truth

(b) Reconstructed HR image (PSNR/SSIM = 22.65/0.4868)



(c) Difference by L2 norm

(d) Difference by Lp norm

- The proposed method utilizes less than 200 convolution layers which is less than half of RACN and SAN.
- The subjective and objective output show the proposed BSR realizes a better mapping between LR and SR.

- Ablation Study shows the effectiveness of core modules, i.e. RFS, FMG and object function.
- Via visualization comparison between different Lp norm, more attention should be paied to the combination optimization.

Conclusions

- The imbalance phenomenon of SR task and the difference between SR and other CV task are analyzed.
- A BSR framework based on RFS, Architecture and object function improvement is proposed .
- Experiments on testing set show that this method is superior to the SOTA methods.

Reference

- 1. Zhou B, Cui Q, Wei X S, et al. BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition[C] CVPR2020: 9719-9728.
- 2. Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image super-resolution[C] CVPR2018: 2472-2481.

ITUKALEIDOSCOPE ONLINE2020

Thank you!

