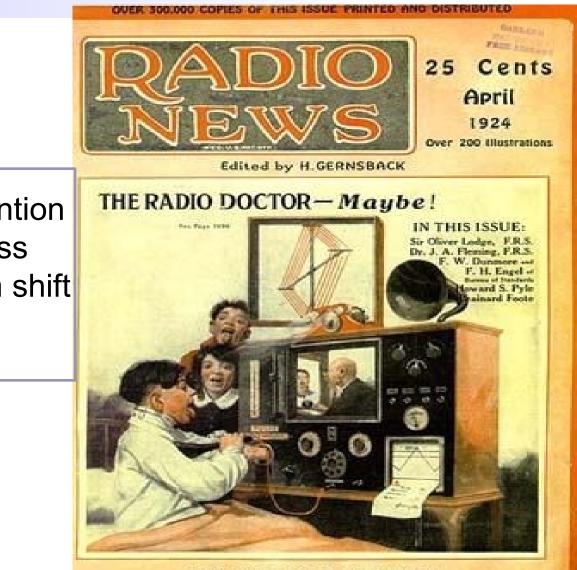


4G Health- The Long Term Evolution of m-health

Robert S. H. Istepanian

Professor of Data Communications, Kingston University, London

Mobile Information and Network Technologies Research Centre Faculty of Computing,Information Systems and Mathematics Kingston University, London, UK E-mail: r.istepanian@kingston.ac.uk



Summary

- 4G Technologies
- LTE v/s WiMAX
- Evolution of m-health and defining '4G Health'
- Diabetes in the Middle East.
- M-health for Diabetes Management and clinical trials
- Potential of m-health for Diabetes in the middle East
- Future trends

History of radio/wireless technology and healthcare

THE 100% RADIO MAGAZINE

In 20th Century the invention Of the 'Radio' or wireless made a major paradigm shift in healthcare

CIRCULATION LARGER THAN ANY OTHER RAMO PUBLICATION

4G Technologies and Future Networks

The two main candidates of the 4G Systems are :

-WIMAX Technology based on the IEEE802.16 standards -The Third Generation Partnership Project's (3GPP) Long Term Evolution (LTE)

These to be most likely to be endorsed by the ITU-R and IMT – Advanced systems

On the 8th of January the Global Certification Forum announced that it is on course to deliver a complete LTE device certification scheme before the end of 2010.

REF:

4G Technologies and Future Networks

IMT – Advanced specifies among other parameters:

- All IP packet switching

-Peak download data throughpouts of at least 1Gbit/s (low mobility) and 100 Mbits/s (high mobility) -The use of OFDM digital modulation

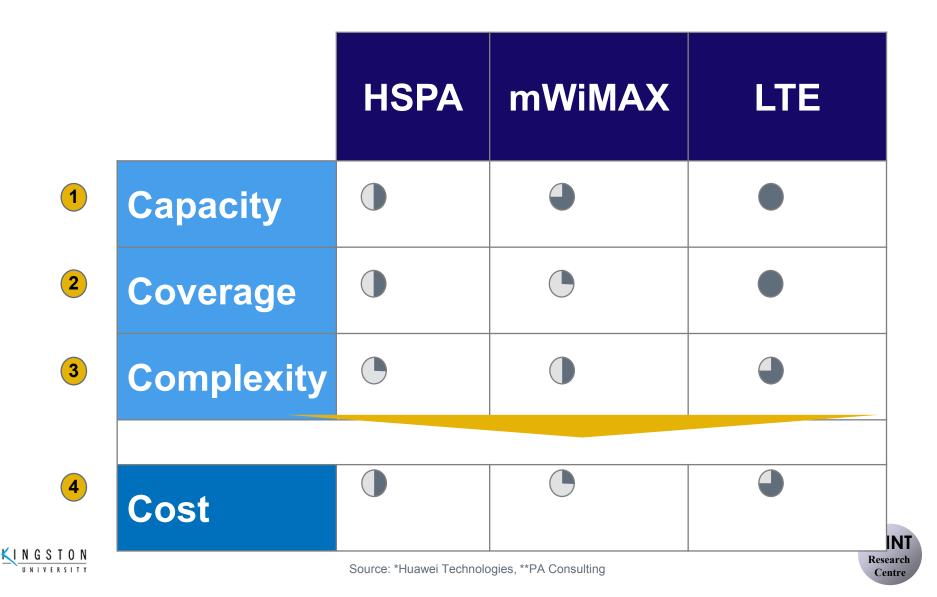
Neither WiMAX nor LTE support today these throughputs.

However, although both technologies have somewhat different designs, there are many concepts, features to meet common requirements and expectations in both:

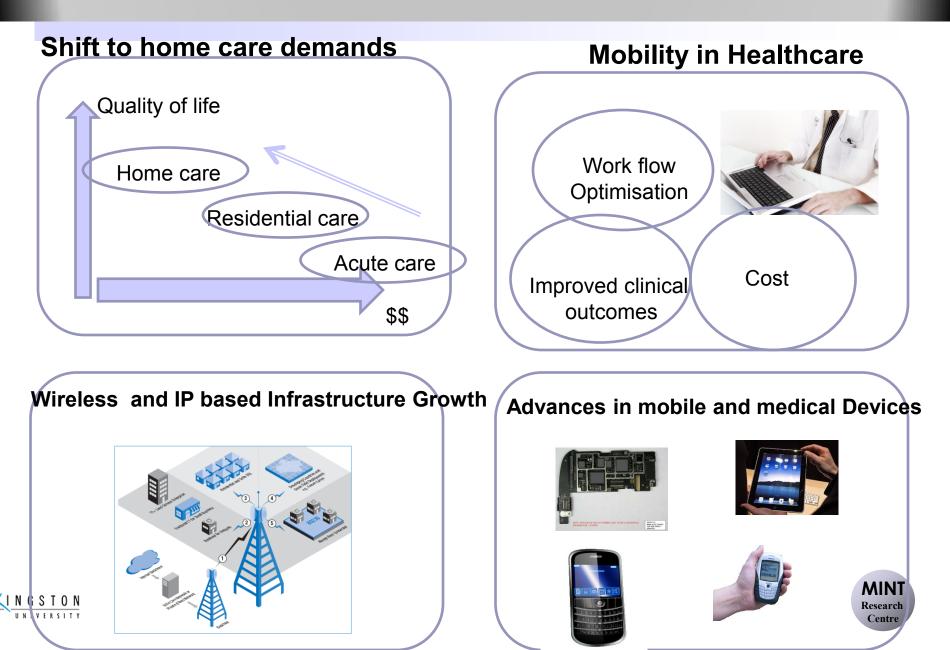
For example:

 Physical layer: Both systems use OFDMA with MIMO configuration and fast link adaptation
 MAC layer : Both systems support multicarrier operation and heterogeneous networks of cells (macro, femto and relay nodes) for supporting wide range of applications and mobility challenges, traffic management

	HSPA	mWiMAX	LTE
Peak Data	Useful: 10.8 / 4.3	Useful: 42 / 14	Useful: 75 /
Rate	Mbps	Mbps	37.5 Mbps
Spectral	Useful: 2.16 /	Useful: 3.15 /	Useful: 3.75 /
Efficiency	0.86 bps/Hz	2.1 bps/Hz	1.88 bps/Hz
VolP Performance	 12 concurrent users/cell/MHz** 430 km/h with guaranteed QoS* 	 16 concurrent users/cell/MHz** Focus on nomadic mobility, also vehicular speeds up to 120 km/h 	 24 concurrent users/cell/MHz* * 350 km/h target speed

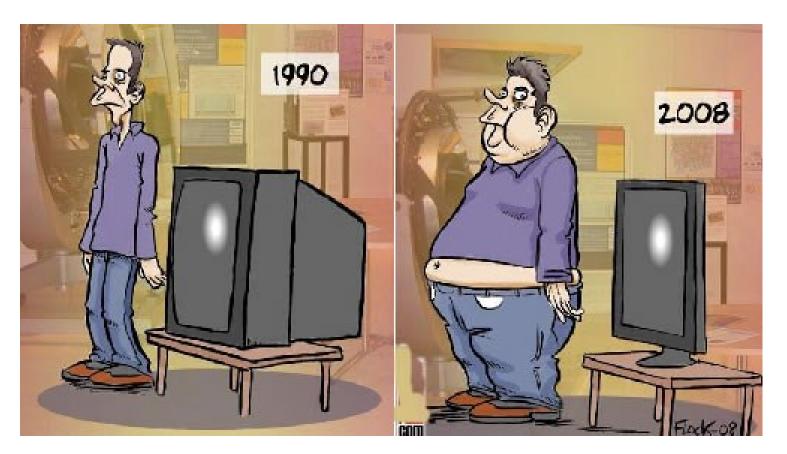


MINT


Research

Centre

4G: LTE v/s WIMAX



Push/ Pull of Telecom industry v/s healthcare trends

Global Diabetes and Obesity

It takes 10-12 years for the HbA1C in the body to become or start becoming higher than the normal levels

©Robert S.H. Istepanian 2010

M-health Evolution: 1997-2003

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 4, NO. 3, SEPTEMBER 2000

Guest Editorial Special Issue on Mobile Telemedicine and Telehealth Systems

Design of a Telemedicine System Using a Mobile Telephone

B. Woodward, Member; IEEE, R. S. H. Istepanian, and C. I. Richards

Abstract—This paper describes the design of a prototype integrated mobile telemedicine system that is compatible with existing mobile telecommunications networks and upgradable for use with third-generation networks. The system, when fully developed, will enable a doctor to monitor remotely a patient who is free to move around for sports medicine and for emergency situations.

Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico • September 17-21, 2003

Emerging Mobile Communication Technologies for Health: Some Imperative notes on m-health

Robert S. H. Istepanian¹ and Jose C. Lacal² ¹Mobile Information & Network Technologies Research Center; Kingston University (UK) ²Tele-Health Solutions; Motorola / iDEN Subscriber Group (USA)

Research Centre

m-Health Defined

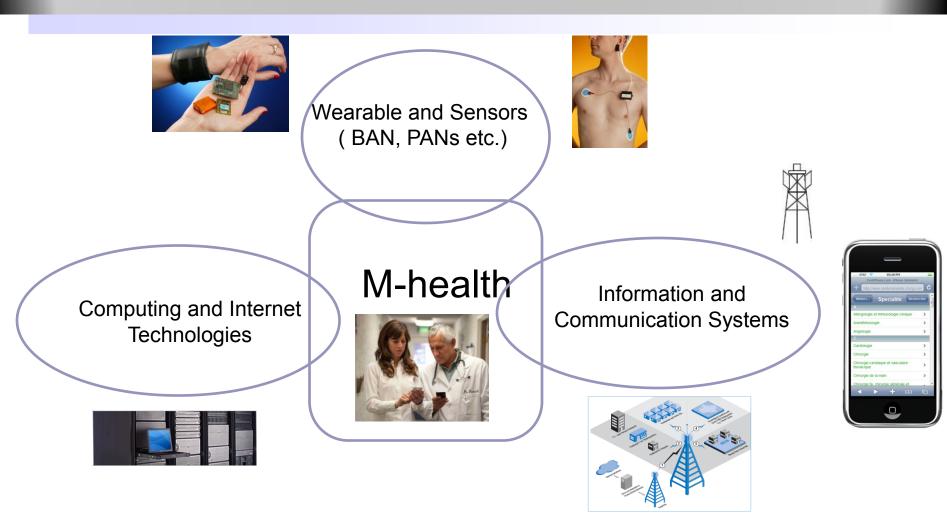
Mobile Health Care (m-Health)

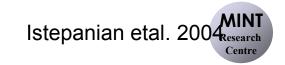
Emerging Mobile Communications ,Network and Sensor Technologies

For Healthcare Systems and Applications'

Istepanian (*etal.*), 'm-health: Beyond Seamless Mobility for Global Wireless Healthcare Connectivity ', *IEEE Trans. Information Technology in Biomedicine*, Vol. 8, 4, pp. 405-412, 2004.

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 8, NO. 4, DECEMBER 2004


Guest Editorial Introduction to the Special Section on M-Health: Beyond Seamless Mobility and Global Wireless Health-Care Connectivity



405

Mobile HealthCare (M-Health)

Long Term m-health Evolution

Some Interesting 'Google' Statistics:

Google Search- April 2010:

- 'm-health' > 212,000,000 Hits
- 'wireless healthcare'> 5,830,000 Hits
 - •'mobile Diabetes Management' > 1,910,000 Hits
 - Personalised healthcare > 4,870,000 Hits

Opportunities in the global mobile healthcare market are estimated to be worth between \$50bn and \$60bn in 2010

Source: McKinsey & Company-2010

Examples of global m-health Industry

O2 debuts mHealth division

O2 looks to develop opportunities in healthcare sector with new mHealth unit

2010

2010

Qualcomm, AT&T Move in on 'M-Health'

The smartphone boom has tech giants and health-care companies eyeing demand for wireless gadgets and software that can deliver health services

Source: Bloomberg Businessweek

INGSTON Source: Intel

MOBILE CLINICAL ASSISTANT

What is it?

Nurses and physicians need better access to patient information at the point of decision to provide quality care more efficiently. The Intel® Mobile Clinical Assistant (MCA) reference architecture was designed in collaboration with healthcare professionals to better access up-to-date patient care records at the point of care and to enable documentation of a patient's condition in real time. The MCA is built for the rigors of the clinical environment and with appropriate software the MCA helps to reduce transcription and medication administration errors, enhance clinician workflows, and enable more informed decisions at the point of care.

4G Health- The Long Term Evolution of m-health

Interim Definition:

'The evolution of m-health towards targeted personalised medical systems with adaptable functionalities and compatibility with the future 4G networks'

CALL FOR PAPERS: Special Issue on

4G Health The Long Term Evolution of m-Health

> MIN1 Research Centre

©Robert S.H. Istepanian 2010

Examples of m-health services In the Middle East

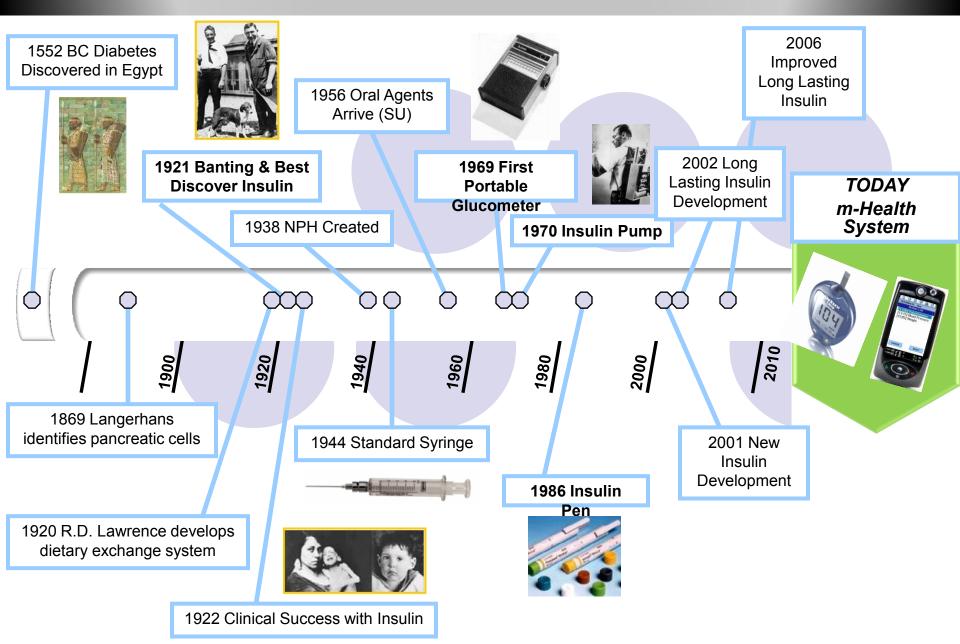
Etisalat brings mHealth to UAE

(http://www.mhealthupdate.com/?p=1376)

By

Mark

– October 19, 2010Posted in: <u>Product News (http://www.mhealthupdate.com/?cat=422)</u>, <u>Uncategori:</u> (<u>http://www.mhealthupdate.com/?cat=1</u>)


UAE-based telecoms provider <u>Etisalat (http://www.etisalat.ae/)</u> unveiled a new mobile health service at <u>GITEX 2010 (http://www.gitex.com/)</u> in Dubai this week. The service will use mobile technology to provide users with personalised and relevant health information via their mobile devices.

Evolution of Diabetes Care

Prevalence in Diabetes in Middle East 2010-2030

]	Prevalence (%	6) adjusted to				
					Numbers of ad diabetes (Mean annual increment (000s)	
	World po	pulation	National _ population		`	increment (0003)	
					2010	2030	
	2010	2030	2010	2030			
Middle-East Crescent							
Afghanistan	8.6	9.9	6.6	7.0	856	1,726	43
Algeria	8.5	9.4	7.4	9.3	1,632	2,850	61
Egypt	11.4	13.7	10.4	12.8	4,787	8,615	191
Iran (Islamic Rep. of)	8.0	9.8	6.1	9.3	2,872	5,981	155
Iraq	10.2	12.0	7.8	9.3	1,176	2,605	71
Kazakhstan	5.8	7.0	5.6	7.1	584	843	13
Morocco	8.3	9.8	7.6	9.7	1,513	2,589	54
Pakistan	9.1	10.5	7.6	9.3	7,146	13,833	334
Saudi Arabia	16.8	18.9	13.6	17.0	2,065	4,183	106
Sudan	4.2	5.2	3.3	4.0	675	1,367	35
Syrian Arab Republic	10.8	13.2	8.3	11.0	974	2,099	56

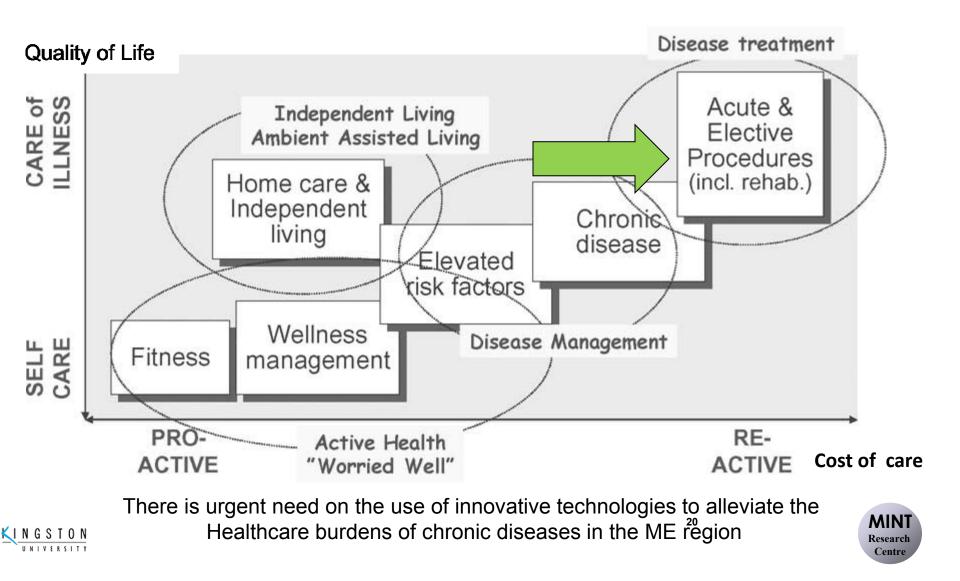
REF: Diabetes Res & Clini. Prac, 87,2010.

WORLD DIABETES FOUNDATION

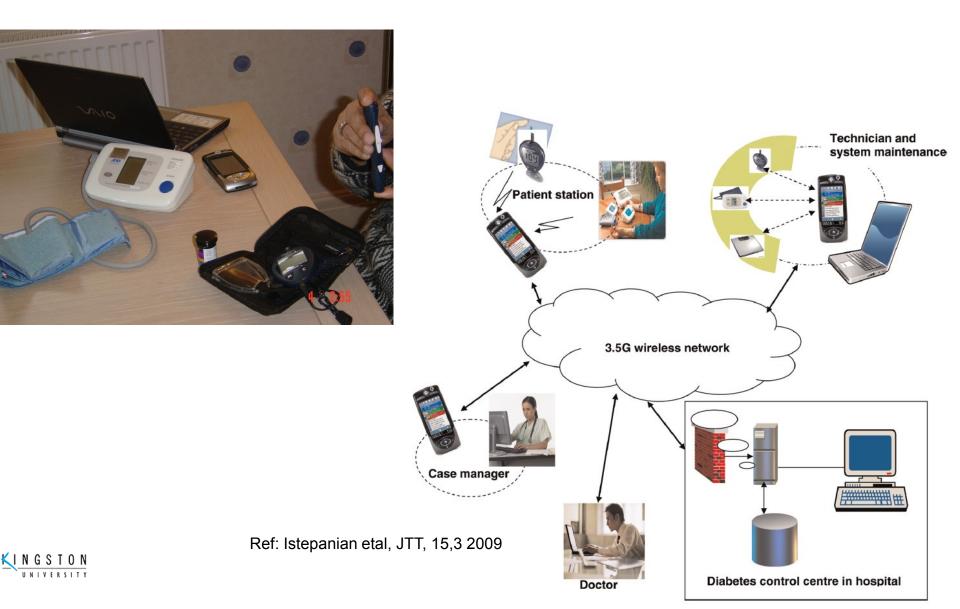
Diabetes prevalence in the Middle East is among the highest in the world.

Diabetes Expenditure and Prevalence 2010-2030

		US dollars (USD)			% of health expenditure			
Middle-East Crescent					•	Health exp	enditure for	r
Afghanistan	28,625.01	48,537.01	37,212.51	63,098.11	11		1 2010 ('000)	
Algeria	264,177.99	455,675.29	428,066.19	738,362.75	5 11	utabetes fi	1 2010 (000)	
Egypt	557,078.45	936,606.64	1,992,626.78	3,350,169.	90 16			
Iran, Islamic Republic of	1,048,047.21	1,829,836.94	3,346,829.99	5,843,394.	38 11			
Iraq	112,917.24	189,086.82	248,800.70	416,631.97	/ 13			
Kazakhstan	124,544.95	221,440.09	257,505.10	457,842.36	5 8			
Morocco	206,626.45	358,324.56	598,984.55	1,038,738.				
Pakistan	172,512.83	293,537.06	563,541.92	958,887.74				
Saudi Arabia	1,409,561.98	2,246,478.24	1,793,415.91	2,858,242.				
Sudan	34,794.99	63,104.72	64,790.66	117,505.39			Health ex	penditure for
Syrian Arab Republic	100,497.58	172,057.88	181,225.15	310,268.30) 14			in 2030 ('000)
Tunisia	138,376.55	238,390.34	417,757.05	719,697.41	12			
			1	33.42 43 61.86 262 16.37 416 64.98 1165	.27 461,074.27 .25 993,584.17	1,673,524.58	74,321.90 747,111.09 3,553,974.13 6,983,809.87	125,318.12 1,302,592.56 5,986,068.69 12,222,336.24
				96.03 211	.59 251,459.85		554,064.07	929,193.97
			2	13.20 440	.80 180,564.52	323,799.57	373,329.36	669,477.50
			1:	36.59 395	.96 356,397.11	623,753.16	1,033,151.18	1,808,183.31
				24.14 78	.86 332,612.23	566,773.86	1,086,533.27	1,851,461.29
			6	82.50 868	.35 2,989,442.4	48 4,836,078.04	3,803,531.72	6,153,045.73
			1	51.53 95	.95 69,958.46	126,256.32	130,267.47	235,097.97
			1	03.22 186	.13 220,411.08	377,176.42	397,462.61	680,154.20
			2:	29.94 694	.18 245,444.05	424,646.87	740,992.48	1,282,003.51
KINGSTON								


Research

Centre


KINGSTON

" * REF: 'Zhang, P. Etal. : Diabetes Res. And Clin. Pract. , 87,2010

The healthcare continuum and the middle east

3G-based m-health Diabetes Management System

Effectiveness of Diabetes Management using Cellular Phone Technologies

Author/	Study	Sample		Clinical	Control	Intervention	Measures	Results C vs I or pre-po
year	design	age	in months	area				
Benhamou,	RCT,	30,	12	Type 1	No	Weekly clinical	HbA1c	+0.12 vs -0.14%, $P < 0.10$
et al., 2007	crossover	41.3		diabetes	weekly	support via	SMBG	+5 vs -6 mg/dl, $P = 0.06$
		years			SMS	SMS	QOL score	0.0 vs + 5.6, P < 0.05
					support		Satisfaction with life	-0.01 vs + 8.1, $P < 0.05$
							Hypoglycemic episodes	79.1 vs 69.1/patient, NS
							No. of BG tests/day	-0.16 vs -0.11/day, NS
Hurling,	RCT	77,	4	Healthy	Verbal	Cell phone	Change in:	
et al., 2007		40.4			advice,	support, i.e.,	PA overall, MET min/week	4.0 vs 12, NS
		years			during	exercise plan,	PA leisure time, MET min/week	-5.5 vs 4.1, $P < 0.05$
					clinic	PA charts,	Hours sitting: overall	-0.17 vs -2.18, $P < 0.05$
					visit, no	reminders,	Hours sitting: weekday	1.4 vs -5.9, $P < 0.05$
					phone	tailored advice	Hours sitting: weekends	-0.2 vs -5.2, NS
					support		Accelerometer epochs	208.7 vs 218.5, <i>P</i> < 0.05
							BMI	0.10 vs -0.24, NS
							Lost % body fat	-0.17% vs -2.18%, <i>P</i> < 0.05
							BP, diastolic	0.73 vs 0.69, NS
							BP, systolic	0.41 vs 0.13, NS
							Perceived control	-0.37 vs 0.57, <i>P</i> < 0.01
							Intention to exercise	-0.01 vs 0.45, <i>P</i> < 0.01
							Internal control	5.85 vs 7.24, <i>P</i> < 0.001
							External control	5.33 vs 6.38, <i>P</i> < 0.01
Kim, 2007	RCT	51,	3	Type 2	Standard	Weekly BG-	Group 1: <7%, pre–post:	
		47 years		diabetes	care	based optimal	HbA1c	0.53 NS vs -0.21, $P < 0.05$
		5			during	recommendatio	FPG levels mg/dl	-5.8 NS vs -13.4 , $P < 0.05$
					clinic	ns via SMS	2HPMG	-3.1 NS vs -56.0, <i>P</i> < 0.05
					visit		Group 2: ≥7%:	
							HbA1c	0.22 NS vs -2.15, <i>P</i> < 0.05
							FPG levels mg/dl	14.5 NS vs -3.3 NS
							2HPMG	24.8, NS vs -115.2, NS

REF: Krishna etc., J. Diabetes Science and Technology, 2,3, 2008

Author/	Study	Sample	Duration	Clinical	Control	Interventio	Measures	Results C vs I or pre-pos
year	design	, age	in months	area		n		
Kim, 2007	RCT	51,	3	Type 2	Usual care	Weekly	3 months: HbA1c	0.07 vs -1.15%, <i>P</i> < 0.05
		47	6	diabetes	and support	patient input	FPG levels mg/dl	5.4 vs -8.0, NS
Kim and		years	12			of SMBG,	2HPMG	14.7 vs -85.1 mg/dl, $P < 0.05$
Jeong,						medication	6 months: HbA1c	0.11 vs -1.05%, <i>P</i> < 0.05
2007						details, diet,	FPG levels mg/dl	7.3 vs -5.8, NS
						and exercise	2HPMG	13.8 vs -63.6 mg/dl, <i>P</i> < 0.05
Yoon and						and optimal	9 months: HbA1c	0.33 vs -1.31, <i>P</i> < 0.05
Kim, 2007						advice from a	FPG levels mg/dl	12.2 vs -10.5, NS
						nurse via	2HPMG	-17.4 vs -66.8, <i>P</i> < 0.05
						SMS or the	12 months: HbA1c	0.81 vs -1.32, <i>P</i> < 0.05
						Internet	FPG levels mg/dl	27.7 vs -10.7, NS
							2HPMG	18.1 vs -100, <i>P</i> < 0.05
							3-, 6-, 9-, 12-month change in:	
							total cholesterol	NS
							triglycerides	NS
							HDL	NS
Franklin ,	RCT	92,	12	Type 1	CIT- Grp1	CIT+ST -	HbA1c	10.3 vs 10.1 vs 9.2%, <i>P</i> < 0.01
et al.,		8–18		diabetes	1	Grp2,	Self-efficacy	56.0 vs 62.1, $P < 0.01$
2006		years				IIT+ST- Grp3	Adherence	70.4 vs 77.2, $P < 0.05$
		<i>J</i>				I I I		,
Rami et	RCT	36,	6,3-month	Type 1	Conven-	Monitoring	HbA1c change 3 months	+1.0 vs -0.15
al., 2006		15.3	cross-over	diabetes	tional	and support	HbA1c change 6 months	+0.15 vs -0.05
		years			support and	by SMS		
					paper diary			
Kim <i>et al.</i> ,	Pre-	45,	3	Type 2	N/A	Educational	HbA1c	-1.1%, <i>P</i> < 0.01
2006	post	43.5		diabetes		messages	Diabetic diet	-0.8, days/week, NS
		years					Exercise	0.9 days/week, P < 0.05
							Medication	1.1 days/week, $P < 0.05$
							Foot care	1.1 days/week, $P < 0.05$

Summary of the cellular phone for Diabetes Management

- 18 Studies of the use of cellular phone for Diabetes and Obesity Management.
 - 9 out of 10 studies reporting on the HbA1c reported significant improvement among patients receiving education and care support.
 - Text messaging provided improved clinically outcomes and increase self management behaviour and self-efficacy.

REF: Krishna etc., J. Diabetes Science and Technology, 2,3, 2008

Examples of UK Clinical Studies on m-health Diabetes

Evaluation of a mobile phone telemonitoring system for glycaemic control in patients with diabetes

Robert SH Istepanian*, Karima Zitouni*, Diane Harry[†], Niva Moutosammy[†], Ala Sungoor*, Bee Tang* and Kenneth A Earle[†]

*Mobile Information and Network Technologies Centre, Kingston University, London; †St George's Hospital NHS Trust, London, UK

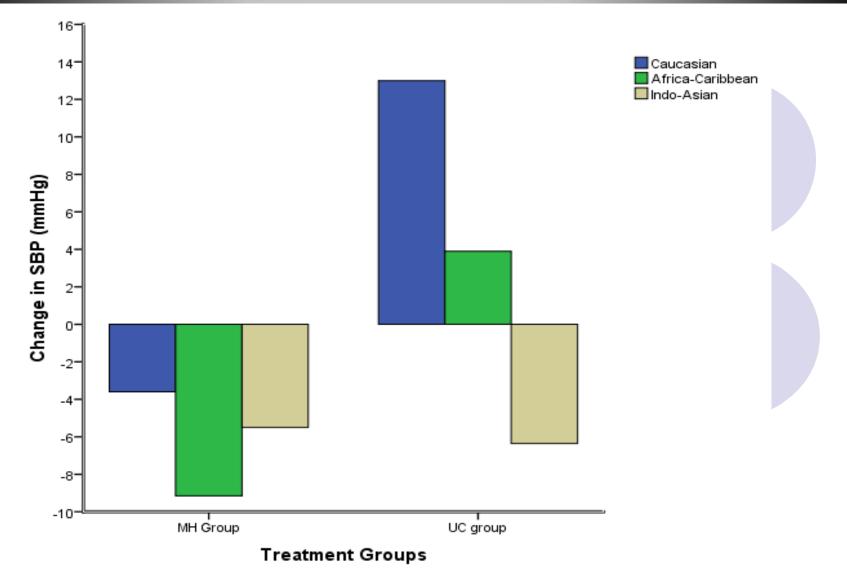
Journal of Telemedicine and Telecare Volume 15 Number 3 2009

Mobile Telemonitoring for Achieving Tighter Targets of Blood Pressure Control in Patients with Complicated Diabetes: A Pilot Study

Kenneth A. Earle, M.D.^{1,2} Robert S.H. Istepanian, Ph.D.³ Karima Zitouni, Ph.D.^{1,2} Ala Sungoor, Ph.D.³ and Bee Tang, M.B.A.³

> DIABETES TECHNOLOGY & THERAPEUTICS Volume 12, Number 7, 2010

Clinical Results: Baseline demographic, clinical and biochemical data of patients with diabetes randomised to the telemonitoring (TM) intervention or usual care (UC) control group


	ТМ	UC	р
N (Total=137)	72	65	
Age (years)	59.6 (12.0)	57.1(13.0)	0.25
Duration of diabetes	13.3 (8.6)	11.7 (8.0)	0.27
Type 1 diabetes <i>n</i> (%)	6 (8)	5 (8)	0.85
Type 2 diabetes <i>n</i> (%)	66 (92)	60 (92)	
Weight (kg)	79.7 (17.9)	80.1 (20.1)	0.91
Ethnic group <i>n</i> (%) :-			
Caucasian	26 (36)	21 (32)	0.79
African-Caribbean	24 (33)	18 (28)]
Indo-Asian	21 (29)	21 (32)	
Other	1 (1)	5 (7)	
HbAte (%)	7.9 (1.5)	8.1 (1.6)	0.40
Total cholesterol (mmol/l)	4.3 (1.1)	4.4 (1.2)	0.76
Total triglycerides (mmol/l)	1.5 (0.8)	2.1 (2.7)	0.10
HD-cholesterol	1.2 (0.4)	1.2 (0.4)	0.81
LD-cholesterol	2.5 (0.9)	2.5 (0.9)	0.92
Plasma creatinine (µmol/l)	111.1 (102.1)	93.0 (43.1)	0.21
Systolic blood pressure (mmHg)	130.5 (15.1)	131.8 (19.7)	0.67
Diastolic blood pressure (mmHg)	76.9 (9.4)	76.6 (11.3)	0.82

REF: Earle, K., Istepanian, R., etal., Diabetes Technology and Theraputics, 12,7, 2010

The mean decrement in SBP

REF: Earle, K., Istepanian, R., etal., Diabetes Technology and Theraputics, 12,7, 2010

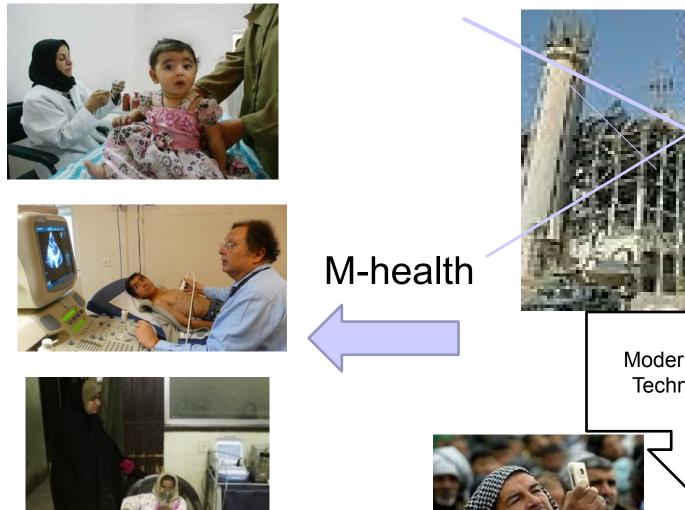
E-health Technology for Improving Medical **Education and Healthcare Research in Iraq** 2010-2012 cara BRITISH COUNCIL

Del PH

council for assisting refugee academics

UNIVERSITY

CARDIFF


UNIVERSITY

Baghdad University Medical School Basra University Medical School

Irac

There is urgent and major need for m-Health in Iraq

from ABC

Modern Mobile Technologies

m-health Issues and challenges in the ME Region

1- Currently most of the likely m-health applications in ME should focus on the 'Process' of adopting m-health in the region.

2- Clinical 'buy in' is critical and the technology is the enabler not the solution.

3- Define the clinical priorities and Iraqi patients population needs .

4- Engage the governments in the region to educate them on the benefits of the m-health sector for the economy and for the perspective national healthcare systems

5- Engage the also understand and define the relevant stake holders roles, Teleco operators and interested private sector players.

6- Pilots in the region need to be based on more on evaluating the impact of m-health for best healthcare outcomes and less on user (patients doctors, nurses etc.) satisfaction.

©Robert S.H. Istepanian 2010

INGSTO

Future 4G-health Platforms for Diabetic care

- 4G-Health (Future network Technologies)
- 4G Health Information systems
- Medication Optimization
- Remote Patient Monitoring
- Innovative Assistive Technologies
- Remote Training and Supervision
- Cognitive Fitness and Assessment
- Diabetes Social Networking concepts

Finally!


The length of a film should be directly related to the endurance of the human bladder. <u>- Alfred Hitchcock</u>

Mebile Healthcare

Industry Summit Middle East

THANK YOU

Robert S. H. Istepanian r.istepanian@kingston.ac.uk

http://cism.kingston.ac.uk//mint

