
CCITT SG XV Document #464
Working Party X V / 1 March, 1989
Specialists Group on Coding for Visual Telephony

Source : Japan
Title : Comparison between BCH code and Reed-Solomon code

1 Introduction

This document supports the proposal in Doc. #288 (Tokyo, Jan. 1988), Doc.
#325 (Hague, Mar. 1988) and Doc. #412 (Florida, Dec. 1988) on BCH error
correction technique for use in Px64 kbit/s visual telephony. The comparison
between BCH code and Reed-Solomon code is described.

Comparison

The performance and feasibility of both codes are shown in Table 1.
BCH code is superior in MTBF, decoding delay and multi-frame acquisition
time, which are significant for practical use.

The complexity is evaluated based on computational steps, which is
described in Annex 1.I1)12)

The capability of burst-error correction using BCH code is acquired based
upon some study on cyclic codes.111131 2-layer interleaved (511, 493) BCH code
can correct 12 bits burst error without increasing multi-frame acquisition
time. Meggitt decoder111 is a scheme for burst error correction using BCH
code. It can be implemented with linear feed back shift register circuits as
well as a syndrome generator.

3 Conclusion

BCH code is desirable for use in visual telephony.

4 References

[1] Peterson &Weldon, "Error Correcting Codes", MIT press, 1972.
[2] Polkinghorn, F., Jr. " Decoding of double and triple error correcting

Bose-Chaudhuri Codes", IEEE Trans., IT-12, 480-481, 1966.
[3] Tokiwa, K., Kasahara, M., Namekawa,T., " Burst-Error-Correction

Capability of Cyclic Codes", Trans. of IECE Japan, 66-A, 993-999, 1983.

Annex 1 Computational steps for decoding (including source program)
Annex 2 Burst error correction using Meggitt decoder

Item

block length

num. of information bits

num. of check bits

efficiency

correctable error length

MTBF for random error
(at 2Mbit/s)

decoding delay
(at 64kbit/s)

acquisition time
(multi-frame of 8 blocks)
(1 step acquisition)
(at 64kbit/s)

complexity* of random
error correction (with LUT)

check bits generator
(hardware)

syndrome generator
(hardware)

specific hardware for
burst error correction

(511, 493) BCH code

511 bits

493 bits

18 bits

0.965

random 2 bits
burst 6 bits

/ 12 bits burst by V
I 2-layer interleave)

24.1 sec (BER = 1(H)
6.46 hours (BER = 10-5)

7. 98msec (random error)
1 6.0msec (random & burst)

64 msec

1

8 EX-OR
18 D-FF

6 EX-OR
18 D-FF

52 EX-OR
18 D-FF
a few gates

(1024, 992) RS code

1024 bits

992 bits

32 bits

0.969

random 2 bits
burst 9 bits

3.16 sec (BER = 1(H)
49.2 min (BER = 10-5)

1 6,0msec (random & burst)

128 msec

5

^ 32 EX-OR
L- 32 D-FF t let*!.

4 ROM CitV?

r 32 EX-OR
f 32 D-FF

4 ROM $

-

^complexity was evaluated based on computational steps. (See Annex 1)

Table 1 Comparison between (511,493) BCH and (1024, 992) RS

Annex 1 to Document #464 Annex 1 to Document #464
March, 1989

Source : Japan
Title : Computational steps for decoding

1 Introduction

This annex shows the computational steps for the random error
correction after the syndromes have been generated. It is supposed that the
syndrome generator is implemented in dedicated hardware as supposed in
Doc. #335. The syndrome generator can be implemented with the
combination of some registers and some EXOR-gates for BCH code and Reed-
Solomon code respectively. Furthermore, Look-up table is used to obtain the
roots of the error locator equation.

The list of source program for BCH decoding is attached.

2 Procedure of random error correction

The errors are found by the following steps.

[BCH code]

The error locator equation can be written as follows.

where Si and $3 denote the syndromes.

The above equation is expressed as
Y2 + Y+ (1+S 3 /S i3)=0 <D

where X = SiY.

The roots of this euation can be derived from the Look-up table using
the value of Ss/Si3 as the address of the table.

[Reed-Solomon code]

When the generation polynomial of Reed-Solomon code is defined as

G(X) = (X + a) (X + a2) (X + a3) (X + a4),

the error locator equation can be written as follows.

X2 + [(S!S4 + S2S3) / (SiS3 + S22)] X + [(S2S4 + S32) / (SiS3 + S22)] = 0 ©

The above equation is expressed as

Y2 + Y + [(SiS3 + S22) (S2S4 + S32) / (SiS4 + S2S3)2] = 0 ©

where X = [((SiS4 + S2S3) / (SiS3 + S22)] Y.

The roots of this euatlon can be derived from the Look-up table using

the value of [(SiS3 + S22) (S2S4 + S32)/(SiS4-*-S2S3)2] as the address of the table.

Next, the error values have to be calculated as :

S2) (S^s + S22) / {d (SiS4

' + S2) (SiS3 + S22) / {a
j (SiS4 + S2S3)}]. ©

where aj and a' denote the locations of the errors.

Computational steps

Let wx be a x-th register and (wx) be a value stored in wx.

[BCH code]

The value of is to be calculated.

Given : the syndromes $1 = ap, S3=aq

1 p— »wO

2 q — >w1

convert Si to its logarithm representation p
using LUT1 (p is for Si =QP)
convert $3 to its logarithm representation q

(wO) + (wO) -» w2

-(w2)-»w2
q + (wO)->w2

3
4
5
6
7

8 I ->w4

(mod 5 11)
(mod 511)
(mod 511)
(mod 511)

using LUT2
calculate 2p
calculate 3p
calculate -3p

(w3)-»w3 (mod 511)

10 (wO) + (w4) -> w4 (mod 511)

(q is for £3 = ̂)
(Si 2)
(Si3)
0/Si3)

calculate q-3p (S3/Si3)
look-up the relative error location (1)
using LUT3 (k is for ak)
(the root of (D (1))
look-up the relative error location (2)
using LUT4 (I is for a')
(the root of (D (2))
the error location (1)
(the root of ® (1))
the error location (2)
(the root of @ (2))

total steps 10 steps

[Reed-Solomon code]

The value of [(SiS3 + S22) (S2S4 + S32) 7(SiS4 + S2S3)2] is to be calculated in
order to find the error location. Next, the error values e1 and e2 are also to
be calculated.

S2) (5,53 + S22) /{d (SiS4 + S2S3)>]
e2 = [(Sid + S2) (SiS3 + S22) /{a1 (StS4 + S2S3)>]

© denotes addition (EX-OR) in polynomial representation.

Given : the syndromes Si=ap, S2 = a^ S3 = ar, S4 = as

1 p-»wO

2 q -»w1

3 r-»w2

4 s-»w3

5 (wO) + (w2) -» w4
6 (w1) + (w1)-»w5
7 (w1) + (w3)-*w6
8 (w2) + (w2)-»w7
9 (wO)+(w3)-»w8
10 (w1) + (w2)-»w9
11 Si$3-»w2

12 S22-»w3

13 (w2)®(w3)-»w4
14 f — » w4

15

16

17 (w2)©(w3)
18 g

19

(mod 255)
(mod 255)
(mod 255)
(mod 255)
(mod 255)
(mod 255)

convert $1 to its logarithm representation p
using LUT1 (p is for $1 =ap)
convert S2 to its logarithm representation q
using LUT1 (q is for S2 = aq)
convert S3 to its logarithm representation r
using LUT1 (q is for S3 = aO
convert $4 to its logarithm representation s
using LUT1
calculate p + r
calculate q + q
calculate q +s
calculate r + r
calculate p + s
calculate q + r

(q is for S4 = as)
(SiS3)
(S22)
(S2S4)
(S32)
(SiS4)
(S2S3)

convert p + r to its polynomial rep. SiS3

using LUT2 (SiS3 = a(P + 0)
convert q+q to its polynomial rep. S22
using LUT2 (S22 = a2q)
calculate SiS3 + S22
convert SiS3 + S22 to its logarithm rep. f
using LUT1 (f is for SiS3 + S22 = af)
convert q + s to its polynomial rep. S2S4

using LUT2 (S2S4 = a(q + s))
convert r + r to its polynomial rep. S32
using LUT2 (S32 = a2r)
calculate S2S4 + S32
convert S2S4 + S32 to its logarithm rep. g
using LUT1 (g is for
convert p+s to its polynomial rep.
using LUT2

20

21 (w2)©(w3)->w6
22 h — »w6

23 (w6) + (w6) -> w7 (mod 255)
24 -(w7)-*w7 (mod 255)
25 (w4) + (w5)-»w2 (mod 255)

26

27

28 (w2)©1-»w3

(w7)-»w2 (mod 255)

29

30

31 -(w4)-»w2 (mod 255)
32 (w2) + (w6)-»w4 (mod 255)
33 (w4) + (w8)-^w2 (mod 255)

34 (w4) + (w9)->w3 (mod 255)

35
36

37 (wO) + (w3)
38

39 S2->w7

40 (w5)©(w7)-»w5
41 (w6)©(w7)-»w6
42 u-»w5

43 v — »

(mod 255)

(mod 255)

convert q + r to its polynomial rep. $283
using LUT2 (S2S3 = a(q + r))
calculate $184 + $283
convert Si$4 + S2S3 to its logarithm rep. h
using LUT1 (h is for Si$4
calculate h + h ((SiS4 + S2S3)2)
calculate -2h (1
calculate f + g
for (S1S3 + S22
calculate f + g -2h
for [($! S3 + S22) (S2S4 + S32) / (SiS4 + S2S3)2]
look-up the error location in polynomial
representation (1) using LUT3
calculate the error location in polynomial
representation (2)
v a1 + am = 1
where a' and am are the roots of
convert a1 to its logarithm rep. I
using LUT1 (al-»l)
convert am to its logarithm rep. m
using LUT1 (am — »m)
calculate -f (1
calculate h-f
calculate h -f + 1 : the root of (1)

(2)calculate h-f + m : the root of
v am (S i S4 + S2S3) / (S 1 S3 + S22) = a'

calculate p + i (Sia')
convert p-i-i to its polynomial rep.
using LUT2 (Siai =a(P + 0)
calculate p+j (Sia j)
convert p+j to its polynomial rep.
using LUT2 (Siai =a(P + J))
convert q to its polynomial rep. $2
using LUT2 ($2 = aq)
calculate (Sia' + $2)
calculate (Siaj + $2)

S2 to its logarithm rep. uconvert
using LUT1
convert Si
using LUT1

to its logarithm rep. v

44 - (w4) -» w4

45 -(w2)-»w7
46 -(w3)-i>w8
47 (w4) + (w7) -> w7

(mod 255) : calculate -(h-f)

(mod 255)
(mod 255)
(mod 255)

calculate -i (I/a')
calculate -j (1/aO
calculate -(h-f)-i

48 (w4) + (w8)->w8 (mod 255) : calculate -(h-f)- j

the error value (1) (logarithm) (D
convert u-(h-f)-j to its polynominal
representation ei using LUT2
the error value (1) (polynomial) (D
calculate v-(h -f)-i

49 (w5) + (w8)-» w5 (mod 255) : calculate u-(h-f)- j

50

51 (w6) + (w7)-»w6 (mod 255)

52

total steps

4 Number of steps

BCH code
Reed-Solomon code

5 Conclusion

the error value (2) (logarithm) ©
convert v-(h-f)- i to its polynomial
representation e2 using LUT2
the error value (2) (polynomial) ©

52 steps

10 steps

52 steps

The computational steps for random error correction was shown.

Source program for BCH decoding

c-cccccccccccccccc-

BCH decoder for (511,193)
double error correction

SYND1 (IN)
SYND3 (IN)
IE1 (OUT)
IE2 (OUT)

Tables
EXPS1
EXPS3
SXI
SXJ

syndrome S1 (polynomial)
syndrome S3 (polynomial)
error location 1
error location 2

polynomial -> logarithm for S1
polynomial -> logarithm for S3
LOOK-UP table for error locati^..
Look-up table for error location

on 1
2

C
C
C

C-
C
C-

SUBROUTINE BCHDC(SYND1 , SYND3, IE1 , IE?)
IMPLICIT INrEGER(A-Z)
INTEGER EXPS1 (0:51 1) , EXPS3 (0 : 51 1)
INTEGER 8X1(0:511),SXJ(0:511)
COMMON / TAB / EXPS1 , EXPS3 , SXI , SXJ

SYNDROME SYND1 & SYND3 GIVF.N !
S1-EXPS1 (SYND1)
S3-=EXPS3(SYND3)
IK ((SI .NE.51 I >.OR. (S3.NE.5H)>

CALL DIV(S1 ,S3,SS)
CALL ERLC(S1 ,SS,IE1 ,IE2)

ELSE
IE1 =-1

THEN

convert
convert
error

to
to

log
log.

no error

ENDIF

RETURN
fr'ND
S3/S1**3
SUBROUTINE DI V (S1 , S3 , SS)
IMPLICIT INTEGER(A-/.)
IF (S3.EQ.511) THEN

SS«511
ELSE
SS1=MOD(S1*3,51 1)
SS=S3-SS1
IF (SS.LT.O) SS=SS+511

! uncorrect abl s> error
! correctable error

C-
C
C-

C
C

RETURN
END

ERROR LOCATION
SUBROUTINE ERLC(SI,SS,IE1,IE?)
IMPLICIT INrEGER(A-7:)
INTEGER EXPS1 (0:S»1 1)EXPS3(0:511)
INTEGER 8X1(0:511),SXJ(0:511)

COMMON / TAB / KXPS1,EXPS3,SXI,SXJ

SRI^SXI(SS)
SRJ=SXJ(SS)
1E1=MOD(SRI+S1,511)
IE2=MOD(SRJKS1,511)

RETURN
END

Annex 2 to Document #464 Annex 2 to Document #464
March, 1989

Source : Japan
Title : Burst error correction using Meggitt decoder

A burst error correction method for BCH code can be implemented as
follows.

received data

-9

syndrome conversion
logic circuit

18

Meggitt
shift register circuit

12

all '0' detect

Syndrome generator

i6 EX-OR i
I18D-FF i

Specific hardware for
burst error correction

random
error

correction
(Annex 1)

i45 EX-OR i

17 EX-OR
= 18 D-FF

random error
location

burst error pattern

burst error location

