

Big Data for Measuring the **Information Society**

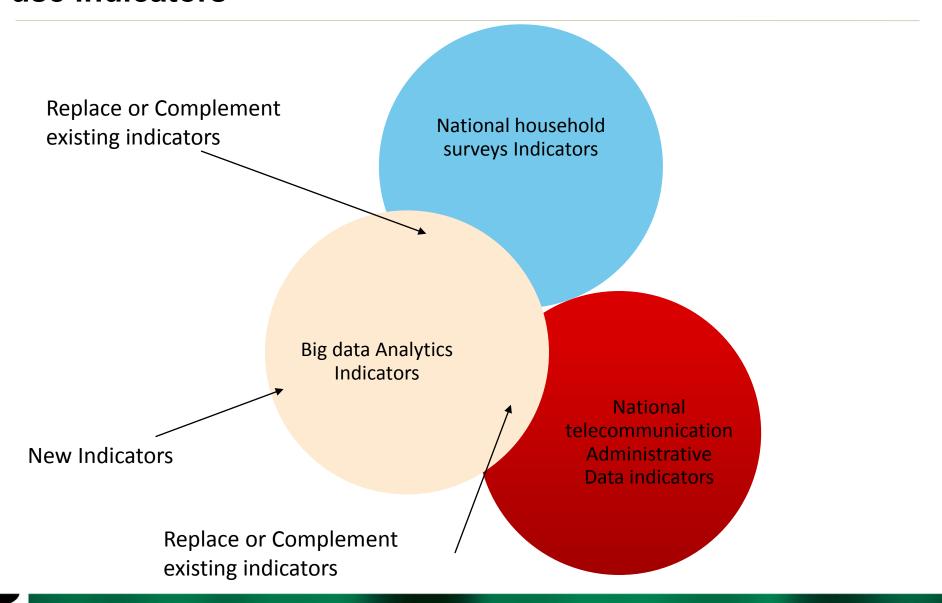
Mohammad Ahli Executive Director – Statistic Sector

هیئة اتحادیة | Federal Authority

Big Data for Measuring the Information Society

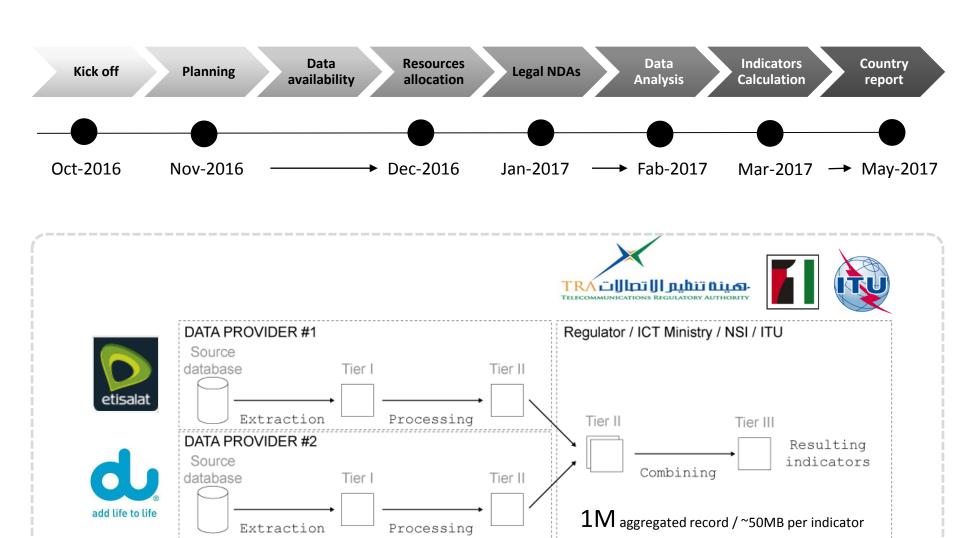
Project scope

Utilizing big data from telecom industry (MNO & ISP) to improve and complement existing statistics and methodologies to measure the information society


Project objective

Using Big data to produce new and existing official statistics ICT indicators to enhance data collections, benchmarks and methodologies to measure the information society.

Stakeholders


- Telecommunication Regulatory
- National Statistical Office
- Telecommunications Service Providers

The role of Big data in the development of ICT access and use indicators

UAE participation in ITU Big data pilot project

United Arab Emirate Big Data for Measuring the Information **Society Pilot Project Summery**

5 Partners

44+ Trillion 1+ Million

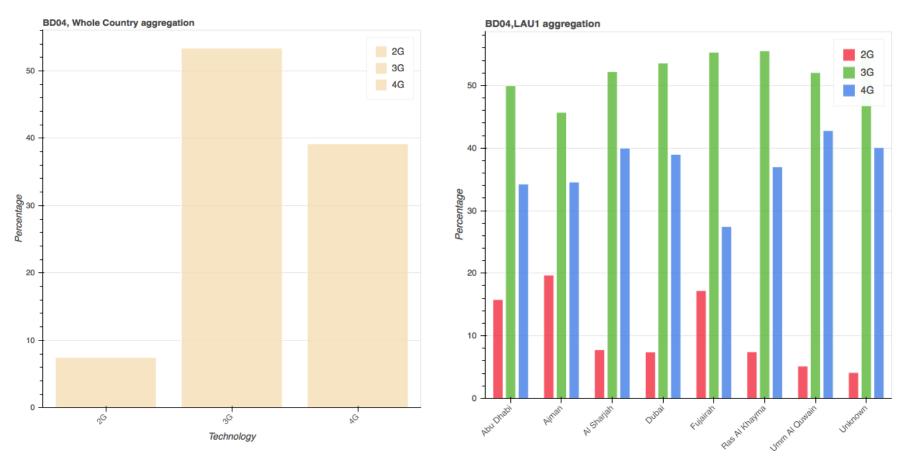
Event as initial raw data by both data providers combined.

Consolidated and aggregated data record /~50MB per indicator

100% **UAE** Coverage

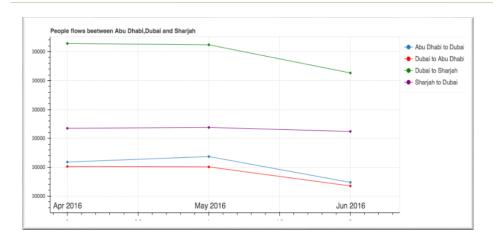
Call Detail Records (CDR) and Internet Protocol Data (IPDR)

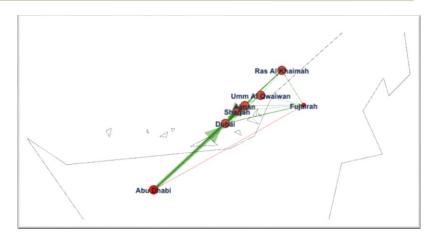
13 Enhanced

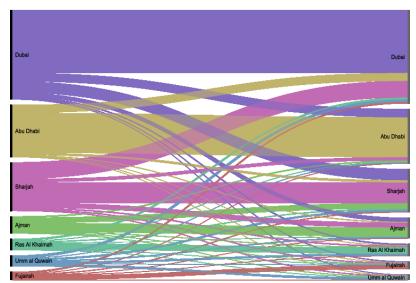

ICT Indictors using Big data, one considered new for UAE (DB03)

ICT Indictor (Origin/Destination Matrix)

- Both service providers extracted the initial raw data from their data warehouses, relying on big data processing technologies using different tools (IBM, Informatica) and Data warehouse appliances (Teradata, Netezza).
- ITU Data scientist worked with Two TSP technical teams (2-3 persons) each and statistician.


Results


Big data analytics enables service providers and government to monitor the progress of development of the technologies and to support the decisions for investing in regions that are lacking behind



DB04: Distribution of the mobile Internet access technology for UAE

BD16: Human Mobility

Origin/Destination Matrix for UAE administrative regions

Main indicators for ICT Access and Use by Households and Individuals

Included	Dig Data (DD)	Administrative data(AD)	Household Curvous /HIII
Excluded	Big Data (BD)	Administrative data(AD)	Household Surveys (HH

Ind.	Key ICT Performance Indicators (KPI)	НН	AD	BD
BD01	Percentage of the land area covered by mobile-cellular network, by technology			
BD02	Percentage of the population covered by a mobile-cellular network, by technology			
BD03	Usage of mobile-cellular networks for non-ip related activities, by technology			
BD04	Usage of Mobile-Cellular Networks for Internet Access, by Technology			
BD05	Number of Subscriptions with Access to Technology			
BD06	Active Mobile Voice and Broadband Subscriptions, by Contract Type			
BD07	Average Number of Active Mobile Subscriptions per Day, by Contract Type			
BD08	Active Mobile Devices			
BD09	IMEI Conversion Rate			
BD10	Fixed Domestic Broadband Traffic, by Speed, Contract Type			
BD11	Mobile Domestic Broadband Traffic, by Contract Type, Technology			
BD12	Mobile International Broadband Traffic, by Contract Type			

Main indicators for ICT Access and Use by Households and Individuals

IncludedNot fully	Big Data (BD)	Administrative data(AD)	Househ	old Su	urveys	s (HH)
	Big data ICT Indicators			нн	AD	BD
BD13	Inbound Roaming Subscriptions per Foreign Tourist					
BD14	Fixed Broadband Subscriptions, by Technology					
BD15	Fixed Broadband Subscriptions, by Speed					
BD16	Additional Indicator: Origin/Destination Matrix					

Big data can replace or complement existing several National household surveys Indicators

	Big data ICT Indicators	Ex: National household surveys Indicators		
BD08	Active Mobile Devices	HH03 :Proportion of households with telephone HH06 :Proportion of households with Internet		
BD14	Fixed Broadband Subscriptions, by Technology	HH07: Proportion of individuals using the Internet HH10: Proportion of individuals using a mobile cellular telephor		
BD15	Fixed Broadband Subscriptions, by Speed	HH11: Proportion of households with Internet, by type of service HH12: Proportion of individuals using the Internet, by frequency		

Challenges

Administrative and legal

- Absence of standard legal and administrative procedures in place regulate TRA & NSO access to TSP big data.
- The need fro identifying and signing the non-disclosure agreement (NDA) for external data scientist
- Service providers confidentially

Technical and methodological

- Limited or missing data for some indicators.
- Unification of data formats, standardization and preprocessing were a time consuming task.
- Developing methodology, algorithms and validation methods is a multiple iteration process.

Recommendations and Lessons Learned

- Usage of big data complement and enhance official statistics, in addition to enabling the delivery of insights for leadership.
- Engaging TSP team in the big data analytics stage reduced the complexity of data security and confidentiality concerns and procedures.
- TRA (Telecommunication Regulatory Authority) role as the guardian of the service provider information confidentiality is crucial for project success.
- Formulating and engaging national data scientist team has a great added value for future big data analytics projects.
- Developing automation tool to pre-process acquired data with a format check and a preliminary analysis will reduce time and efforts with great impact on outcomes.
- Development of new model which protect data personal confidentiality.