

Basics of electromagnetics

Electromagnetic waves

A wave is a moving vibration

 λ (m) = c(m/s) / F(Hz)

Definitions

- The wavelength is the distance traveled by a wave in an oscillation cycle
- Frequency is measured by the number of cycles per second and the unit is Hz. One cycle per second is one Hertz.

Electromagnetic waves (2) labs

- An electromagnetic wave consists of:
 - ✓ an electric field E (produced by the force of electric charges)
 - ✓ a magnetic field H (produced by the movement of electric charges)
- The fields E and H are orthogonal and are moving at the speed of light
 c = 3. 10⁸ m/s

Electromagnetic waves (3) labs

E and H fields

Electric field

The field amplitude is expressed in (V/m).

Magnetic field

The field amplitude is expressed in (A/m).

Power density

Radiated power is perpendicular to a surface, divided by the area of the surface. The power density is expressed as S (W / m²), or (mW /cm²), or (µW / cm²).

E and H fields

- Near a whip, the dominant field is the E field. The impedance in this area is Zc> 377 ohms.
- Near a loop, the dominant field is the H field. The impedance in this area is Zc <377 ohms.

Plane wave

DISTANCE FROM SOURCE NORMALIZED to 入/27r

The EMC way of thinking

Electrical domain	Electromagnetic domain
Voltage V (Volt)	Electric Field E (V/m)
Current I (Amp)	Magnetic field H (A/m)
Impedance Z (Ohm)	Characteristic impedance Z0 (Ohm)
Z=V/I	Z=E/H
P=I ² x R (watts)	P=H ² x 377 (watts/m ²) far field conditions

Harmonics

Harmonics

EMC results

Why in frequency domain (Hz)?

- Time domain aspect is dominated by the major frequency harmonics
- Distinguish contributions of each harmonics, even small ones

Why in logarithm scale (dB)?

- Signals are composed of high and low amplitude harmonics
- Very large dynamic (from μV to several mV)
- Logarithm scale is requested

Electromagnetic spectrum la

ELECTROMAGNETIC SPECTRUM

Frequencies

Frequency	Wavelength	Metric designation	Current designation	Abreviations	
3 kHz à 30 kHz	100 km à 10 km	myriamétric waves	Very Low Frequencies	VLF	O.Mm
30 kHz à 300 kHz	10 km à 1 km	kilometric waves			O.km
300 kHz à 3 MHz	1 km à 100 m	Hectometric Mid waves Frequencies		MF	O.hm
3 MHz à 30 MHz	100 m à 10 m	Decamétric waves	High Frequencies	HF	O.dam
30 MHz à 300 MHz	10 m à 1 m	metric waves	Very High Frequencies	VHF	O.m
300 MHz à 3 GHz	1 m à 10 cm	décimetric waves	Ultra High Frequencies	UHF	O.dm
3 GHz à 30 GHz	10 cm à 1 cm	Centimetric HyperFrequenci es		SHF	O.cm
30 GHz à 300 GHz	1 cm à 1 mm	Millimetric waves		EHF	O.mm

15

EM wave Propagation

In an isotropic and homogenuous area, wave propagation is modeled by Maxwell equations:

rot H = E(
$$\sigma$$
 – j ω_0 ε) rot E = j ω_0 μH div εE = ρ div μH = 0

H (A/m), Magnetic field
E (V/m), electric field
ε (F/m), Dielectric constant (permettivity)
μ (H/m), magnetic permeability
σ (ohms-1/m), conductibility

physical quantities

Grandeur	Symbol	Unit	Symbol
Frequency	f	Hertz	Hz
Wavelength	λ	Metre	m
Electric field	Е	Volt per metre	V/m
Magnetic field	Н	Ampere per metre	A/m
Magnetic flow density	В	Tesla	Т
Power density	S	Watt per square metre	W/m²
intrinsic impedance	Z	Ohm	Ω
Antenna's highest dimension	D	Metre	m

Wave impedance

• At several wavelengths from the antenna, wave impedance is expressed as:

$$Z_0 = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$$

Intrinsic impedance of the propagation environment (in ohms)

Near field

- For distances to the source below λ / 2π we consider that we are in near field conditions. Electric dipole: E varies as 1/r³, H varies as 1/r², So Z varies as 1/r.
 - At short distance from the dipole radiates mainly in field E.
- Magnetic dipole: E varies as 1/r², 1/r³ H, Z varies as r
 - At short distance loop radiates mainly in field H.

Far field

- E and H decrease as 1/r, Z=Cte=377Ω
 (empty environment impedance)
- The EM field has the caracteristics of a plane wave
- For the majority of radio tests, only electric component is measured as the tests are carried out in far field conditions

Relations field/distance

Radiated field

Radiated field (in V/m)

$$E = \frac{1}{d}\sqrt{30.P.G}$$

d: distance from the transmitter (in m)

P: power t the output of the transmitter in W

G: Antenna gain (in dB)

Specific units

Voltage Units

Wide dynamic range of signals in EMC → use of dB (decibel)

For example dBV, dBA:

$$dBV = 20 \times \log(V)$$

$$dBA = 20 \times \log(A)$$

Extensive use of dBµV

$$V_{dB\mu V} = 20 \times \log\left(\frac{V}{1\mu V}\right) = 20 \times \log(V) + 120$$

Specific units

Power Units

The most common power unit is the "dBm" (dB milli-Watt)

$$P_{dBmW} = 10 \times \log \left(\frac{P_W}{1mW}\right) = 10 \times \log(P_W) + 30$$

Exercise: Specific units

Specific units

Time domain measurement

Fourier transform

Frequency measurement

Invert Fourier transform

Oscilloscope

Spectrum analyser

Electromagnetic compatibility

Electromagnetic interference

- Electric and electronic systems are not isolated from their environment.
- Electromagnetic energy can unintentionally cross their borders:
 - ✓ to enter,
 - ✓ or to escape.
- This energy is called stray electromagnetic interference.

Example of perturbation

Analogue video signal

- ✓ Moire
- ✓ loss of luminance, contrast
- √loss of color
- √ loss of synchronization

Digital video signal

- ✓ block effect
- √ cessation of movement
- √ black screen

Sources of perturbation

RF transmitters

- External Impacts
- Internal Impacts
- Human Impacts

Mobile phones

EMC (1)

Electric equipment:

- 1. Victim of its environment:
 - ✓ Malfunction
 - ✓ Temporary malfunction or permanent

2. Source of disturbance in its environment

EMC (2)

According to the european directive 2004/108/CEE, EMC refers to:

- the ability of an equipment or a system to perform satisfactorily in its electromagnetic environment
- —without introducing intolerable interference into any thing in that environment.

EMC (3)

Conducted/Radiated

- The parasites circulating currents and voltages in cables or equipments will radiate.
- The radiated power will also induce currents and stray voltages in the different interconnections.
 - => The conducted and radiated disturbances are closely coupled.

Conducted/radiated (2)

Test sites

Reflectivity

Electromagnetic wave

Metal

Absorber

Electromagnetic absorber

Semi anechoic chamber SAC (1) labs

Semi anechoic chamber SAC (2) s

Fully anechoic chamber (FAC)

- Fully anechoic shielded enclosure
- Provided with radio
 frequency absorbent on its
 entire inner surface
- Emission measurements of direct radiation of radio
 frequency transmitters.
- Complies with ETSI standards

Mode stirred reverberation chambers

- Shielded enclosure, single or double wall, with metal stirrer
- Measures of radiated immunity and emission
- •EN 61000-4-21.

Mode stirred reverberation chambers by

TEM Cells

- Closed cell loaded onto a characteristic impedance
- Measures radiated emission and immunity.
- •EN61000-4-20

Open Area test sites

- The reference CISPR test site
- Radiated fields measures
- Great distance measures (10m 30m).

Open Area test sites

Performance of measure sites by

	Low distance faraday cage	Open area test site	Sami or fully anechoic chamber
Advantages	Isolating EUT from external EM noise	Correct field measurements	Correct field measurements
drawbacks	•Walls reflexions •Near field measure	Electromagnetic noise	Degradation of absorbers performancehigh cost

EMC standards

Fundamental standards

- These are standards or guidelines that define the general requirements for the "EMC" (phenomena, testing ...).
- They apply to all products and are used as references to develop specific standards.
- They include:
 - ✓ the description of electromagnetic phenomena
 - the characteristics of measuring instruments and of generation of test signals
 - the implementation of testing
 - the recommendations of severity levels
 - ✓ general criteria for proper operation.

Fundamental standards

EN 64000 4.0	Electro etetic die electro improvenito te et	
EN 61000.4.2	Electrostatic discharge immunity test	
EN 61000.4.3	Radiated, radio-frequency, electromagnetic field immunity test	
EN 61000.4.4	Electrical fast transient/burst immunity test	
EN 61000.4.5	Surge immunity test	
EN 61000.4.6	Immunity to conducted disturbances, induced by radio- frequency fields	
EN 61000.4.8	Power frequency magnetic field immunity test	
EN 61000.4.9	000.4.9 Pulse magnetic field immunity test	
EN 61000.4.11	Voltage dips, short interruptions and voltage variations immunity tests	
EN 61000-3-2 et EN 61000-3-3	Limits for harmonic current / flicker emissions (equipment input current ≤ 16 A per phase)	

Product standards

EN 55011	Industrial, scientific and medical (ISM) radio-frequency equipm - Electromagnetic disturbance characteristics - Limits and methods of measurement	
EN 55014	Requirements for household appliances, electric tools and similar apparatus Part 1: Emission. Part 2: Immunity	
EN 55022	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement	
EN 55024	Information technology equipment - Immunity characteristics - Limits and methods of measurement.	
ETSI EN 300- 330	Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz;	

- These standards define, for products or product families, the special design, characteristics, methods and test levels.
- Where available, these standards take precedence over generic standards.
- They use the fundamental standards.
- They define:
 - tests to be performed
 - ✓ levels of severity of tests
 - the criteria for proper operation

Generic standards

- These standards define the essential requirements in terms of level to be maintained by type of test
- In the absence of product or family product standards, they apply to products installed in a defined environment (industrial, residential).
- They use the fundamental standards.
- They define:
 - \checkmark the environment (residential, industrial ...)
 - √ tests to be performed
 - ✓ levels of severity of tests
 - √ the performance criteria

Generic standards

EN 61000-6-1:	Immunity for residential, commercial and light-industrial environments	
EN 61000-6-2	61000-6-2 Immunity for industrial environments	
EN 61000-6-3:	Emission standard for residential, commercial and light-industrial environments	
EN 61000-6-4:	Emission standard for industrial environments	

CISPR 16 standards

OLD CISPR 16

NEW CISPR 16

CISPR 16-1	Radio disturbance and immunity measuring apparatus	
CISPR 16-2	Methods of measurement of disturbances and immunity	•
CISPR 16-3	Reports and recommendations of CISPR	1
CISPR 16-4	Uncertainty in EMC measurements	

	CISPR 16-1-1	Measuring apparatus
,	CISPR 16-1-2	Ancillary eqpt – conducted disturbances
١	CISPR 16-1-3	Ancillary eqpt – Disturbance power
4	CISPR 16-1-4	Ancillary eqpt – Radiated disturbances
¥	CISPR 16-1-5	Antenna calibration test sites 30MHz - 1000MHz
>	CISPR 16-2-1	Conducted disturbance power
٩	CISPR 16-2-2	Measurement of disturbance power
Ä	CISPR 16-2-3	Radiated disturbance measurements
۹	CISPR 16-2-4	Immunity measurements
>	CISPR 16-3	CISPR technical reports
۵	CISPR 16-4-1	Uncertainties in standardised EMC tests
J	CISPR 16-4-2	Measurement instrumentation uncertainty
<u> </u>	CISPR 16-4-3	Statistical considerations in the determination of EMC compliance of mass –produce products
١	CISPR 16-4-4	Statistics of complaints and a model for the calculation of limits

