Energy Efficient Ethernet Overview

Mike Bennett Lawrence Berkeley National Laboratory

ITU-T SG15

Geneva, Switzerland

February 15, 2008

Disclaimer

• The information you're about to hear is my own point of view and does not represent an official position of the IEEE

The bigger picture

- LBNL's work on Energy Efficient Ethernet is a part of the Energy Efficient Digital Networks project
- Goal:
 - This project aims to reduce electricity use of electronics through a variety of methods, all with the common theme of digital networks.
- Sponsors:
 - California Energy Commission (CEC)
 - Public Interest Energy Research (PIER) Program
 - U.S. Environmental Protection Agency (EPA)
 - ENERGY STAR Program
- Website: http://efficientnetworks.lbl.gov/

Discussion

- What is Energy Efficient Ethernet?
- Background
- IEEE 802.3az Status Report

What is Energy Efficient Ethernet?

- A method to reduce energy use by an Ethernet interface.
 - This will be accomplished by facilitating transitions to and from lower power consumption in response to changes in network demand.
- Based on works of Dr. Ken Christensen from University of South Florida and Bruce Nordman from LBNL
 - Known as Adaptive Link Rate (ALR)
 - Ethernet Adaptive Link Rate: System Design and Performance Evaluation, Gunaratne, C.; Christensen, K.; Proceedings 2006 31st IEEE Conference on Local Computer Networks, Nov. 2006 Page(s):28 - 35

The problem

- Office equipment, network equipment, servers
 - 97 TWh/year
 - 3% of national electricity
 - 9% of commercial building electricity
 - Almost \$8 billion/year

Numbers represent U.S. only

Network Equipment 13
Servers 12
PCs / Workstations 20

- Imaging (Printers, etc.)
- Monitors / Displays
- UPS / Other 16

60% Networked Equipment

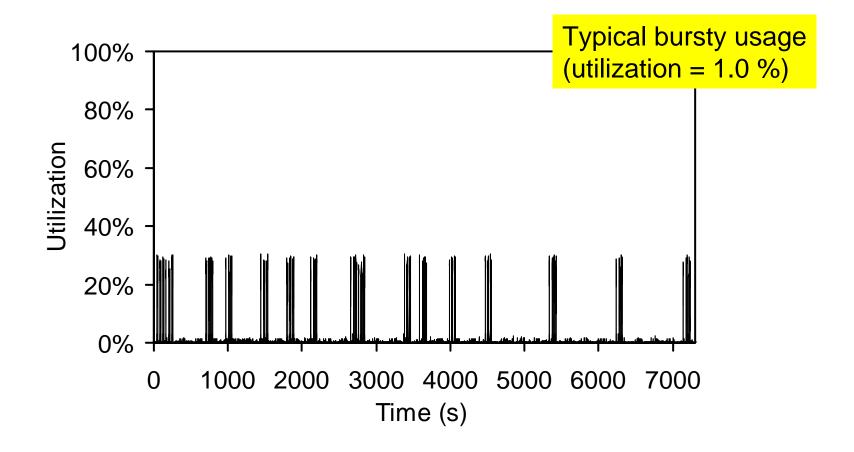
- ... However
 - Old data (energy use has risen)
 - Doesn't include residential IT or networked CE products

TWh/year

15

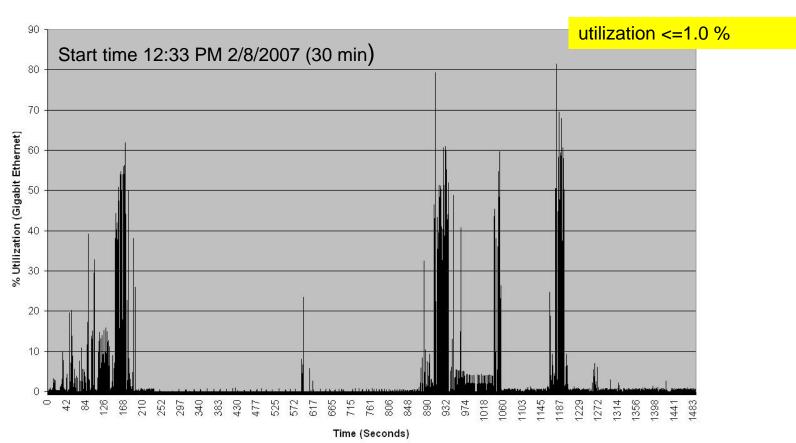
22

Note: Year 2000 data taken from Energy Consumption by Office and Telecommunications Equipment in Commercial Buildings--Volume I: Energy Consumption Baseline Roth et al., 2002 Available at: http://www.eren.doe.gov/buildings/documents


Link power

Results from (rough) measurements

20 - all incremental AC power 1 Gb/s Gb/s (No data traffic) — measuring 1st order 15 Power (W) 00 Mb/s □ 10 Mb/s Typical switch 10 with 24 ports 5 10/100/1000 Mb/s 0 2 6 8 Number of active links 16 14 12 10 86 4 20 Power (W Various computer **NICs** averaged **Based** on initial numbers **10GBASE-T** expected to 10 10000 100 1000 be in the order of 25WAC Link speed (Mb/s)


Desktop links have low utilization

- Snapshot of a typical 100 Mb Ethernet link
 - Shows time versus utilization (trace from Portland State Univ.)

Some Server links have low utilization

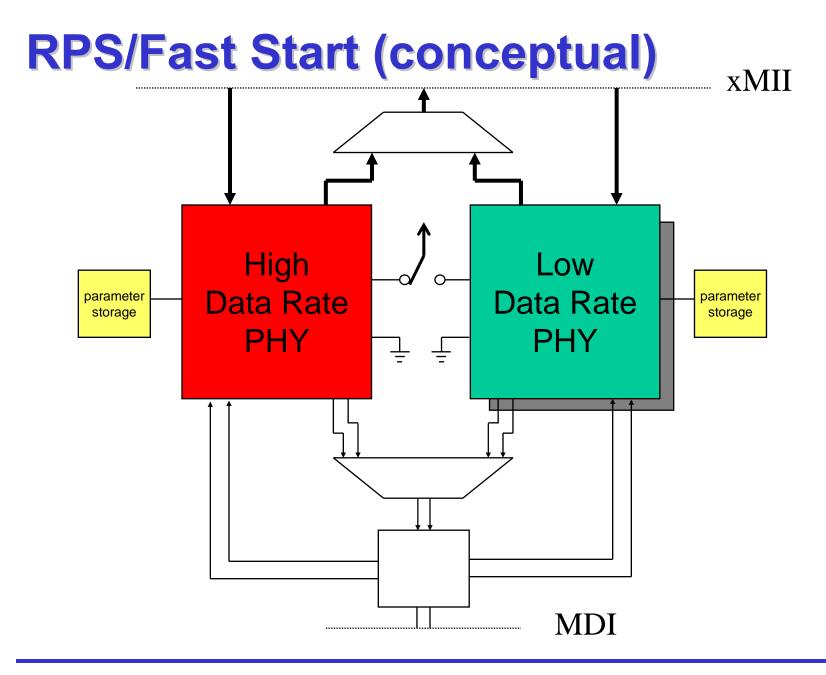
- Snapshot of a File Server with 1 Gb Ethernet link
 - Shows time versus utilization (trace from LBNL)

File Server Bandwidth Utilization Profile

Potential Savings from EEE

Assume 100% adoption (U.S. Only), 90% operation at lower speed

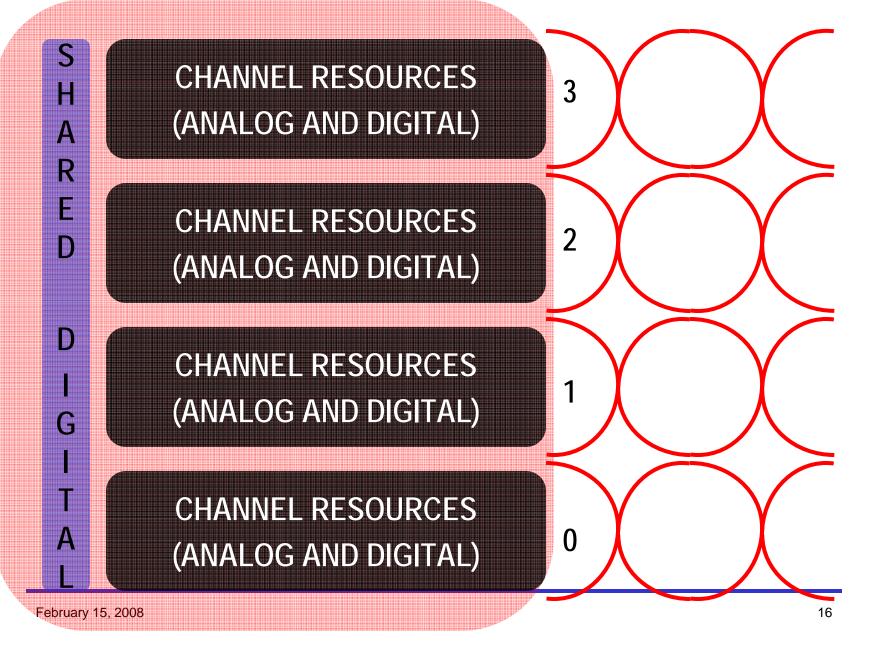
- Residential
 - PCs, network equipment, other
 - 1.73 to 2.60 TWh/year
 - \$139 to \$208 million/year
- Commercial (Office)
 - PCs, switches, printers, etc.
 - 1.47 to 2.21 TWh/year
 - \$118 to \$177 million/year
- Data Centers
 - Servers, storage, switches, routers, etc.
 - 0.53 to 1.05 TWh/year
 - \$42 to \$84 million/year

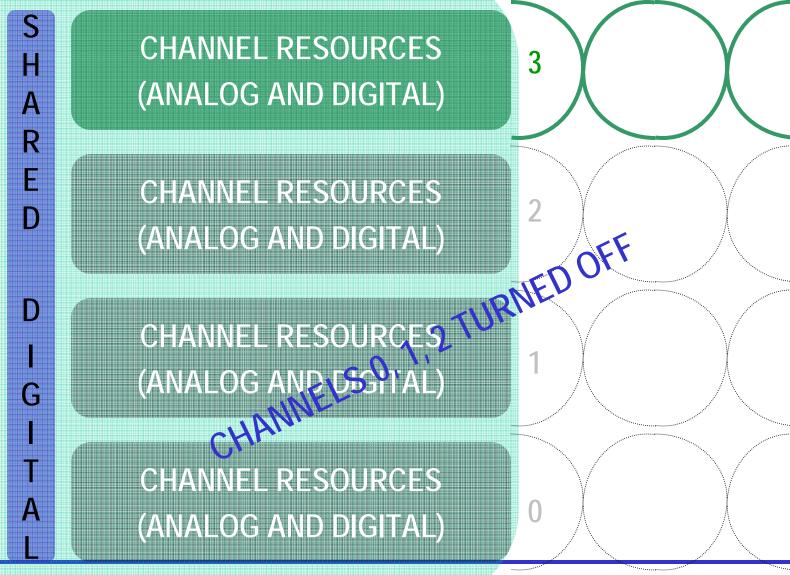

Total: \$298 to \$469 million/year

These figures do **not** include savings from cooling/power infrastructure

IEEE 802.3az Update

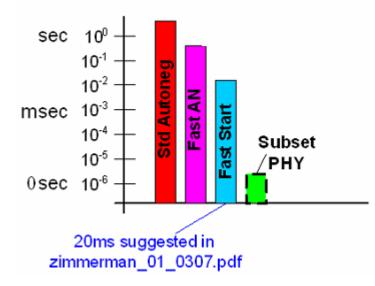
Study Group Overview


- Formed in November, 2006
- 6 meetings
 - 39 presentations supporting Project Authorization Request (PAR), 5 criteria, and objectives
 - 11 presentations on Rapid PHY Selection (RPS)
 - 4 presentations on Subset PHY
 - 3 presentations on modification of 10BASE-T
 - Remaining presentations focused on link utilization, power consumption, impact of transition time on application performance
 - Study Group voted to submit PAR for consideration at July 2007 meeting
 - PAR was approved by 802.3 in July, NesCom/SASB in Sept. 07
- The group focused mostly focus on RPS


Transition time

- Several people concerned about the impact of transition time on applications
- An initial study on feasibility of 1 ms transition from lower speed to 10GBASE-T suggested 20 ms was feasible, 1 ms was not
- More concerns raised regarding impact on realtime applications such as Audio Video Bridging (AVB)
 - Transition time needs to be at most 1 ms
 - The problem is PHY change testing suggested 20 ms
 - What to do?

10GBASE-T PHY


Simple 10GBASE-T Subset PHY

February 15, 2008

Transition time comparison

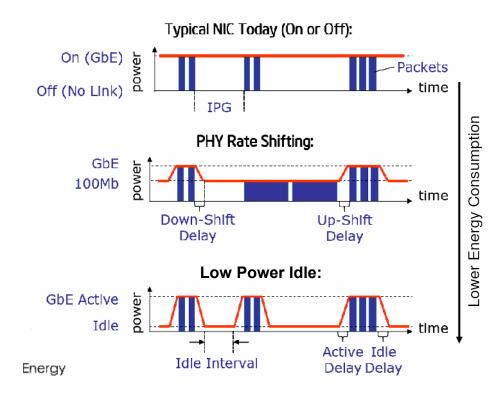
- Assumptions
 - 10GBASE-T is the highest negotiated speed
 - Power savings for various options is comparable

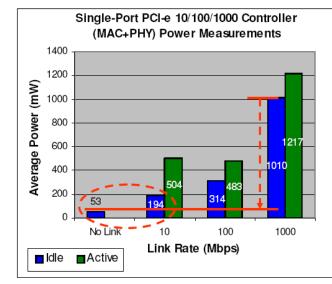
- Subset PHY offers potential to improve transition time by over 3 orders of magnitude
 - µS instead of mS

Study group summary

- During the Study group phase of project, we investigated:
 - Protocol to negotiate the speed change, stop transmission, change speeds and resume transmission at new speed
 - Impact of Frame-based protocol exchange on transition time
 - » At slower speed, waiting on "normal" frames to finish before speed change dominates transition time
 - » At higher speed, time to resume transmission dominates

- Rapid PHY Selection / Fast Start (modified RPS)


- Main difference between RPS and "Fast Start" is with the latter, state of channel characteristics is saved, entry points in state machines are optimized to minimize start-up time, thus minimizing total transition time
 - » Transition time in the order of 10's of milliseconds feasible
- Subset PHY
 - Operate at lower speed by using a "subset" of a standard PHY
 - E.g. operate 1000BASE-T as a subset of a 10GBASE-T
 - Transition time in the order of 10's of microseconds feasible
- Also working on Backplane Ethernet and 10BASE-T


Task Force Overview

- Formed in November, 2007
- 2 meetings
 - 24 presentations
 - Digging deeper into the technical details
 - More work done on Subset PHY approach
 - Working towards developing a baseline set of proposals
 - Introduction of a new concept
 - Low Power Idle (began as "Active Idle toggling")
 - Simple concept: transmit when there is data to send, reduced power when there is not
 - » Add a counting state machine for idle modes to wake up periodically
 - » Turn off receivers, transmitters for N frames
 - » Turn on receiver (or transmitter) on schedule for 1 (or M) frames
 - » Check for "wake-up" codeword
 - » Continue activity transitioning back to active mode or go back to "counting sleep" depending on codeword received

Low Power Idle

- Energy use is lower than typical NIC and RPS (rate shifting)
 - Transition time in the order if microseconds feasible

Source: Intel labs. Intel® 82573L Gigabit Ethernet Controller, 0.13µm, "Idle" = no traffic, "Active" = line-rate, bi-directional

Task Force Summary

- We're making good progress
 - Lots of good ideas
- We have a number of open questions to answer and issues to deal with
 - Low Power Idle will be efficient in bursty traffic
 - What happens when the traffic is real time and / or streaming?
 - Might require switch vendors to add buffers
 - Subset PHY approach will need a means to keep channel characteristics relatively stable
 - Send "refresh" signals over unused pairs periodically
 - There needs to be a means for applications to communicate with the network interface

Estimated Timeline

- PAR approved by 802.3/EC July 2007
- Project 802.3az approved
- 1st Task Force Meeting: November 2007
- Last new proposal: March 2008
- 1st Draft done: May 2008
- 2nd Draft done/Task Force Review: November 2008
- 3rd Draft done/Working Group Ballot: March 2009
- 4th Draft done/LMSC Ballot: July 2009
- 5th Draft done: November 2009
- Standard done: March 2010
- Note: timeline not adopted by the task force

Acknowledgements

- Bruce Nordman and Ken Christensen
- Howard Frazier, Wael William Diab, David Law, Bill Woodruff, George Zimmerman, Rob Hays, Mandeep Chadha
- Energy Efficient Ethernet Study Group and 802.3az Task Force members, for their hard work and dedication to this project

Thank You!

Objectives – what we've agreed to do

Define a mechanism to reduce power consumption during periods of low link utilization for the following PHYs

- 100BASE-TX (Full Duplex)
- 1000BASE-T (Full Duplex)
- 10GBASE-T
- 10GBASE-KR
- 10GBASE-KX4

• Define a protocol to coordinate transitions to or from a lower level of power consumption

• The link status should not change as a result of the transition

• No frames in transit shall be dropped or corrupted during the transition to and from the lower level of power consumption

• The transition time to and from the lower level of power consumption should be transparent to upper layer protocols and applications

Objectives – what we've agreed to do

- Define a 10 megabit PHY with a reduced transmit amplitude requirement such that it shall be fully interoperable with legacy 10BASE-T PHYs over 100 m of Class D (Category 5) or better cabling to enable reduced power implementations.
- Any new twisted-pair and/or backplane PHY for EEE shall include legacy compatible auto negotiation