Automated Vehicle Safety Consortium[™]

A Program of SAE ITC

Data Collection Best Practice Overview Sept 14th, 2020

Edward Straub, DM
Executive Director
edward.straub@sae-itc.org

For Informational Purposes

https://avsc.sae-itc.org/

SAE Group

(PA not-for-profit Corp) IRC 501(c)(6)

Automated Vehicle Safety Consortium

A Program of SAE ITC

ARINC IA WMC/PIN

ASPQP IAMTS

SAE AMS- Mobility Data

AMDC Collaborative

ExchangeWell DATC

IBIS Probitas

AESQ HRCS

Standards

Conferences

Publications

Professional Development

Pre-professional

Sections

Process accreditation

Nadcap MedAccred

Quality Mgt Registrar

Training Bodies of

Knowledge

AVSC's Mission

Vision: Public acceptance of SAE L4/L5 automated driving systems as a safe and beneficial component of transportation through industry consensus.

Mission: The mission of the Automated Vehicle Safety Consortium is to **quickly** establish safety principles, common terminology, and best safety practices, **leading to standards** to **engender public confidence** in the safe operation of SAE L4/L5 light duty passenger/cargo on-road vehicles ahead of their widespread deployment.

- Inform AV pilot projects / deployments as they become more widespread
- Leverage safety expertise and culture of safety
- Publish our work to accelerate formal, global standards
- Consortium Members implement as appropriate within their organizations

How We Work

Technology neutral

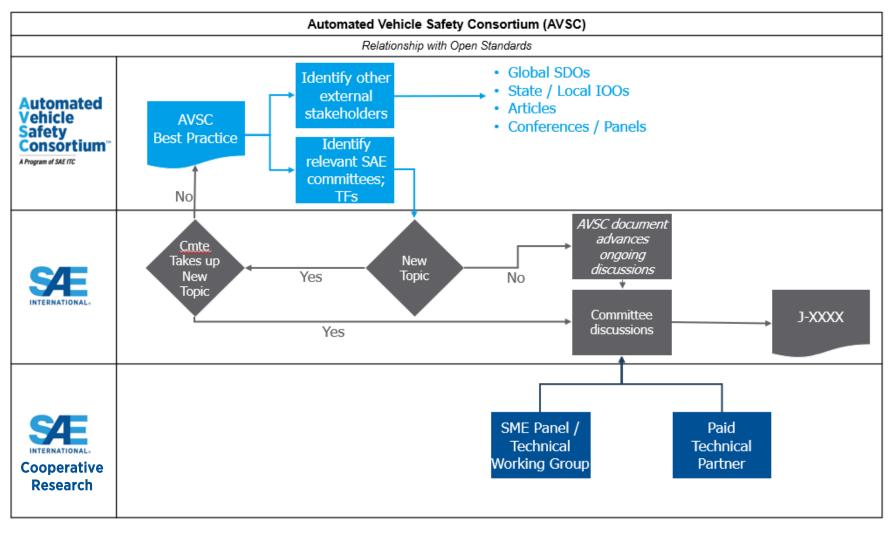
 Describe the "what" and leave the "how" for each organization to determine

Complementary

- Leverage and reference the good work of others
- Complement the work of others, avoiding duplication

Common interest

- Openly share current practices of common interest
- Describe challenges to consensus



Accelerate standards

- Introduce work to SAE and global SDOs
- Best practices are easily accessible

Accelerate Standards Development

AVSC best practices introduced into committees for discussion, modification, and potential inclusion into SAE J-standards and / or other global standards development work

Our Work Themes

- Testing prior to and when operating AVs on public roads
- Interaction between AVs, their users, and other road users
- Data to reconstruct certain events and share lessons learned with industry

Published Best Practices

In-Vehicle Fallback Test Driver Selection, Training, and Oversight Procedures for Automated Vehicles Under Test

- Addresses the qualifications and training for on-board human oversight of testing for automated driving system (ADS)-operated vehicles.
 - > Integrated in SAE J3018 (currently in ballot)

Describing an Operational Design Domain: Conceptual Framework and Lexicon

- Addresses a conceptual framework and lexicon manufacturers and developers can use in describing the ODD for their ADSoperated vehicles and communicating this with users and public.
- Provides an initial list of potential variables with definitions that manufacturers and developers can use in describing the ODDs.
 - New SAE work-in-progress pending

Published Nov 2019

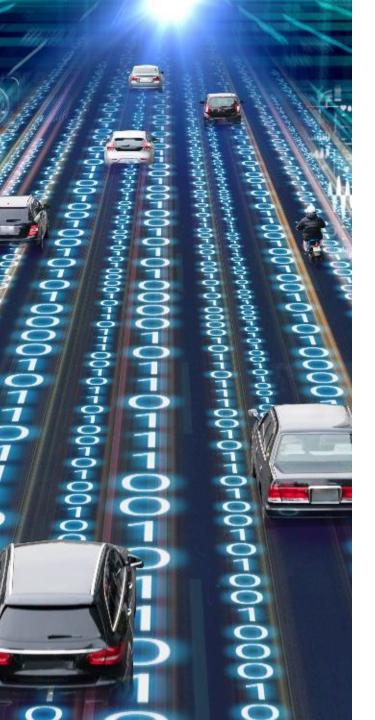
Published Apr 2020

Published Best Practices

Passenger-Initiated Emergency Trip Interruption

- Recommended processes for passenger-initiated emergency features in SAE level 4 and 5 fleet-managed ADS-DV operations.
- ADS-DVs should be equipped with a Passenger-initiated Emergency Stop (PES) feature, or a Passenger-initiated Emergency Call (PEC) feature, or both.
- Criteria and processes for passenger initiation of the features from inside a vehicle, communication with passengers, communication with fleet operations, enhanced diagnoses of situation, interaction outside the vehicle with other road users, and general post-stop actions.
 - ➤ New SAE work-in-progress pending joint effort between Driving Automation Systems Committee and On-Road Automated Driving Committee

Published Jun 2020



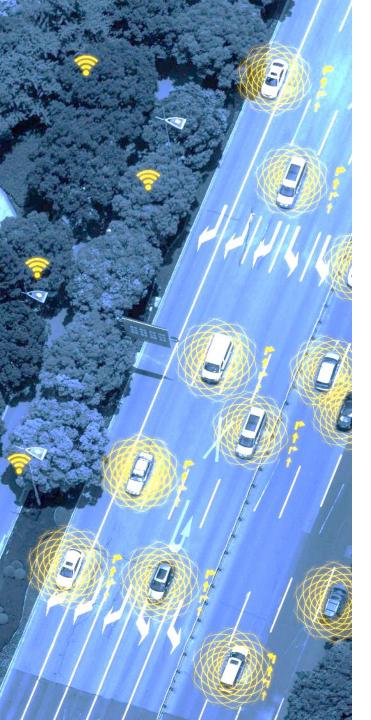
Automated Vehicle Safety Consortium™

A Program of SAE ITC

Data Collection for Automated Driving System-Dedicated Vehicles to Support Event Analysis

Data Collection for ADS-DVs to Support Event Analysis

Why -


- Data recording important for crash reconstruction, system performance investigations and event analysis to improve industry-wide safety
- Data recording needs are evolving
 - > Automated driving system takes the place of a human driver
 - Perceives the environment
 - Handles vehicle motion control, i.e., the dynamic driving task
- Current definition of impact based on triggers no longer sufficient to capture collisions traditionally detected by humans

Data Collection for ADS-DVs to Support Event Analysis

What -

- Addresses common data collection practices for SAE L4/L5 AVs, for the purpose of event analysis and producing lessons learned
- Compliments current motor vehicle event data collection standards (including SAE J1698-1 and SAE J3197) and clarifies areas specific to ADS-DVs
- Provides definition of data elements, considerations for data prioritization, retrievability, survivability, storage, and traceability

Definition of event

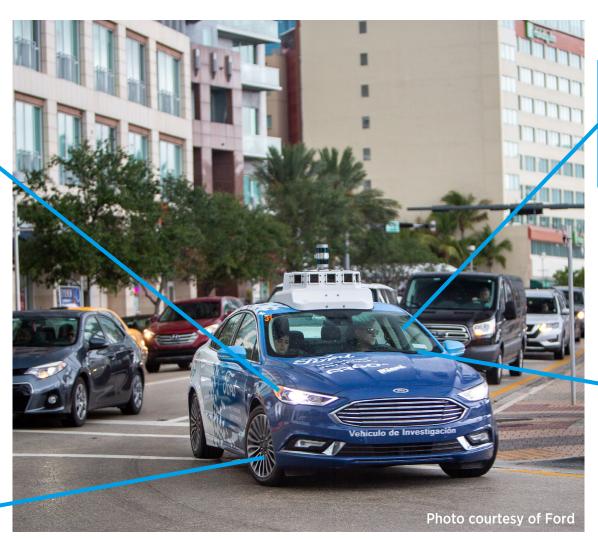
- Event defined as collision or collision-like situation
- Lack of consensus for what constitutes a collision for event reporting makes it challenging for ADS-DVs to determine
 - > State reporting requirements vary
 - Criteria described in terms of dollar value
 - > Impacts with domesticated but not undomesticated animals
- In addition to triggering conditions specified in SAE J1698 family of standards:
 - > Deployment of a non-reversible restraint, such as airbags
 - Change in vehicle velocity that equals or exceeds 8 km/h within a 150 ms interval
 - > Events causing failures that result in the ADS performing DDT fallback
 - > Other events

Data Elements

Thirty-nine (39) data elements recommended for ADS-DVs to collect to support event analysis

- Fourteen (14) new data elements specific to ADS-DVs
- Twenty-five (25) identified from previously defined or legacy data collection standards

Breakdown of data elements by relation to other SAE data collection standards


New data elements	Adapted from SAE J3197 (different)	Adapted from SAE J1698 (different)	From SAE J3197 (used "as is")	From SAE J1698 (used "as is")
14	8	8	4	5

Data Element Categories

- Vehicle control "What the ADS did"
- Saliency "What the ADS thought was important"
- Sensing- "What the sensors saw"
- "General parameters"

Vehicle Control"What the ADS did"

- ADS Action
- ADS Requested Hazard Flasher
- ADS Requested Headlights
- ADS Requested Turn Signals
- Vehicle Indicated
- Hazard Flasher Status (from SAE J1698-1)
- Headlight Status (adapted from SAE J1698-1)
- Turn Signal Status (from SAE J1698-1)
- ADS Mode (adapted from SAE J1698-1)
- ADS Action ADS Requested Pedestrian Communication Device
- Failure Mitigation Strategy Activated
- (from SAE J1698-1)
- ADS Determined Reference Vehicle Speed (adapted from SAE J1698-1)
- Vehicle Indicated Speed (adapted from SAE J1698-1)

- ADS Determined Reference Vehicle Steering Position
- Vehicle Indicated Steering Position Actual (adapted from SAE J1698-1)

- Vehicle Indicated Gear Position (from SAE J1698-1)
- ADS Action
- ADS Requested Gear (from SAE J3197)
- ADS Requested Lateral Vehicle
 Motion Control
 (adapted from SAE J3197)
- ADS Requested Longitudinal Vehicle Motion Control (adapted from SAE J3197)

Saliency "What the ADS thought was important"

Salient Object(s) Detected

- Vehicle Backup Light Status
- Vehicle Brake Lights Status
- Vehicle Emergency Light Status
- Vehicle Hazard Flasher Status
- Vehicle Turn Signal Status

Salient Object(s) Detected

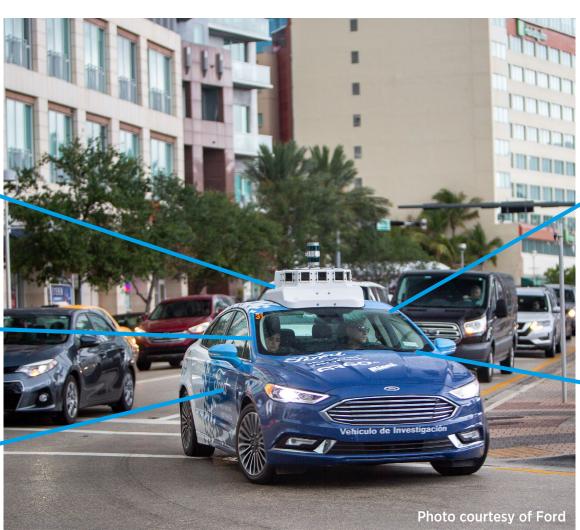
- Classification
- Identification Number (ID)

Salient Object(s) Detected - Relative Position (from SAE J3197)

- Relative Velocity (adapted from SAE J3197) Photo courtesy of Ford

Salient Object(s) Detected - Traffic **Control Device State** (adapted from SAE J3197)

Salient Emergency Vehicle Warning(s) Detected (from SAE J3197)


Salient Object(s) Detected - Lane **Delineation and Channelization**

Sensing and General Parameters"What the sensors saw"

- Visual Representation (adapted from SAE J3197)
- Other Sensor and Input Data

Passenger-Initiated Emergency Trip Interruption Activation (adapted from SAE J3197)

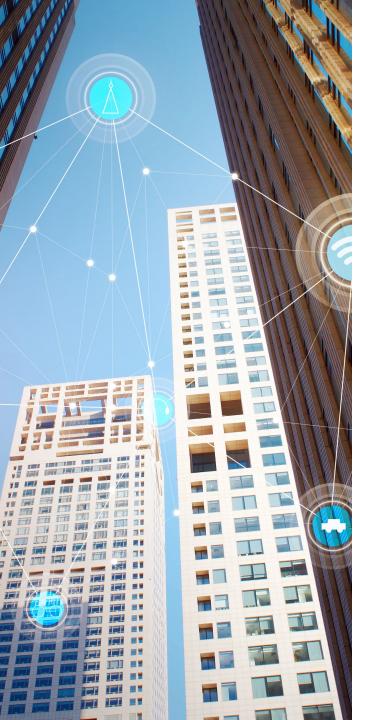
- ADS Relevant Health Status (adapted from SAE J1698-1)
- Data Record Trigger Type (adapted from SAE J3197)

- Time of day (adapted from SAE J3197)
- Vehicle Location (adapted from SAE J3197)

Vehicle Identification Number (VIN) (from SAE J1698-1)

```
tate.filters.price_ra
ate.query.length&&c.pus
_extended")&&(d=LISTING
.trace_history_link_pat
log_obj:function(){return
ion(){return{filter_price
ypeof c&&(c=LISTING.state
rate_checkboxes")&&c.sepa
tions,b,"range_min","valu
:.filter_price[1]!==f[1]||
rs[b]||[];return 1>c.lengt
ce[1]===LISTING.state.opti
ate.filters[b]||[]),"price
ate:function(b,c){console.
STING.state.filters);d?LIS
ers[b]=c;var g=JSON.stringi
console.log("UPDATE CHANGED
ent_preloader"),g=category_
temp html"),f.imagesLoaded()
I.html(g+LISTING.settings.spi
  "initial")),200)})):(d.)
initial*)))}s.ajax({type:"GET
```

Data Element Prioritization


Priority 1 - Likely to be most relevant to ADS-related event analysis. Most important to recover from a vehicle.

Priority 2 - Secondary value to ADS-related event analysis. Important to recover from a vehicle, as long as recording of Priority 1 data elements is not negatively impacted.

Priority 3 - Tertiary value to ADS-related event analysis. Important to recover, as long as recording of Priority 1 and 2 data elements is not negatively impacted.

Recording Considerations

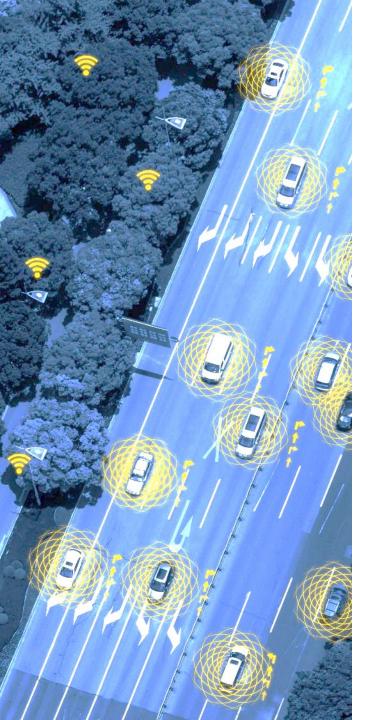
- Recommend recording interval of 5 seconds prior to time zero
- Recommended frequency based on needs of event analysis
- Recording system should be capable of recording at least one event
- Should have a method for synchronization and correlation

Data Handling

Retrievability

- > Support industry standard tools
- ➤ Compliant with industry data security standards (ISO/SAE 21434 and SAE J3061)

Survivability


- > Current technology may not meet current requirements
- ➤ Goal is to reach similar survivability CFR Part 563.10

Storage

> Recording may include off-board systems for storage and processing

Traceability

➤ ADS-DV should be uniquely identified with Vehicle Identification Number (VIN)

2020 Topics

- Data collection (September 2020)
- 1st Responder interaction
- ADS Safety Assurance
 - Phase 1: Metrics & methods
 - Phase 2: Behavioral competencies
- Safety management system (SMS)

Automated Vehicle Safety Consortium A Program of SAE ITC

Contact Us

https://avsc.sae-itc.org/

Dr. Edward Straub

Executive Director 703.304.5958

edward.straub@sae-itc.org

Amy Chu

Director 248.840.1362

amy.chu@sae-itc.org

Patti Kreh

Program Manager 248.210.5418

patti.kreh@sae-itc.org

Becky Sims

Executive Assistant 724.766.3283

becky.sims@sae-itc.org

Automated Vehicle Safety Consortium[™]

A Program of SAE ITC

AVSC Best Practice:
Data Collection for ADSDVs to Support Event
Analysis

THANK YOU