CCITT SGXV Working party XV/1 Specialist group on coding for visual telephony Doc #265 October 1987 SUBJECT: PREDICTIVE MOTION ESTIMATION SOURCE : SWEDEN ## Introduction. A problem with block-matching motion estimation is that the amount of bits needed to transmit for the motion fields often becomes to large for n x 64 kbit/s (n= 1,2) purposes, especially when an accurate estimation is applied using small blocks and sub pel displacements. The smallest residual is obtained by using a full search matching algorithm which causes a problem in this respect; Low correlation in the vectorfield due to many good but non-true matches makes transmission of the vectorfields difficult without a substantial decrease in performance. ## Method $\binom{x}{x_{i+1}}$ (A considerable increase in the correlation of the motion vectorfield can be obtained by using prediction from previous vectors. The vectorfield is then a better representative of the true motion and can thus be used for interpolation/extrapolation purposes at the decoder. At the same time the increased correlation in the vectorfield makes it possible to use DPCM or transform coding for the motion fields resulting in a substantial decrease in the amount of information to transmit to the decoder. Prediction of the motion vectors can also be used to decrease the number of needed operations for the estimation. Good results has been obtained by using this together with a ## Results Results from a comparison between three schemes is shown below. All schemes uses 4 by 4 estimation blocksize with a subpel accuracy of 1/4 pel. The compensation has been made on original pictures, $10~{\rm Hz}$ framerate. The three schemes are : logarithmic search algorithm. - 1) Ordinary full search. Max displacement +/~ 8 pels/lines. - 2) Logarithmic search. Start displacement +/- 4 pels/lines No prediction used. - 3) same as 2) but using prediction. #265 -2- ## Conclusion The simulation result show a considerable decrease in the amount of transmitted motion field information by using this type of estimation technique, together with compression methods. A competitive standard on n x 64 kbit/s will have to be flexible for future algorithm development, for instance to allow the possibility to transmit motionfield information in a more efficient way. | Saquence | ANE Étame
difference | Notion
estimation
method | Mega
operations
for wat. | ANE comp.
frame
difference | Coding
method | ANE coded
compensated
difference | Bitrate
for motion
fields kbit/ | |-------------------------------------|-------------------------|---|--------------------------------|----------------------------------|----------------------|--|---------------------------------------| | Miss
America
frames
62- 91 | 33.56 | Fullsearch
1/4 frac. | 242 | 38.79 | DPCH | 38.79 | 188 | | | | | | | Transform
finer | 37.90 | 155 | | | | | | | Transform
coarser | 37,11 | 91 | | | | Log. search
no predict.
1/4 frac. | | 28.26 | UYCR | 38.26 | 224 | | | | | | | Transform
finer | 37.56 | 226 | | | | | | | Transform | 36.63 | 126 | | | | Log. search
1/4 frac. | 12 | 38.21 | DPCH | 38.21 | 06 | | | | | | | Transform
finer | 37.53 | 7.6 | | | | | | | Transform | 37.17 | 4,8 | | Sequentie | ANE frame
difference | Motion
estimation
method | Hega
operations
for est. | ANE comp. :
frame
difference | Coding
method | ANE coded
compensated
difference | Bitrate
for motion
fields | |---------------------------|-------------------------|---|--------------------------------|------------------------------------|--------------------|--|---------------------------------| | Claire
frames
31-40 | 29.94 | Fullsearch
1/4 frac. | 147 | 40.78 | DPCN | 40.78 | 135 | | | | | | | Transform
finer | 17.66 | 81 | | | | | | | Transform | 36.19 | 47 | | | | Log. search
no predict.
1/4 frac. | | 39.37 | DPCH | 39.37 | 148 | | | | | | | Transform
finer | 37.32 | 100 | | | | | | | Transform | 36.10 | 61 | | | | Log. Search | 14 | 38.50 | DPCH | 38.50 | 104 | | | | | | | Transform
finer | 37.31 | 17 | | | | | | | Transform | 36.84 | 10 |