


## Global Content Balancing: Solving the Broadband Penetration Problem in India And Innovations in the Telecommunications World – An India Growth Story

Prof. Ashwin Gumaste Department of Computer Science and Engineering Indian Institute of Technology, Bombay IIT Bombay

# India's Internet Infrastructure

- Submarine cable systems
  - Consists of under sea optical fiber cables that connect cable landing stations located in different countries
- Nationwide, Metro and Access Networks
  - Domestic traffic is transported on nationwide networks of various telecommunication operators
- Internet Exchange
  - ISPs can peer at Internet exchange and route domestic traffic within the country



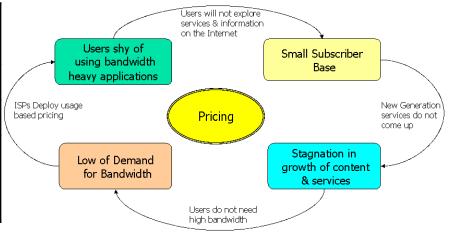
## Why is the Broadband market stagnated?

- Cost of Bandwidth
- Pricing model
- Technological failures
- Lack of CAPEX foresights
- Nash deficient business model
- Regulatory implementations

# **Characterizing Indian Market**

| Year | Internet Subscribers |                       | Broadband<br>Subscribers |                          |
|------|----------------------|-----------------------|--------------------------|--------------------------|
|      | Target               | Achieved              | Target                   | Achieved                 |
| 2005 | 6                    | 5.55                  | 3                        | 0.18                     |
| 2007 | 18                   | 9.27 till<br>March 07 | 9                        | 2.34 till<br>March<br>07 |

Target fixed in the national broadband policy unachieved


\* Number of subscribers in Millions



Broadband penetration %

| Particulars                 | Per user<br>bandwidth | With stat<br>muxing 1:25 | With stat<br>muxing 1:50 |
|-----------------------------|-----------------------|--------------------------|--------------------------|
| 1.2 billion<br>Indians      | 250 bits per<br>sec   | 6.25 kbps                | 12.5 kbps                |
| 300 million<br>middle class | 1 kbps                | 25 kbps                  | 50 kbps                  |
| US/Western<br>Europe        | 20 Mbps               | NA                       | NA                       |
| Japan/Korea<br>/China       | 50 Mbps               | 100 Mbps<br>(shared)     | NA                       |

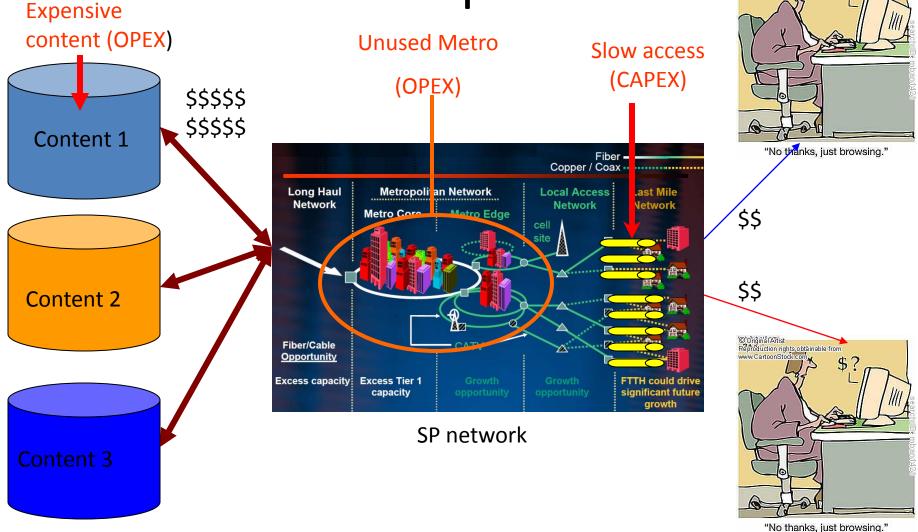
### Need for speed!





## Making broadband profitable – Approaches

- Pricing model
- Technology offerings
- Customization
- Content

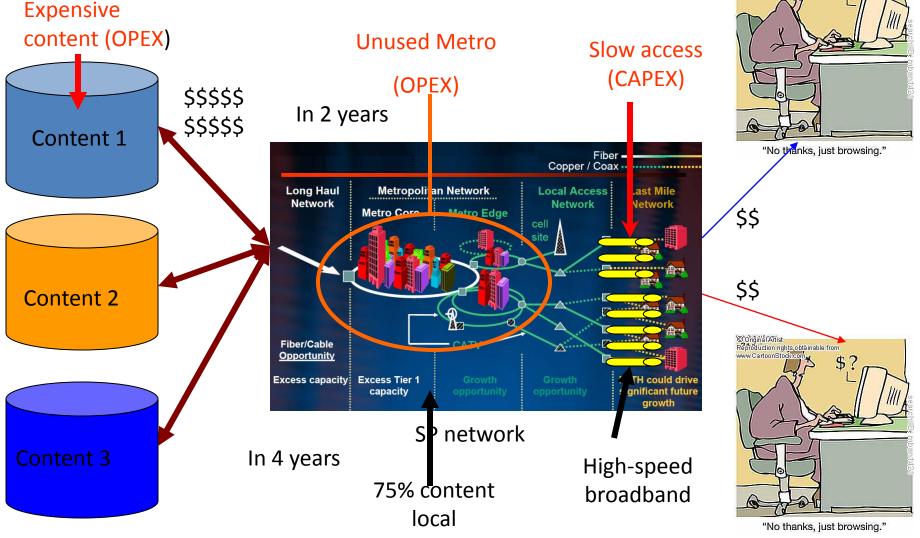

Our solution to your business needs lies in a combination of all of the above.

It will require some effort to change each of these.

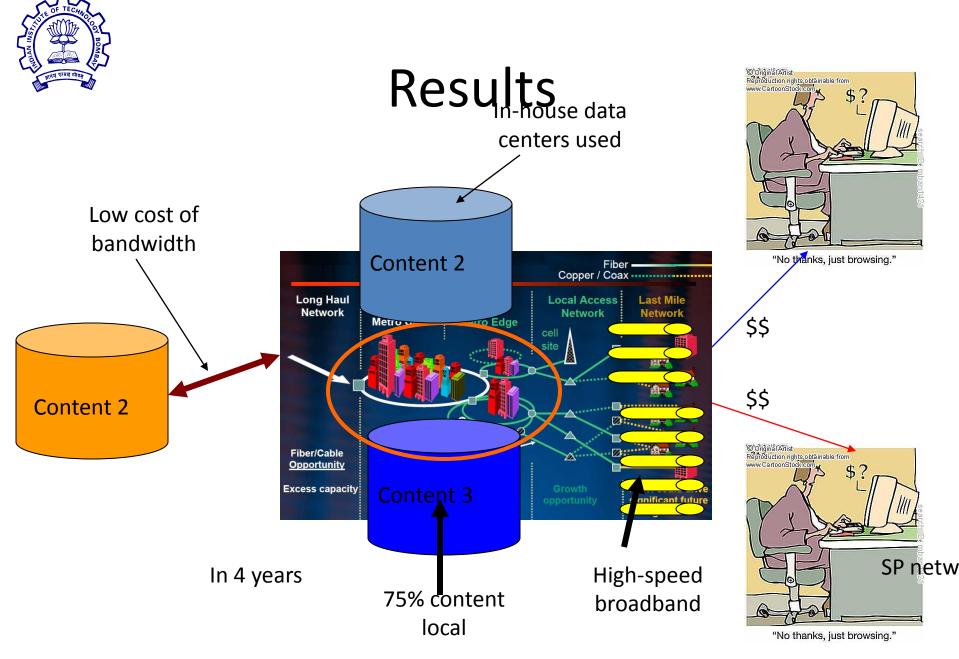
## **Current problem**

© Origin'al Arrist Reproduction rights obtainable from

www.CartoonStock




It is really a business problem!!!




## Problem and solution

© Original Artist Reproduction rights obtainable from www.CartoonStock.com



It is really a business problem!!!



It is really a business problem!!!

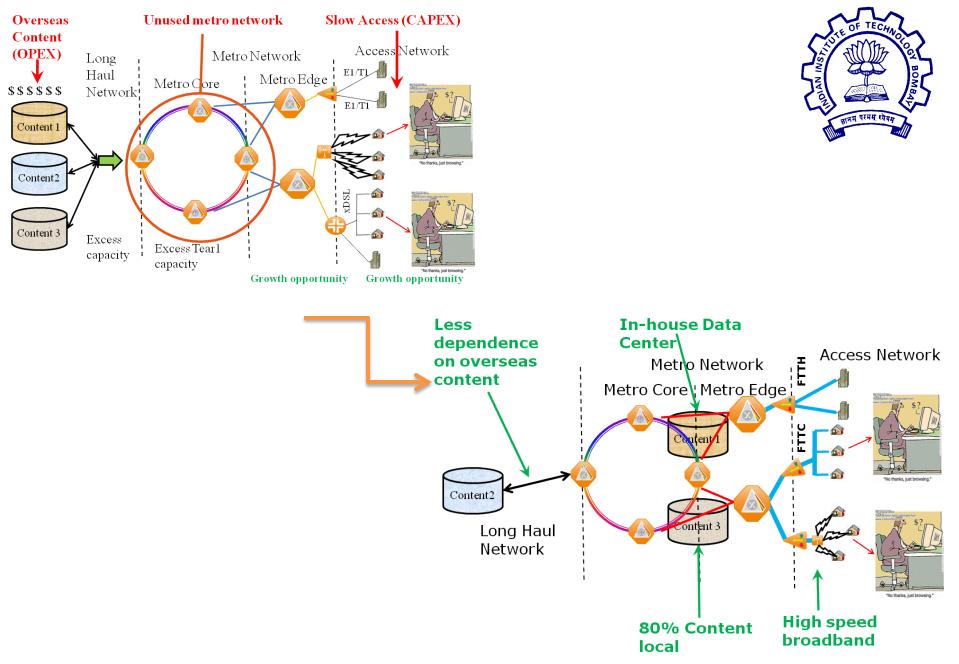
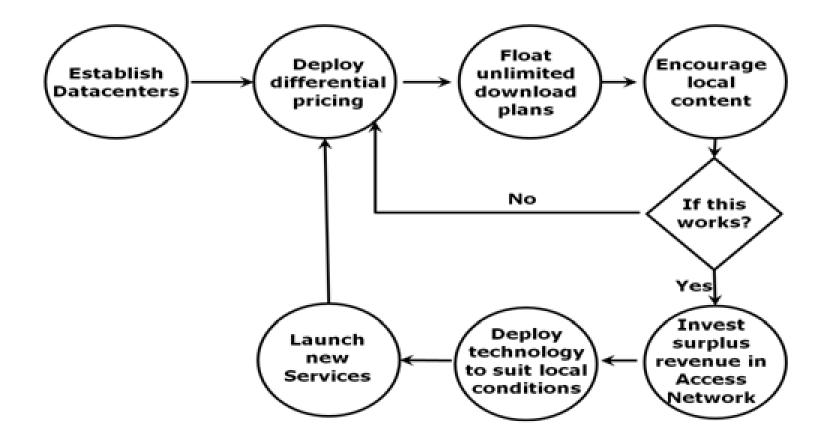
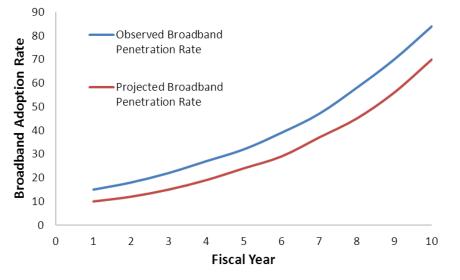




Fig.1. (a) Typical network infrastructure in India (top) and (b) desired network state through our solution (bottom).




## **Proposed Transition**





# Justification for the transition



|             | Percentage of content migrated to India |            |             |  |  |  |
|-------------|-----------------------------------------|------------|-------------|--|--|--|
| End of Year | Optimistic                              | Aggressive | Pessimistic |  |  |  |
|             | Case                                    | Case       | Case        |  |  |  |
| First       | 12                                      | 12         | 6           |  |  |  |
| Second      | 20                                      | 22         | 13          |  |  |  |
| Third       | 28                                      | 31         | 19          |  |  |  |
| Four        | 36                                      | 41         | 26          |  |  |  |
| Five        | 43                                      | 51         | 33          |  |  |  |
| Six         | 50                                      | 61         | 40          |  |  |  |
| Seven       | 59                                      | 71         | 46          |  |  |  |
| Eight       | 67                                      | 80         | 53          |  |  |  |
| Nine        | 75                                      | 90         | 60          |  |  |  |

Projected broadband adoption rate (above) and Projected Content Migration (below).



## List of Parameters

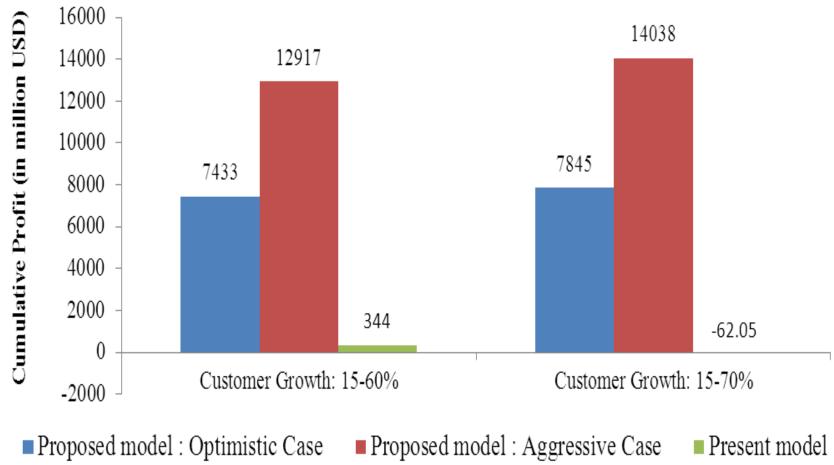
| Market Size [ <i>M</i> ( <i>t</i> )]   | 1000000       | Rate of interest (Fiber)                         | 2.5%        |
|----------------------------------------|---------------|--------------------------------------------------|-------------|
| Cost of OLT                            | USD500/Unit   | Loan period (Fiber)                              | 40 years    |
| Cost of Fiber                          | USD2000/Km    | Rate of interest (Equipment)                     | 2.5%        |
| Fixed Cost of WDM                      | USD20000/Node | Loan period (Equipment)                          | 15 years    |
| Variable Cost of WDM                   | USD2000/Gbps  | Percentage Download in Total traffic ( $\beta$ ) | 80% – 80%   |
| Fixed Cost of IP                       | USD25000/Node | Percentage Overseas Content (α)                  | 80% – 80%   |
| Variable Cost of IP                    | USD3500       | Expenses parameters                              |             |
| Metro N/W Fiber length                 | 290 Km        | Contribution of equipment (C9)                   | 0.12 – 0.07 |
| Cost of International B/W ( $d_{o}$ )  | USD0.01/Mb    | Contribution of License cost (C10)               | 0.04 – 0.03 |
| Cost of Domestic B/W (d <sub>i</sub> ) | USD0.0002/Mb  | Contribution of Building & land (C11)            | 0.03 – 0.05 |
| Cost of DSLM                           | USD1000/Unit  |                                                  |             |

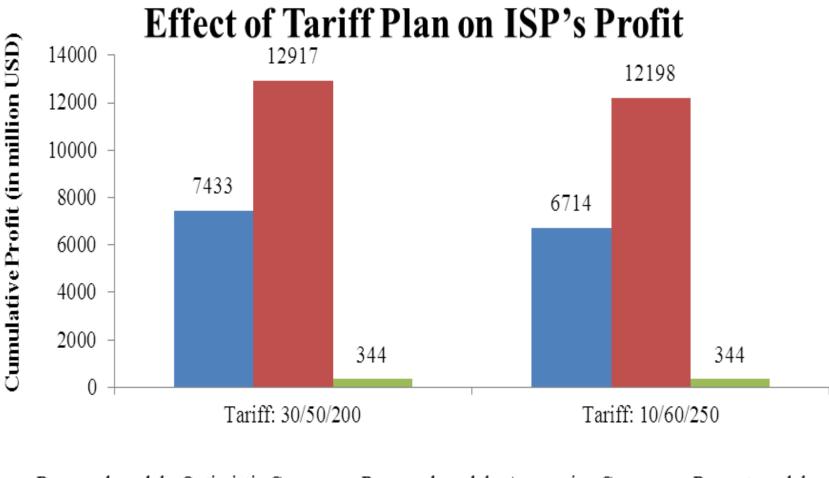
## Parameters for Proposed Model

| Up time Hom                         | Up time Home User ( $ ho_1$ )                |                                              | 58 – 90<br>hrs/month   | San Equipment cost                                           | USD 1000/Tb     |
|-------------------------------------|----------------------------------------------|----------------------------------------------|------------------------|--------------------------------------------------------------|-----------------|
| Up time Enterprise User ( $ ho_2$ ) |                                              | 9000 – 9000 150 – 150<br>min/month hrs/month |                        | Datacenter OPEX (c)                                          | 0.30 – 0.30     |
| Up time Corp                        | orate Users ( $ ho_3$ )                      | 12000 – 12000<br>min/month                   | 200 – 200<br>hrs/month | Home User (f <sub>1</sub> )                                  | 40% - 60%       |
| Average data                        | transferred (κ)                              | 1.5 Mb/ r                                    | nin                    | Small Enterprise User ( $f_2$ )                              | 50% – 30%       |
| Billing Rate II                     | ΡŢV                                          | USD 5 /Month                                 |                        | Corporate Users ( $f_3$ )                                    | 10% – 10%       |
| Billing rate Te                     | elepresence                                  | USD 20 /Month                                |                        | Home User IPTV $(f_4)$                                       | 5% – 60%        |
| Percentage                          | Best Case                                    | 12% – 90%                                    |                        | Enterprise User IPTV ( $f_5$ )                               | 0 - 0           |
| Content                             | Average Case                                 | 12% – 75%                                    |                        | IPTV Corporate (f <sub>6</sub> )                             | 1% – 6.5%       |
| India (y)                           | Migrated to<br>India (γ) Worst Case 6% – 61% |                                              | %                      | Home User using<br>Telepresence ( <i>f</i> <sub>7</sub> )    | 0 – 0<br>0 – 5% |
| Reuse Factor (R)                    |                                              | 0.50 - 0.50                                  |                        | Enterprise Users using Telepresence ( $f_8$ )                | 0 - 0           |
| Datacenter Hosting charges          |                                              | USD 20/GB/month                              |                        | Corporate Users using Telepresence ( <i>f</i> <sub>9</sub> ) | 6% – 40%        |
| Traffic to Data                     | acenter charges                              | USD 20/100 Gbps                              |                        |                                                              |                 |



## Effect of Customer Base Growth on ISP's Profit





Fig 1: ISP's profit v/s customer base growth

## Consolidated data for income and

## expense

|      |                                           |                                          | Proposed                            | l Model                                    |                    |                                     | Pre                                | sent mod                            | el                              |
|------|-------------------------------------------|------------------------------------------|-------------------------------------|--------------------------------------------|--------------------|-------------------------------------|------------------------------------|-------------------------------------|---------------------------------|
| Year | Optimistic<br>Case –<br>Total<br>Expenses | Optimist<br>ic Case<br>– Total<br>Income | Optimistic<br>Case –<br>Profit/Loss | Aggressi<br>ve Case<br>– Total<br>Expenses | ve Case<br>– Total | Aggressive<br>Case –<br>Profit/Loss | Present<br>model Total<br>Expenses | Present<br>model<br>Total<br>Income | Present<br>model<br>Profit/Loss |
| 1    | 2965.3                                    | 1034.62                                  | -1930.68                            | 2965.3                                     | 1034.62            | -1930.68                            | 1999.67                            | 1712.16                             | -287.51                         |
| 2    | 3153.91                                   | 1557.05                                  | -1596.86                            | 3166.26                                    | 1557.05            | -1609.21                            | 2294.42                            | 2031.79                             | -262.63                         |
| 3    | 3421.92                                   | 2089.09                                  | -1332.83                            | 3414.63                                    | 2149.68            | -1264.95                            | 2639.36                            | 2411.09                             | -228.27                         |
| 4    | 3711.65                                   | 2754.66                                  | -956.99                             | 3678.04                                    | 2895.6             | -782.44                             | 3043.54                            | 2861.19                             | -182.35                         |
| 5    | 4024.03                                   | 3584.46                                  | -439.57                             | 3955.73                                    | 3830.63            | -125.1                              | 3517.71                            | 3395.32                             | -122.39                         |
| 6    | 4359.76                                   | 4616.06                                  | 256.3                               | 4246.24                                    | 4998.63            | 752.39                              | 4074.6                             | 4029.16                             | -45.44                          |
| 7    | 4719.13                                   | 5895.36                                  | 1176.23                             | 4547.26                                    | 6453.31            | 1906.05                             | 4729.28                            | 4781.33                             | 52.05                           |
| 8    | 5101.9                                    | 7478.44                                  | 2376.54                             | 4855.25                                    | 8260.37            | 3405.12                             | 5499.65                            | 5673.92                             | 174.27                          |
| 9    | 5507.04                                   | 9433.74                                  | 3926.7                              | 5165.18                                    | 10500.1            | 5334.94                             | 6406.88                            | 6733.13                             | 326.25                          |
| 10   | 5478.99                                   | 11844.7                                  | 6365.73                             | 4919.06                                    | 13270.7            | 8351.61                             | 7476.11                            | 7990.08                             | 513.97                          |
|      | TotalProf                                 | fit/Loss                                 | 7844.57                             | TotalPro                                   | fit/Loss           | 14037.73                            | TotalProfi                         | t/Loss                              | -62.05                          |

Table 2: Consolidated data for income and expense – customer base 15% to 70%



Proposed model : Optimistic Case
Proposed model : Aggressive Case
Present model

Fig 2: ISP's profit v/s tariff plans



### Case 1

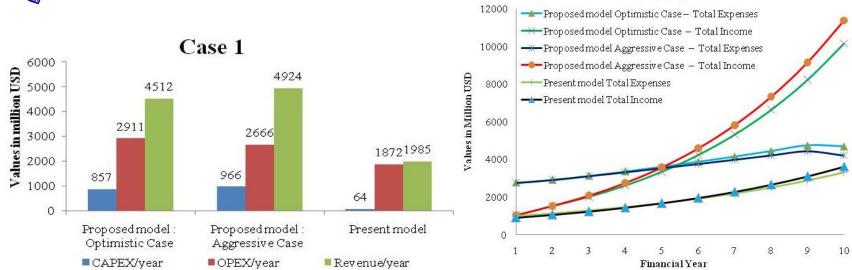



Fig. 3.Average income and expense in Case1 Fig. 4.Cash-flow per fiscal year in Case1

| Present Mode                      | el       | Proposed Model         |               |  |
|-----------------------------------|----------|------------------------|---------------|--|
| Billing rate/ Mb Download USD0.02 |          | Home user Billing rate | USD30 /month  |  |
| Billing rate per minute plan      | USD0.016 | Small Enterprise User  | USD50 /month  |  |
| Billing rate Cyber café           | USD 100  | Corporate Billing rate | USD200 /month |  |
| Billing rate Corporate user       | USD 100  | Cost of ONU            | USD185/unit   |  |
| Customer Base                     | 10-40 %  | Customer Base          | 15-60 %       |  |

Case specification for Case1

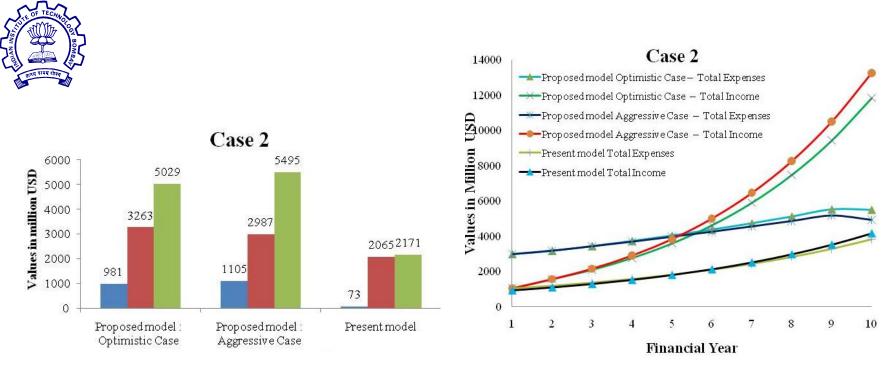



Fig. 5. Average income and expense in Case2 Fig. 6. Cash-flow per fiscal year in Case2

| Present Mode                          | el      | Proposed Model         |               |  |
|---------------------------------------|---------|------------------------|---------------|--|
| Billing rate/ Mb Download USD0.02     |         | Home user Billing rate | USD30 /month  |  |
| Billing rate per minute plan USD0.016 |         | Small Enterprise User  | USD50 /month  |  |
| Billing rate Cyber café               | USD 100 | Corporate Billing rate | USD200 /month |  |
| Billing rate Corporate user           | USD 100 | Cost of ONU            | USD185/unit   |  |
| Customer Base                         | 10-46 % | Customer Base          | 15 - 70 %     |  |

Case specification for Case 2

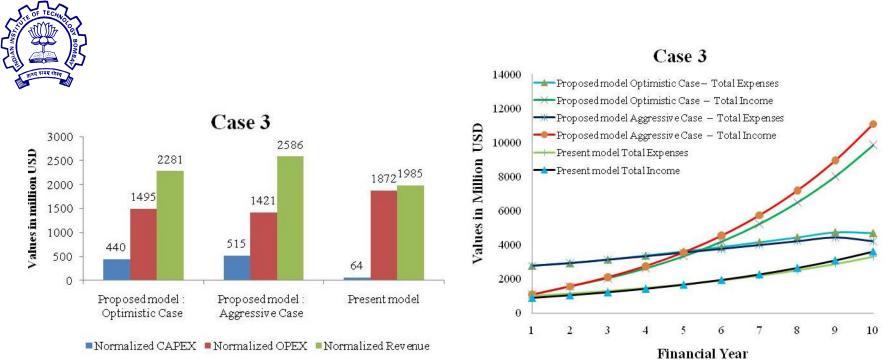



Fig. 7. Average income and expense in Case3

Fig. 8. Cash-flow per fiscal year in Case3

| Present Mode                          | el      | Proposed Model         |               |  |
|---------------------------------------|---------|------------------------|---------------|--|
| Billing rate/ Mb Download USD0.02     |         | Home user Billing rate | USD10/month   |  |
| Billing rate per minute plan USD0.016 |         | Small Enterprise User  | USD60 /month  |  |
| Billing rate Cyber café               | USD 100 | Corporate Billing rate | USD250 /month |  |
| Billing rate Corporate user           | USD 100 | Cost of ONU            | USD185/unit   |  |
| Customer Base                         | 10-40%  | Customer Base          | 15 - 60 %     |  |

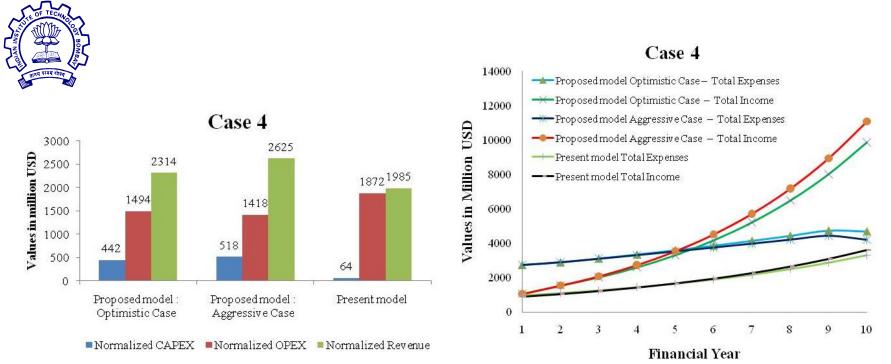
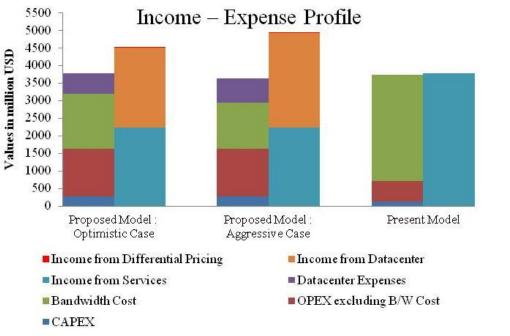
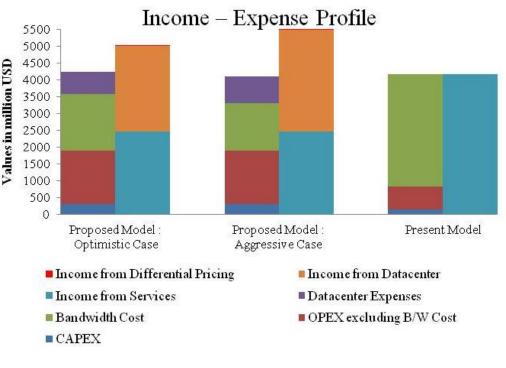
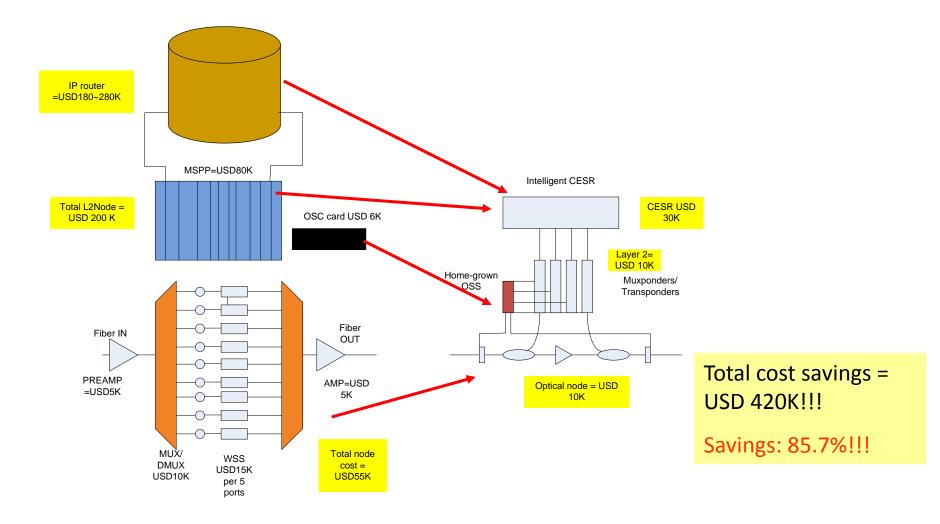
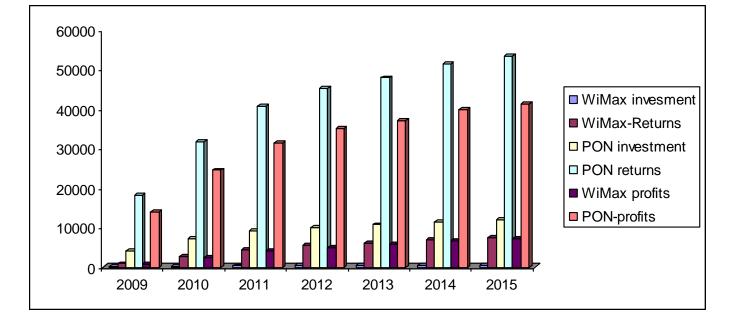




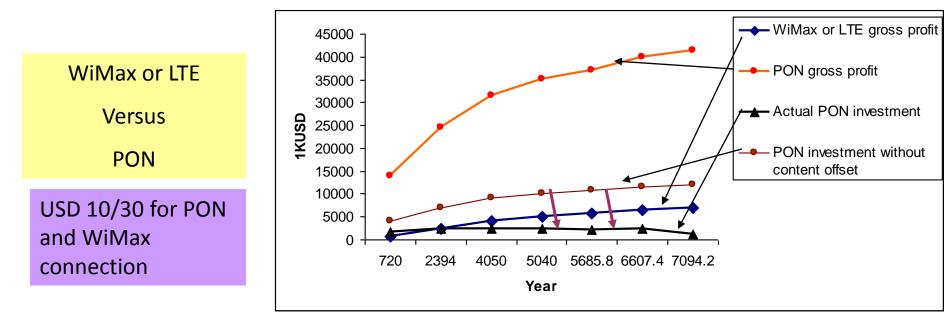

Fig. 9.Average income and expense in Case4 Fig. 10. Cash-flow per fiscal year in Case4

| Present Mode                          | el      | Proposed Model         |               |  |
|---------------------------------------|---------|------------------------|---------------|--|
| Billing rate/ Mb Download USD0.02     |         | Home user Billing rate | USD10/month   |  |
| Billing rate per minute plan USD0.016 |         | Small Enterprise User  | USD60 /month  |  |
| Billing rate Cyber café               | USD 100 | Corporate Billing rate | USD250 /month |  |
| Billing rate Corporate user           | USD 100 | Cost of ONU            | USD100/unit   |  |
| Customer Base                         | 10-40 % | Customer Base          | 15 - 60 %     |  |

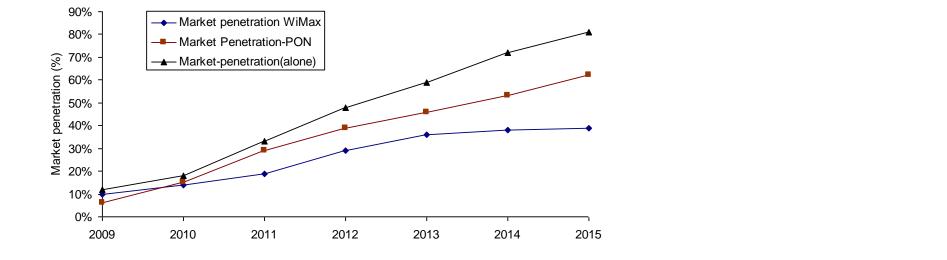


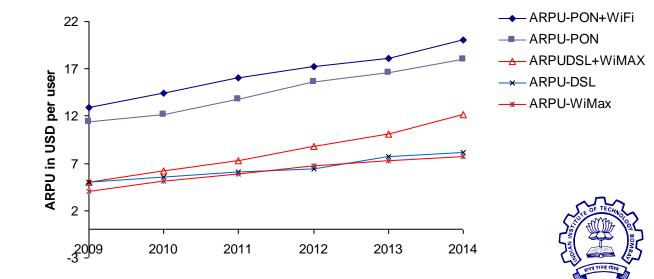



## Customized equipment for YOUR needs



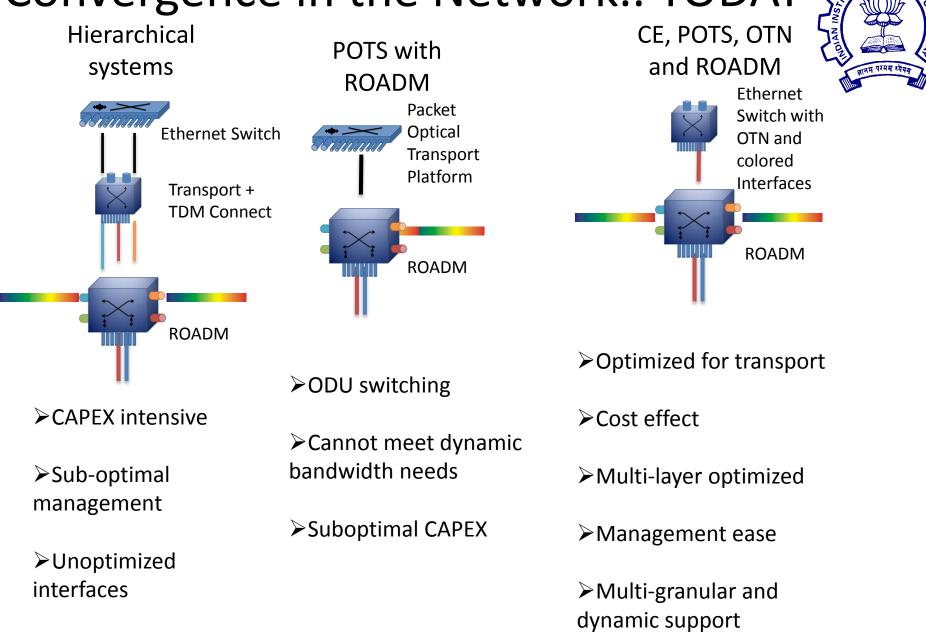




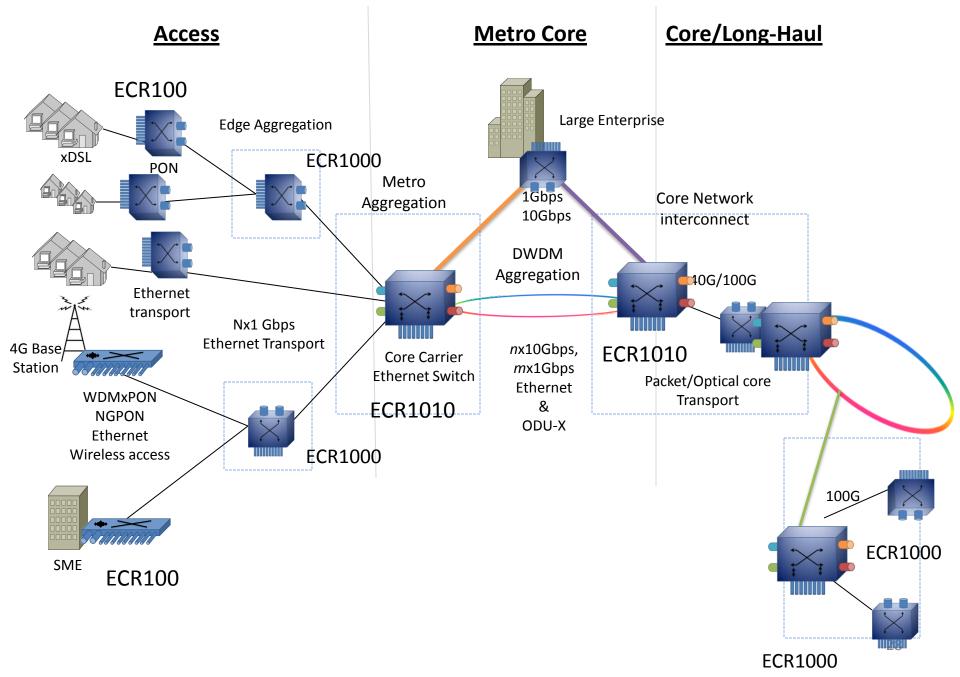

# Market penetration – WiMax, PON, with and without competition






# Engineering Telecommunications in the Developing World

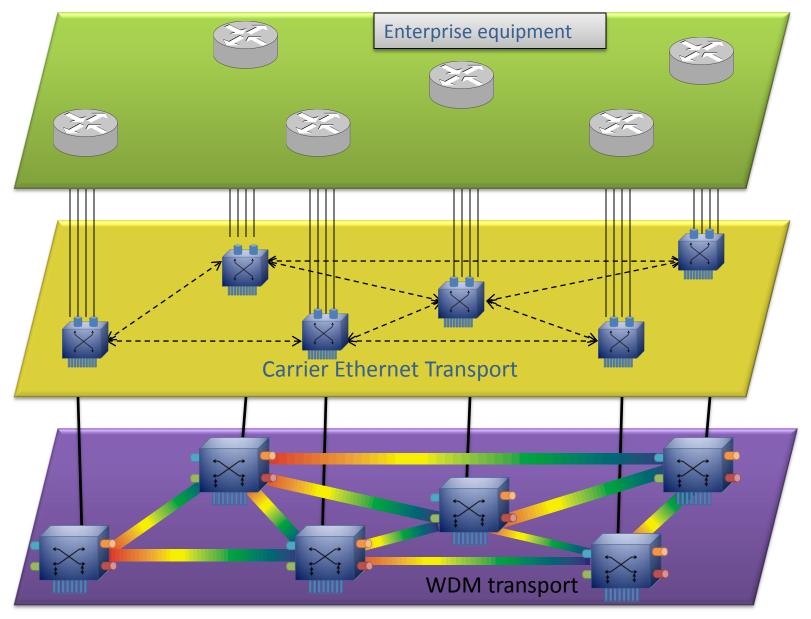
- Green-field networks is the current protocol stack the right way to go?
- Can we collapse protocols to define a new network hierarchy, yet be backward compatible?
- Ethernet+MPLS in a Carrier class transport seems the way to go.


# Protocol collapsing – networks in the developing world

- Networks are smaller, more managed
- Using the experience of the developed world – no learning curve necessary.
- Service centric.
- Adding meaning to labels/tags.
- Managing domains, providing protection and restoration, good OAM&P.
- Creating a new hierarchy.

## Convergence in the Network.. TODAY

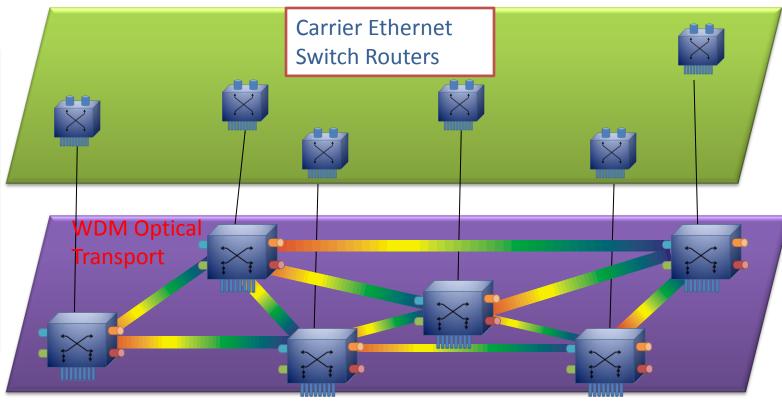


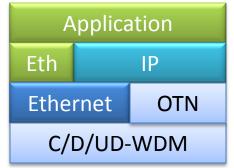

## **Technologies across the Network Spectrum**



## <u>Multi-layer optimization – smart intelligent design can save up to</u>

### 70% CAPEX and 45% OPEX




### The Rule of the Thumb Mantra for Indian Networks

Note that just CE switches will NOT solve your problem

You do need a routing component to the CE switches





The protocol stack – note the absolute absence of MPLS and SDH

## Innovations at IIT Bombay









## MTNL Data Centre Services

### **From Innovation to Collaboration**

MTNL is proud to be the trusted communications partner to India's leading financial houses, working for them to meet the challenges of growth, scalability and sustainability. We offer a full suite of business communication services across data, voice and managed services. Our solutions are tailored to fit your particular needs.

MTNL, is a state-owned telecom PSU. We have always been challenging the limits of innovation and striving to find new and better ways of doing things.

Our team are committed to helping you succeed. We will stick with you through thick and thin.

We are dedicated to providing the highest quality of Data Centre services.

MTNL Data Center provides a backbone network of various information systems and houses very dense computer systems and interconnected components.

MTNL Data Center functions on an indigenous technology developed by IIT Bombay's Gigabit Networking Laboratory. This indigenous router makes the data-centre fast, reliable, easy to operate with a lower total cost of ownership to the customer.

We would be pleased to answer any questions about how Data centre Services can help your enterprise or business to succeed. Please contact us on <u>data-center@mtnl.net.in.</u>

MTNL has been offering innovative communication solutions for decades in the cities of Mumbai and Delhi. MTNL is now offering datacenter services, by augmenting its network using a data-center specific technology solution. The technology for architecting the datacenter is designed, developed and productized by a team at IIT Bombay. This indigenous technology has many firsts, including being the fastest networking fabric to support any data-center, the lowest energy consumption in the industry, using a novel technology to encompass a multitude of data-center functions and being able to meet the requirements of next generation data-center and cloud computing environments.

MTNL offers next generation data-center services ranging from hosting services (web-hosting, IPTV, video-on-demand), to more complex IT-virtualization services using virtual machines, such as financial computational software, stock-market backup, enterprise IT applications, and remote IT processing. The data-centers located in Mumbai will support connectivity to almost every enterprise and business within the city. The data-centers by themselves would be state-of-the-art housing business critical IT-gear facilitating complete outsourcing of IT services. MTNL offers a plethora of managed and unmanaged services to their customers and businesses.

### Focus on Financial Services:

MTNL brings to its customers a special financial package of data-centre services. As part of this package are data-centre plans that are catered to meet the needs of financial customers. We understand the value of time and how time can translate to money. To better optimize your trading software and develop your investment portfolio, MTNL has deployed data-centre plans with the state of the art network within the data-centre as well as deployed special computational servers to make your software efficient. By optimizing the software using data centre support, customers will extract the maximal benefit from virtualization. With response times bounded to within 1 microsecond, the data-centre is able to increase your software performance and create value continuously year-on-year.

### Business Offerings:

**MTNL** 

MTNL offers a broad variety of data-center services to its customers and consumers. These services can be categorized as managed or unmanaged depending on the level of desired complexity and enforcement of Service Level Agreements (SLAs). The data-center itself is designed to be a state-of-the-art facility with compliance to international standards (namely the TA942 requirements). Data-centers are located at different points within the city to provide fast response, remote backup and are completely redundant in every respect. Salient/features of data-centers include:

- · World's fastest interconnection fabric developed by top research group at IIT Bombay.
- Excellent connectivity to the outside world connected by India's fastest backbone network.
- Excellent connectivity to customers using fiber or copper over MTNLs dedicated backbone.
- Managed data-center with redundant electrical, fire, air conditioning, switching, memory and management.
- Multi-level data-backup for the first time ever.
- Enhanced security available in a proprietary mode.

#### Infrastructure:

The data-centers conform to industry standards and are built to beat any calamity, natural, manmade, incidental or otherwise:

- Physical
- Secure access
- Seismic zonal security
- Fireproof DC room.
- Remote monitoring, recording of events.
- > Firewalls to the Internet
- Proprietary security for applications.
- Waterproof, fireproof DC cage
- Cooling
  - Controlled environment with secondary/redundant cooling.
  - > Support of in situ measurement of temperature.
  - > Temperature maintained at 22 degrees C and at a humidity of 50%.
- Multilevel power support
- Redundant power supply
- Battery backup
- Network support
  - Sub-1 microsecond switching fabric for very fast turn around.
  - Natural multicast support.
  - Support for 1Gbps and 10Gbps line cards.
- Support for cloud services.
- The following services are offered by the data-center:

#### Managed Services:

- Financial Services
- Virtual Machines for Computational and Financial Software
- Software as a Service
- Remote IT processing
- Remote backup
- Video on demand
- Integration with MTNL's cellular network
- Unmanaged Services
- Automatic backup
- Hosting services
- > IPTV
- > Webhosting