

··· CERT

ITU Training Course on "Homologation Procedures & Type Approval Testing for Mobile Terminals for AFR Region"

Tunis, Tunisia, 23-27 June 2014

Presented by: Mr Zied SALHI WWW.Cert.nat.tn

Part 2: APPROVAL OF TELECOMMUNICATIONS TERMINALS: PROCEDURES, TESTS AND MEASUREMENTS

June 2014

Presented by: Mr Zied SALHI WWW.Cert.nat.tn

- Objective
- Introduction
- Procedure
- Approval Methodology
- Different types of devices
- Standards
- Tests and measurements
- Measuring devices
- ISO17025 accreditation
- Recommendations
- Conclusion

Objective Control

Detail procedures, administrative and technical mechanisms related to the activity of Type Approval of telecommunications terminals

Introduction

- ➤ Every modern country organizes the local telecommunications sector via organizations and definite regulations.
- ➤ Telecommunications Standards and procedures for local country must be consistent and aligned with the organizations and international standards of regulation in the sector.

Introduction

- ➤ Each country including telecommunications networks with all their components, and having defined a national frequency plan must have, obviously, a telecommunications terminal approval body.
- ➤ The approval process ensures conformity of telecommunications terminals connecting to the Access Network with the requirements of the country's network, national and international standards and to national frequency plan

Approval definition

The approval is the set of control operations and necessary tests, by which CERT ascertains and certifies that a representative sample of telecommunications terminal equipment or radio equipment complies with regulations, standards and technical specifications.

Type Approval definition

- Are subject to approval any terminal equipment or radio installation to be connected to a public network.
- ➤ Terminal equipment: Any device, any system or group of system, designed to be connected to an endpoint of a network and transmits, receives or processes telecommunications signals.
- Radio Equipment: Any telecommunications system that uses radio frequencies for wave propagation in free space

Definition of compliance

All operations that focus on the verification of the compatibility of the technical characteristics of the equipment with the technical requirements of interworking with public telecommunications networks and rules for use and operating frequency, it is intended for individual people (Equipment imported for public use).

Definition of Technical Control

Approval is always followed by a process of technical control during importation (border), on the basis of a certificate of approval, which ensures the compliance of imported products with the samples approved.

www.cert.nat in

Objective

Approval aims to:

- Verify compliance of terminal equipment or radio equipment with needed requirements
- User safety
- Security of staff operating in public telecommunications networks

Objective

- Protection of networks and information exchanged
- > Optimum use of the radio spectrum.
- interoperability of the terminal equipment with the network and with other terminals accessing same service.

Approval Methodology >>>>>

- ➤ The customer presents the product to be approved to the One Stop Shop (OSS)
- ➤ The OSS examines the administrative request of the customer, then it transmits it to Type Approval Lab (CERTLABS)

Approval Methodology>>>>>

A second preliminary engineering study is made by CERTLabs experts that includes:

- Verification of technical specifications of the equipment presented
- Verification of certificates of compliance and report tests of the manufacturer
- Verification of the smooth functioning of the equipment presented
- The definition of the tests to be performed

Approval Methodology>>>>>

- > Tests and measurements
- > Generation of Approval report
- Elaboration of the approval certificate (fail or pass) based on the recommendations in the written approval report
- Closing process

Documents supplied by lab

- ➤Test report
- >Technical Request

Problems encountered during test>>>>>

- > The equipment is defective
- Missing of accessories (power, driver, cables ... etc)
- > The equipment interfaces are inaccessible
- ➤ Equipment require an internal configuration (eg: access points or Smartphones)

Technical Request****

- The objective of sending a technical request to the customer is to invite him to solve the problems encountered during testing. It sent by lab to the OSS and thereafter OSS sends to the customer
- The customer can intervene in the lab to unlock situations (hardware configuration, inaccessibility ..) or to retrieve his equipment and intervene in its locale.

The Approval request closes with a negative decision after sending 6 TR

Technical Request****

The Technical request contain:

- > Reference OSS
- > Reference lab
- > The brand, model and product name
- > The customer name
- > Tests made
- > The problems encountered
- > The recommendations of the lab
- > Date
- > The names of the engineers and their signatures

Test Report Williams

It contains:

- > Reference OSS
- > Reference lab
- > The brand, model and product name
- > The customer name
- > Standards and references of studies
- > Application fields
- Identification and description of the equipment and customer
- Product specifications

Test Report Park

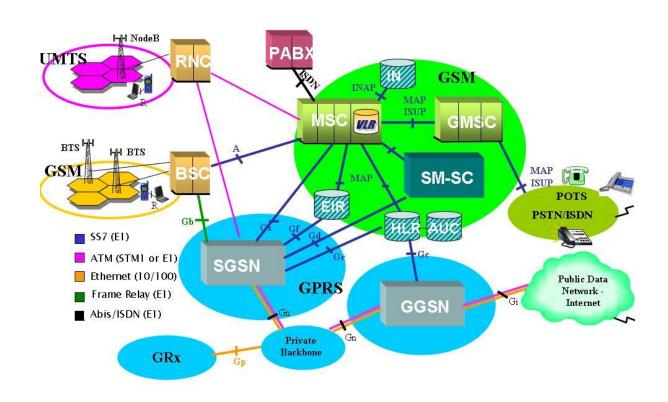
- > Tests and measurements made and results
- The final recommendations of the lab (successful or unsuccessful)
- Measurement reports and tests and picture of equipment
- > Date
- ➤ The names of the engineers and their signatures Note: The test report is sent to OSS, and based on the recommendation of the lab, the OSS issues a certificate of positive or negative approval signed by the General Manager of CERT.

Different types of devices>>>>>

Each telecommunication network contains components of different types that include several types of equipment:

- > Radio Components
- > Transmission components
- > Switching components
- > Computer components

Different types of devices >>>>>


Each telecommunication network also contains different types of connections:

- > The wired links
- > Radio links
- Optical links A telecommunication terminal may interface with the telecommunications network via one or more connections types

Different types of devices

Different types of devices

> Fixed terminals:

Fixed terminals of a telecommunication network are wired terminals, IP terminals, ADSL terminals ... (The telephones, routers, modems)

Different types of devices

➤ Mobile teminals:

Mobile telecommunications terminals occupy a very wide and extensive range

These terminals can be transmitters / receivers, Bluetooth, WIFI, GSM, HSDPA, UMTS, GPS, geo-location equipment, the signal converter equipment

Standards

Define:

- Frequency bands allocated to radio equipment
- The maximum power and fields allowed
- The occupancy rate of the spectral band

Ensuring coexistence between different users of radio waves

Standards

Bande de fréquences	Puissance rayonnée max ou champ max/ portée max	Norme Européenne ou norme internationale équivalente	Largeur du canal	Applications
26,312 - 26,474 MHz	40 mW / 100m		12.5 KHz	
41,312 - 41,475 MHz	20 mW / 100m		12.5 KHz	Postes téléphoniques sans cordon
46-49 MHz	50 mW / 100m			
1880 - 1900 MHz	10 mW / 100m		2 MHz	
6765 - 6795 kHz	42dBμA/m à 10m	EN 300 330		Equipements non spécifiques : Ils
26,957 - 27,283 kHz	10 mW / 10m			regroupent différents types
40,66 - 40,7 MHz	10 mW / 100m			d'applications sans fil, notamment
433,05 - 434,79 MHz	10mW /20m	EN 300 220		de télécommande et télécontrôle, télémesure, transmission d'alarmes et de données. Ils ne doivent en aucun cas permettre la transmission de la voix. NB: Les équipements de télécommande n'utilisent pas la bande (40.66 -40.7) MHz.

Presented by: Mr Zied SALHI

Standards

	+		 	
868,6 - 869,4 MHz	10mW / 50m	EN 300220	25 KHz	Alarmes
869,65 - 869,7 MHz	25 mW / 100m			
9 - 59,750 kHz	72dBμA/m à 10 m			Matériels à boucle d'induction: Ils
59,750 - 60,250 kHz	42 dBμA/m à 10 m	EN 300 330		regroupent les systèmes d'immobilisation de véhicules, d'identification des animaux, de détection de câbles, de gestion des déchets, d'identification des personnes, de contrôle d'accès, les capteurs de proximité, les systèmes
60,250 - 70 kHz	69dBμA/m à 10 m			
70 - 119 kHz	42dBμA/m à 10 m			
119-135 kHz	66dB μA/m à 10 m			
135 -148,5 kHz	42dBμA/m à 10 m			
3155 - 3400 kHz	13,5 dBμA/m à 10 m			antivol, d'identification automatique
				d'articles, de commande sans fil et
13 553 - 13 567 kHz	42 dBμA/m à 10 m	EN 302 291		de péage routier automatique.
170 - 181,5 MHz	10m W / 50m			
196,6 - 200,2 MHz	10m W / 50m	EN 300 422		Microphones sans fil et aides à
470 - 790 MHz	50m W/50m			
863 - 865 MHz	10.m W / 50m	EN 300 422		l'audition
		EN 301 357		

Presented by: Mr Zied SALHI

Bande de fréquences	Puissance rayonnée max ou champ max/ portée max	Norme Européenne ou norme internationale équivalente	Largeur du canal	Applications
0.050 - 0.130 MHz	500m W / 100m			Traduction simultanée
0.125 - 0.134 MHz	42 dBμA/m à 10m			
13.553 - 13.567 MHz	60 dBμA/m à 10m	EN 300 330		Dispositifs d'identification (RFID)
865 - 868 MHz	2 Wp.a.r. / 10m	EN 302 208	200 KHz	
9-315 kHz	30 dBμA/m à 10m	EN 302 195		
315 - 600 kHz	- 5 dBμA/m à 10m	EN 302536		Implants médicous à faible
401 - 402 MHz	25 μ W p.a.r.	EN 302 537	25 KHz	Implants médicaux à faible puissance
402 - 405 MHz	25 μ W p.a.r.	EN 301 839	25 KHz	
405 - 406 MHz	25 μ W p.a.r.	EN 302537	25 KHz	
2 400 - 2 483,5 MHz	100mW / 100m	EN 300 328		Equipements des réseaux locaux
		EN 301 893		radioélectriques de transmission de
5150 – 5350 MHz	200m W / 100m			données à l'intérieur des bâtiments
24.05 - 24.25 GHz	100m W	EN 300 440		Système d'information routière et
76-77 GHz	55 dBm/MHz p.i.r.e	EN 302 372		radars à courte portée destinés aux véhicules

Presented by: Mr Zied SALHI

Tests and Measurements

Definition

By applying the appropriate standard and with a set of measuring instruments and test benches, we ensure the conformity of the equipment under test, submitted for approval, compared to standard that supports them

Tests and Measurements

Measurements

Among the tests and measurements performed during the approval of a telecommunication terminal:

- Verification of the frequency band
- ➤ Measuring the frequency error
- ➤ Measurement of the emitted power
- ➤ Measurement of reception levels
- ➤ Measurement of BER (bit error rate)
- ➤ Measurement of internal impedance

Tests and Measurements

Functional test

During the approval, all telecommunication terminals are subject to functional tests in terms of commissioning and testing of the product and its smooth functioning

Measuring devices

Agilent Technologies 8960 Series 10

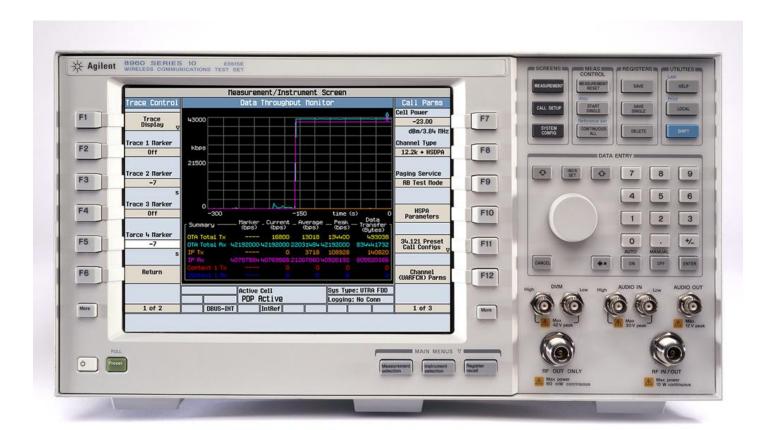
- The test bench of a GSM terminal consists of three essential components:
- ➤ Simulator test radio (eg Agilent 8960)
- ➤ computer
- ➤ A test application installed on the computer (eg WTM)

A link between these components is necessary USB / GPIB

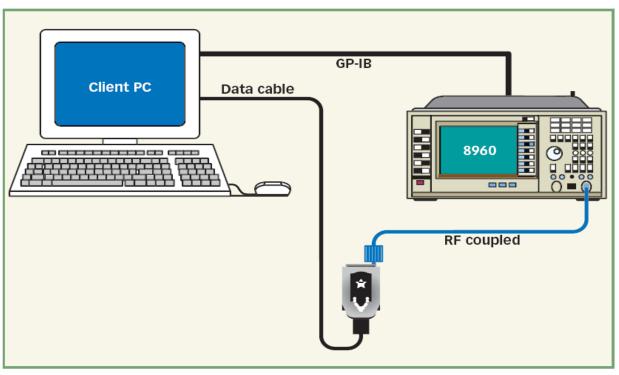
Measuring devices

Agilent Technologies 8960 Series 10

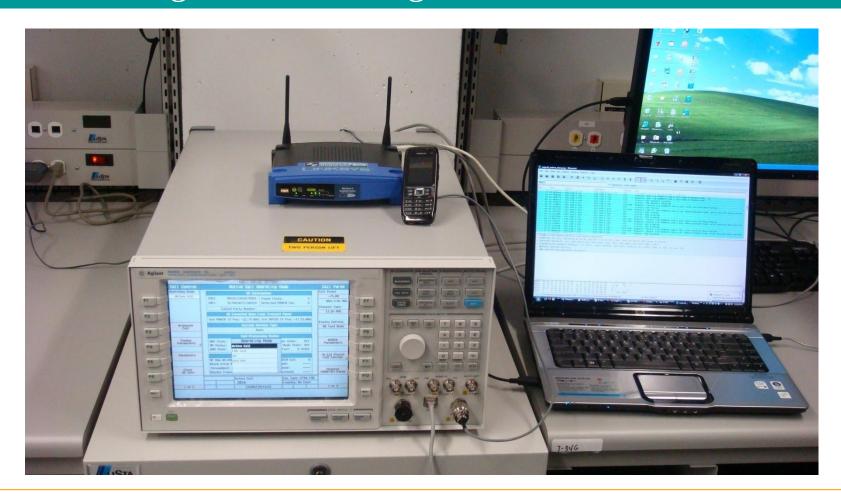
A detailed test report is delivered by this instrument and it contains:


- ➤ Date / time
- ➤ Name of operator
- ➤ The reference measuring device
- >IMEI of the EUT
- >IMSI of the SIM card test
- ➤ All parameters tested with the measured values and test results (pass or failed)

Measuring devices>>>>


Agilent Technologies 8960 Series 10

Agilent Technologies 8960 Series 10


6. A practical external PAvT measurement system is based on the Agilent 8960 wireless-communications test set.

Measuring devices>>>>>

Agilent Technologies 8960 Series 10

Wavetek 4107

As for the approval of a GSM terminal, technical control testing requires a radiated radio simulator mode, it'is not conducted mode and we take a minimum number of tests (Wavetek 4107)

Wavetek 4107

Wavetek 4107

Spectrum Analyzer

A spectrum analyzer is a measuring instrument for displaying the different frequencies contained in a signal and their respective amplitudes. The signals can be of various types: electrical, optical, acoustic, radio

Spectrum Analyzer

- ➤ A digital spectrum analyzer used to measure the voltage of electric signals in the frequency domain. The measurements can range from a few tenths of Hz to several tens of GHz.
- ➤ For the approval of telecommunications terminal a spectrum analyzer (0-60GHz) can support all types of products to be approved

www.cert.nat

Measuring devices >>>>

Spectrum Analyzer

Among the things to check:


- The frequency band
- ➤ The transmission power
- > Channel spacing
- > The number of channels

Measuring devices>>>>>


Spectrum Analyzer

Spectrum Analyzer

An check of the parameters of the analyzer is made before each measurement:

- > The frequency band (frequency of start and end)
- > Spam
- The amplitude of signal We must choose the values of these parameters for good and reliable results

Power meter

- The power meter is a device that measures the electrical power consumed by a receiver or supplied by an electric generator.
- ➤ The power meter is used in Approval activities to measure the minimum and maximum output power for Radio equipment

Measuring devices>>>>>

Power meter

Recommendations

The foundation of a certification service must be overwhelming followed by three other services: standardization, technology monitoring and training, quality

➤ Service standards: it ensures the development and monitoring of standards and national and international requirements. It develops very specific reports to be followed by laboratory technicians

Recommendations

- The technology monitoring and training service which provides:
 - 1- Monitoring of all new technologies
 - 2- The annual training plan development for laboratory technicians
- Quality Service: it ensures the implementation and updating of approval procedures and preparation of means of accreditation and ISO.

www.cert.nat.u

Conclusion

The approval process in a country is a very necessary step for the safety of the state, final consumers and the proper functioning of its telecommunication network.

But it must not be an economic and regulatory obstacles for investors and traders.

So we must put this project in place with flexible and reliable procedures.

THANKS

Presented by: Mr Zied SALHI

www.cert.nat.tn