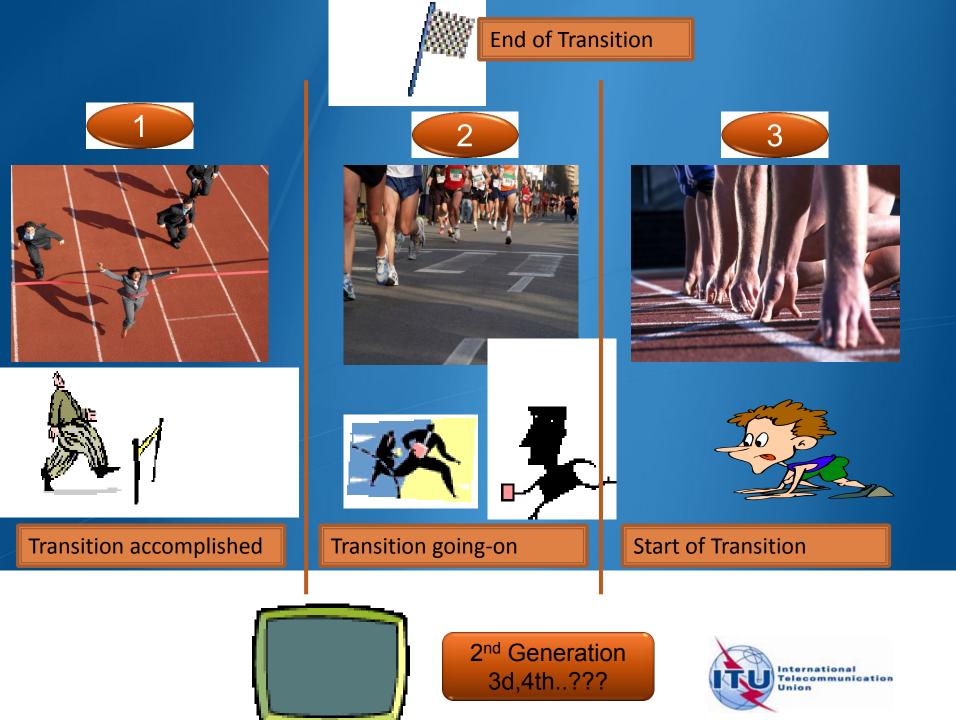


International Telecommunication Union


Committed to connecting the world

Transition to the digital TV And technical aspects

Ilham Ghazi Ilham.ghazi@itu.int Radiocommunication Engineer BR

1

Overview

- Basic definitions : ASO, DSO, Simulcast...
- Why changing? (advantages and disadvantages)
- ASO/DSO models
- Planning ASO/DSO
- Existing DTT Standards tables
- Planning criteria

Basic Definitions

- ASO: Analogue Switch-Off: Stop broadcasting in analogue Mode
- DSO: Digital Switch-Over: Migration process from analogue to digital broadcasting
- Simulcast: Broadcast simultaneously of analogue and digital
- Transition deadlines for Members part of GE06 Agreement:
 - 2015
 - 2020

Why changing?

Any choice? Really?

Advantages of going Digital:

- New possibilities to the viewers:
 - Additional number of programs
 - Reduction of transmission costs (Sharing infrastructure)
 - Additional reception modes: portable and mobile reception
 - Improve quality of image and sound including HDTV
 - Additional type of services: interactivity, Electronic Program Guides, etc.

For regulators:

- Fair competition: To develop a terrestrial platform competitive with cable and satellite platforms
- To be in line with GE06 Plan (as from 2015 no protection of analogue TV)
- Efficient use of spectrum

Disadvantages, New and his sects, new planning work, new

ASO/DSO Models

Simulcast: broadcasting analogue and Digital

- Everybody still can watch terrestrial TV
- Frequency resource double used
- National shut-off of analogue services:
 - Clear and optimized use of frequencies
 - Risk of non covered regions or viewers not ready

Planning the ASO/DSO: Regulatory aspect

Establish legislative framework Define ASO/DSO strategy (Implementation and timelines) Ensure that the coverage is not less than the analogue one Define areas for coverage Licenses strategy :free-to-air or/and pay-tv services Create a funding, if needed and if possible, to ensure sufficient financial structure To ensure adequate digital receivers (Set top boxes) are in market at a reasonable price.

Ensure a good communication campaign to inform the Viewers and deploy means to assist (Web site, TV and Radio spots...)

Planning the ASO/DSO : Technical considerations

Frequency Plan situation : Analyze the compatibility internal and with neighboring countries, coverage calculation (MFN/SFN), and take into account the Digital Dividend

- If needed, modify (update) the national frequency assignment Plan, or GE06 Plan if Region 1
- Notify to MIFR
- If simulcast, ensure compatibility between digital and analogue

Analogue transmitters to be replaced with digital equipment

Analyze DTT Standards (modulation scheme, bite rate, guard interval, compression coding, HDTV, SDTV, etc.) to ensure the best reception conditions

DTT System standards

- DVB:
 - DVB-T : Digital Video Broadcasting Terrestrial (System B)
 - DVB-H: Digital Video Broadcasting Handheld
 - DVB-T2 : Second Generation of DVB-T
 - At least 30% higher transmission capacity and improved SFN performance
- ASTC: Advanced Television Systems Committee (System A)
 - ATSC-M/H- Advanced Television Systems Committee Mobile & Handheld.
- ISDB-T: Integrated Services Digital Broadcasting Terrestrial- (System C)
 SBTVD: Adapted by Brazil
- DMB-T/H (ChinaDTV): Framing structure, channel coding and modulation for DTTB system: designed for fixed and mobile reception.
- T-DMB: Terrestrial Digital Multimedia Broadcasting system: enables

Description of Digital Television Broadcasting systems

Standard	Channels	Band	Modulation	Applicable standards
ATSC	6 MHz	UHF/VHF	8-VSB	A/52,A/53, A/65, A/153
ChinaDTV DMB-T	8 MHz	UHF/VHF	OFDM	GB 20600-2006
DVB-T	6, 7 and 8 MHz	UHF/VHF	OFDM	EN 300 744
DVB-H	5, 6, 7 and 8 MHz	UHF/VHF	OFDM	EN 302 304
ISDB-T	6, 7 and 8 MHz	UHF/VHF	Segmented OFDM	ARIB STD-B31

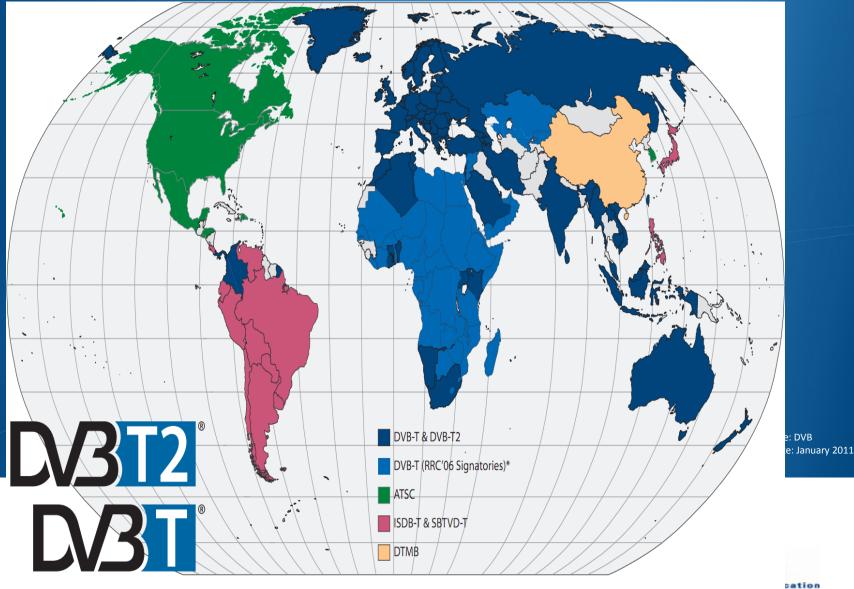
Mobile digital broadcasting

Standard or Spec.	Modulation	Transport stream	RF channel (MUX) size (MHz)	Int. Broadcast bands	Regional national origin
DVB-H	QPSK or 16-QAM COFDM	IP/MPE-FEC/ MPEG2 TS	8	IV and V	Region 1 (Europe)
ISDB-T	QPSK or 16-QAM COFDM	MPEG2 TS	0.433	IV and V	Region 3 (Japan)
T-DMB*	DQPSK COFDM	MPEG2 TS	1.75	III and 1.5 GHz	Region 3 (Rep. of Korea)
T2-lite	QPSK	H.264	8	IV and V	Region 1 (Europe)

*: Fully compatible with T-DAB

DVB-T 2 DVB-T2?

	DVB-T	DVB-T2
FEC (forward Error Correction)	Convolutional Coding + Reed Solomon 1/2, 2/3, 3/4, 5/6,7/8	LPDC+BCH 1/2 ,3/5, 2/3,3/4, 4/5, 5/6
Modes	QPSK, 16QAM, 64QAM	QPSK, 16QAM, 64QAM, 256QAM
Guard interval	1/4, 1/8, 1/16, 1/32	1/4, 19/256, 1/8, 19/128, 1/16, 1/32, 1/128
FFT size	2k, 8k	1k, 2k, 4k, 6k, 8k, 16k, 32k



DTT Compression coding MPEG2/H.262: 4-6 programs SDTV in 1 channel 8Mhz MPEG4 AVC/H.264: 6-10 SDTV programs in 1 channel, 4-6 HDTV programs in 1 channel 1.265 High Efficiency Video Coding (HEVC): double the data compression ratio compared to H.264,

can support <u>8K UHD</u>

TV standards in the World

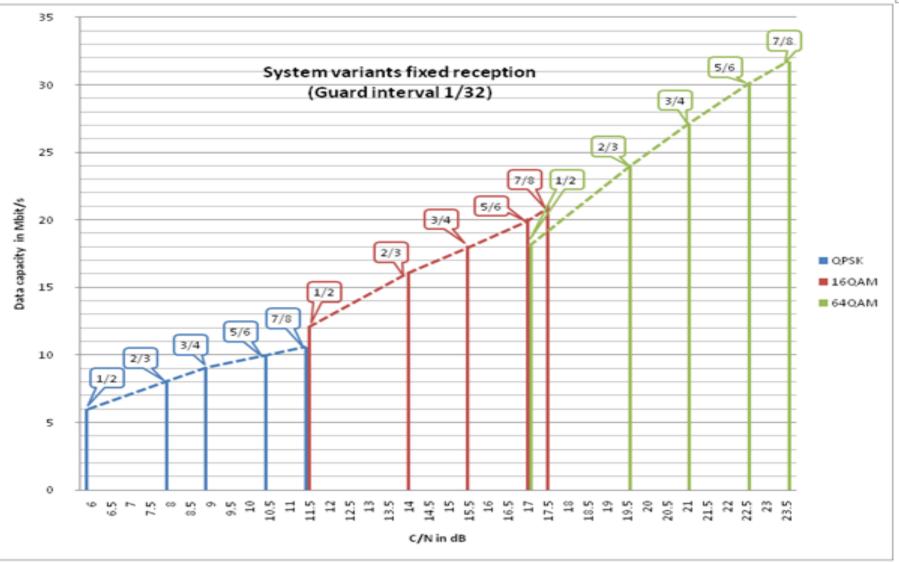
Modulation type features

QPSK, QAM 16,64,256: phase/amplitude constellations. The choice of constellation determines :

- the number of bits that are carried at a time on each subcarrier:2 bits (QPSK), 4 bits (16-QAM) or 6 bits (64-QAM).
- noise tolerance, with QPSK being around 4 to 5 times more tolerant than 64-QAM

	Capacity	Ruggness	Area
QPSK	low data	Very	Urban
16-QAM	Moderate	Reasonable	Medium/dense
64-QAM	High	Low	Large area

Code rates


Code rate:1/2, 2/3, 3/4, 5/6, 7/8

Used to trade bit rate versus ruggedness, e.g. the signal strength required and interference protection required.

	Transmission safety/redundancy	Advantage/disadv.
1/2	High	Used in channels with high degree of interference (ex. Mobile implementation)
3/4	Not high	Offers additional capacity
5/6	Low	Implementation margin very high (not very realistic)
7/8	Very low	Implementation margin very high (not very realistic) High throughput→ Used in channels with low level f interference

System variants

Technical features FFT

(Fast Fourier Transform)

The DVB-T standard defines two FFT modes to constitute the OFDM signal:
 2K
 8K

	Number of sub-carriers	Usable symbol time Tu (μs)	Area	Application
2k	2048	224	Small SFN area	Mobile
8k	8192	896	Large SFN Area	Fixed

Technical parameters Bit rates/Guard intervals

The guard interval is a proportion of the time there is no data transmitted between the symbols.

		1/32	1/16	1/8	1/4
2k	Duration of useful symbol (μs)	7	14	28	56
	Distances (km)	2.1	4.2	8.4	16.8
8k	Duration of useful symbol (μs)	28	56	112	224
	Distances (km)	8.4	16.8	33.6	67.2

Example:

- For an 8K-FFT system, and guard interval of 1/4
- It means that the permissible signal delay times are outside the signal delay between adjacent transmitters, when these transmitters are situated more than 67.2 km apart.

Compromises??

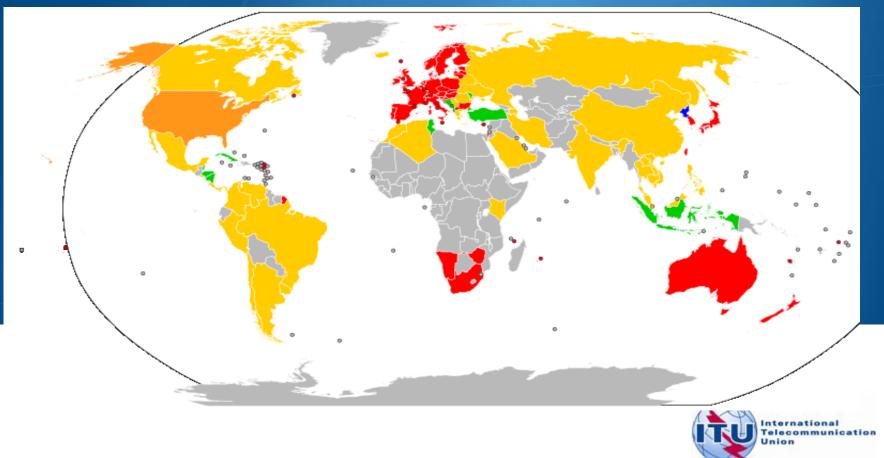
- The more robust the variant is, the less data can be transported, but the larger the SFN can be, examples:
 - In Germany a rather robust variant was chosen with a large guard interval (16-QAM 2/3 guard interval 1/4) in order to allow for SFNs.
 - In France, a variant of high capacity with a small guard interval (64 QAM 2/3 Guard Interval 1/32) was chosen.

Example: DTT multiplex use in France

Multiplex	Modulation	GI	FEC rate	FFT	Capacity (Mbit/s)	Content	Compression
RI	64-QAM	1/32	2/3	8k	24.10	6 SDTV programmes	MPEG-2
R2	64-QAM	1/32	2/3	8k	24.10	6 SDTV programmes	MPEG-2
R3	64-QAM	1/32	2/3	8k	24.10	5 SDTV programmes, 1 HDTV programme	MPEG-4
R4	64-QAM	1/32	2/3	8k	24.10	4 SDTV programmes, 1 HDTV programme	Mixed MPEG-2 and MPEG-4
R5	64-QAM	1/32	2/3	8k	24.10	3 HDTV programmes	MPEG-4
R6	64-QAM	1/32	2/3	8k	24.10	7 SDTV programmes	Mixed MPEG-2 and MPEG-4

Number of programmes per multiplex for fixed reception with DVB-T 64-QAM-2/3-8K-GI 1/32 and DVB-T2-256-QAM-2/3-16K-GI 1/32

Format	Source coding	No of progs DVB-T	No of progs DVB-T2	No of progs DVB-T	No of progs DVB-T2	
		Fixed N	//UXing	Fixed MUXing FUTURE		
SD	MPEG-2	6	10	6	10	
SD	MPEG-4/AVC	9	13	10	15	
HD-720p	MPEG-4/AVC	3	4	3	5	
HD-1080i	MPEG-4/AVC	2	4	3	4	
		Statistica	I MUXing	Statistical MUXing FUTURE		
SD	MPEG-2	8	13	8	13	
SD	MPEG-4/AVC	11	16	13	19	
HD-720p	MPEG-4/AVC	3	5	3	5	
HD-1080i	MPEG-4/AVC	3	4	3	5	



World map of digital television transition progress

Legend:

Transition completed, all analog signals terminated Transition completed for full power stations, not yet completed for low power stations Transition in progress, broadcasting both analog and digital signals Transition not yet started, broadcasting analog signals only Does not intend to transition, broadcasting analog signals only No information available

Source: Wikepedia (2014)

Thank you for your attention

