International Telegraph and Telephone Consultative Committee (CCITT)

Period 1989-1992

Question: XV/4 Specialists Group

Doc. #401 Nov. 1988

Original: English

STUDY GROUP XV - CONTRIBUTION

Source: AT&T, CLI, DIS, PictureTel

Title: Error correction for px64 kb/s video telephony

In this document a Reed-Solomon error correction technique is proposed for use in p \times 64 kbps video telephony. Reed-Solomon error correction is desirable for use in video telephony for the following reasons.

- 1. Good performance for correcting random bit errors.
- 2. Good performance for correcting burst errors.
- 3. Not necessary to select between random error or burst error correction mode.
- 4. Transmission overhead is small.
- 5. Implementation is computationally simple.

Doc. #335 describes aspects of the performance and implementation of Reed-Solomon error correction.

Two variations of this error correction technique are proposed for use in p x 64 kbps video telephony. Both are Reed-Solomon codes using 8 bits per symbol. The first uses a block length of 255 octets, the second uses a truncated block length of 128 octets. The second approach introduces larger overhead in order to reduce delay. The important characteristics c the two approaches are summarized in Table 1. Both approaches provide correctability of 2 random bit errors per block or a single 9-bit burst error.

	Implementation 1	Implementation 2
Block length (bits)	2040	1024
Redundancy (%)	1.57	3.12
Delay at 384 kbps (ms)	5.31	2.67
Correctable random bits per block	2	2
Correctable burst length (bits)	9	9

Table 1: Performance of Reed-Solomon error correction