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Cyber-physical system overview

• Enabler of Society 5.0, Industry 4.0

• Component technologies

• AI, IoT, Big data

• 5G/B5G networks

• Robotics 

• Ultra low latency applications growing

• Autonomous driving

• Factory automation

• Remote surgery

• Require computing facility (i.e., cyber 
system) closer to users

• Edge cloud
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System model and problem domain

• Edge cloud 

• Computational and storage resources 
deployed closer to end users (EU)

• Cyber applications deployed in the form of 
virtual network functions (VNFs)

• Possesses limited resources, but is need 
to satisfy low latency computation 
requirements

• Require resource monitoring and dynamic 
control (adjustment) mechanism
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Related work

• Mechanisms for resource adjustment according to workload prediction

• Threshold rule-based (reactive)

• Machine learning-based (predictive)

• Commonly used machine learning (ML) models

• Gaussian process [6]

• Auto-regression [7]

• Supervised learning [8] (require human involvement in training data preparation)

• Reinforcement learning [11] (no human involvement in training, better prediction 
accuracy in unseen data inputs, but slow in convergence)

• This work

• Multiple regression models

• Extremely-randomized trees regression (ETR)

• Gradient boosting regression  (GBR)

• Achieve better prediction accuracy, higher resource utilization and agile control
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Offline training of regression models

• Training data preparation 

• Data collection by operating the target system 
with simulated workload

• Data = {workload, resources status, latency, …}

• Collected at the highest possible frequency 
without hampering performance (e.g., 1s intervals)

• Offline training

• Train regression models by training data and 
tuning hyperparameters

• Rank models based on their prediction accuracy 
and training time consumption

• Select the most accurate model to use in system
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Model deployment and online retraining

• Model deployment

• Deployed the most accurate model

• Predicted workload and system status 

• Resource adjustment decision, y = f(xi),
where y = new amount of required resource; xi = 
current system parameters (workload, resource 
utilization, performance latency, …)

• Evaluated prediction errors by using
performance feedbacks

• Online retraining for improving accuracy

• Retraining models by data obtained from 
running system

• Best among newly trained models selected 
and updated in system
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Performance evaluation: Experimental setup

• Implemented in virtual machines (VMs) 

• Resource controller (RC) 

• ML models (written in Python), training and testing 
database; resource control commands generator 

• End-user device (EU) 

• Workload generating in various patterns (Poisson, Sine 
curve, etc.) and sending to VNF

• IoT-directory service (IoT-DS) as a VNF

• Implemented in Docker container

• Comprising front-end and back-end (IoT records 
database with 100K records

• Monitoring front-end for resource allocation, utilization, 
workload, etc.

• Dynamic adjustment of allocated CPU cycles of front-
end by Docker commands

EU

RC
Records 

DB

Front

-end

Resource 

monitoring tool

VM Docker container Server daemon 

Query (t1)

Response 
(t2)

Control  
data

Resource adjustment

IoT-Directory Service 
(IoT-DS) as a VNF

IoT DS architecture is based on Rec. ITU-T Y.3074 9



Performance evaluation: Results (1/4)

Comparison of actual and predicted resource utilization for Sine workload pattern

• Initial (re)training stage (20-60s): prediction < actual

• After retraining, accuracy increases, 

prediction slightly > actual

10

Sine workload

Resource utilization

(Actual, Prediction)



Performance evaluation: Results  (2/4)

Comparison of actual and predicted resource utilization for Poisson workload

• As workload variation is less,  

prediction almost equal to or marginally higher than actual 

after the first round of training (at around 10 s) 
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Performance evaluation: Results  (3/4)

MAE =
1

𝑋
෍

𝑖=1

𝑋

𝑎𝑏𝑠 𝑎𝑖 − 𝑝𝑖 × 100 %

• Measurement of errors:

• Mean Absolute Error (MAE)

𝑎𝑖 and 𝑝𝑖 = actual utilization and predicted 
utilization, respectively, 
𝑋 = total number of observations.

• Delta

𝛥 =
σ𝑖=1
𝑋 (𝑎𝑖 − 𝑝𝑖)

σ𝑖=1
𝑋 𝑎𝑖

× 100%

+ve value = underfitting; 
-ve value = overfitting 

Sine workload Poisson workload

MAE (%) 𝛥(%) MAE (%) 𝛥(%)

ETR 0.89% 0.96% 2.66% - 1.16%

GBR 1.02% 0.59% 2.85% - 0.47%

• Sine wave workload is easy to predict, thus 
smaller MAE

• Poisson workload has a slightly larger MAE 
with prediction > actual (thus –ve Δ)
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Performance evaluation: Results  (4/4)

Comparison of resource saving and performance satisfaction

• Compared to Conventional threshold-rule based algorithm, this work with GBR and ETR 
reduced 

• CPU resource demand by 21.9% and 19%. 

• Latency requirement violations by 49.0% and 30.9%, respectively.

Average of 5 observation

Algorithms CPU Allocation Latency violation 
(cases of >8ms)

Conventional [10] as 
baseline

1 11

GBR 0.781 5.6

ETR 0.81 7.6
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Conclusion

• Presented a machine learning based mechanism for the prediction of system workload 
and resource utilization and dynamically adjusting resources

• Experimental results demonstrated its effectiveness to meet QoS requirements with 
lesser amount of resources

• Future work:

• Develop algorithm for the automatic selection of training data size and intervals

• Extend the mechanism to simultaneously adjust CPU, memory and bandwidth 

• Contribution to standardization
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Standardization perspective

• Related ITU-T Recommendations (already published):

• ITU-T Y.3074  (Directory service architecture for storing huge amount of IoT records)

• ITU-T Y.3172 (Architectural framework for machine learning in networks)

• ITU-T Y.3174 (Framework for data handling to enable machine learning in future 
networks)

• Related ITU-T Recommendation drafts (work-in-progress in Study Group 13):

(Authors contributing from the outcome of this research work)

• Y.ML-IMT2020-RAFR (network resource and failure management)

• Y.ML-IMT2020-serv-prov (network service provisioning)
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