CCITT Study Group XV poc. # 171
Working Party Xv/1 Nov. 1986
Specialists Group on Coding for Visual Telephony

Source: PicTel Corp.

Title: Transmission Format for m x 64 kb/s Video Telephony

Abstract

A transmission format suitable for videophone applications
at m x 56/64 kb/s is defined. It is based on a packet
format, that provides easy synchronization when more than
one 56/64 kb/s connection is used. The packet format allows
the definition of control packets to handle call setup, call
clearing, and transmission of other supervisory information.
It also provides a simple means of bit stuffing, when
different bit rates need to be interfaced, e.g., when
connectin a 56 and 64 kb/s network. The overhead,
including forward error correction, is 2.8 percent.

1 INTRODUCTION

The following requirements should be met by the transmission
format:

Reliable operation in presence of channel errors
- Low delay
- Small overhead

- Allow transmission of control information £for call
setup, call clearing, and other supervisory information.

- Allow the use of n unsynchronized 64 kb/s channels.

The last two requirements are most easily accommecdated by a
packet format. By giving each packet a sequence number, the
bit-stream can be re-assembled in the receiver even if the
channels have different delays, slip, or even different bit
rates.

Existing link layer protocols (e.g., LAPD for the ISDN
D-channel) rely on retransmission of erroneous packets. Due
to the delay requirements in video telephony, this is not a
viable technique. Therefore, a packet format that
incorporates error correction is defined in this document.
Encryption is also considered, since many encryption methods
give error propagation in case of an uncorrected channel
error.

~ |-

o e x,AAWTﬂg“1“1“,¢_0qu;152![_7__ﬁufif... e

2 PACKET FORMAT

The packet format is illustrated in Figure 1. It consists
of 255 octets, each octet being transmitted with the least
significant bit first. The sync word is a unigque pattern
which is used to mark the beginning of the packet. The end
of packet is always known because all packets are of fixed
length. Bit times between packets if present are filled

with ones.

The sync word has the hexadecimal representation 7AC8, where
the least significant bit is transmitted first. It was
chosen as the 16-bit word that has the maximum
autocorrelation peak, 1i.e., it has properties similar to a
Barker sequence.

There are two types of packets: control packets and data
packets. The high order bit, i.e., the last transmitted
bit, in the control field is set to one to indicate a
control packet. 1In this case, the low order seven bits are
interpreted as a control packet type. In the case of a data
packet, the seven bits form a sequence number. Sequence
numbers of successive data packets are assigned by
incrementing modulo 128.

Frm—————— +

t sync word | 2 octets
fmmm———— +

| control field | 1 octet
+ - +

| data field | 248 octets
I . |

I . I

I . |

+ - -+

| parity | 4 octets
Fm—————————————— +

Figure 1. Packet Format.

The forward error correction scheme uses a double error
correcting Reed-Solomon code over GF(256). It generates 4
octets of parity, and it allows a maximum blocklength of 255
octets. The data field 1is chosen to be 248 octets; a
multiple of 64 bits gives compatibility with DES encryption.

The parity is calculated based on the contents of the
control and data fields. The receiving terminal calculates
syndromes based on the control, data and parity fields which
will tell whether zero, one, two or more integral octets in
the packet were subjected to transmission errors. If only
one or two octets are in error, they may be located and

— 2 —

o e T TE R puap - ot

et an i Amian s et ermn] < non e i eim e : . o b et e S e e ot i S e 5 B s i e e

Page 3

corrected. A larger error is uncorrectable.

In the case of the data packet (DT), the data field contains
transparent data supplied by the higher layer. The data
field is not interpreted by the link layer.

For control packets, the data field contains transparent or
protocol related supervisory data. Examples of control
packets are packets exchanged during call setup and
clearing.

There is also a control packet type to carry transparent
supervisory information between the terminals. This packet
type is called unnumbered information packets (UI). The
data field of the UI packet contains transparent data. In
the case of all other control packets, the data field will
consist of packet type specific parameter fields.

3 APPLICATION OF THE PACKET FORMAT

Before a video session starts, a connection at the physical
layer is established by in-band or out-of-band signaling.

For a point to point connection, there are three phases to
the video session: call setup, data transfer, and call
clearing. Control packets are exchanged in the call setup
and clearing phases. The detailed procedures for call setup
and clearing are not treated in this document.

Sequenced data packets are used in the data transfer phase
to carry transparent video, digital audio and computer data
supplied by the higher layer between the terminals. If
packet dropout or uncorrectable errors are encountered, the
higher layer is alerted which can then wundertake error
recovery transparently to the link layer.

For a multipoint video session there is no call setup or
call clearing phase. Each terminal sends sequenced data
packets and intermittent control packets which identify the
terminal. Channel control arbitration is implemented at a
higher layer.

3.1 Procedure For Sequenced Data Transfer

Wwhen the data transfer phase 1is entered, the sending
terminal may commence transmission of sequenced data
packets. Transparent video session data 1is buffered into
the format free data field in the packet. The data field
must be completely filled. If encryption was selected for
the video session, the data field will be encrypted. The
packet is tagged with a sequence number and sent out on the

—_ :3-—

et s T L bt e n e

e e € e e i Fa el e L e e e A s Vet im o i A e e+ a8 AR s e etV e it el b S e i e et e e

Page 4

channel with the 1least number of buffered packets. The
first packet to be sent has sequence number zero.
Successively sent packets are marked with sequence numbers
which are incremented by one modulo 128.

The receiving terminal will perform error correction and,
for the multi-channel case, reorder incoming packets via the
send sequence number. As there may be a delay between
channels, packets from one channel may have to be buffered
temporarily before processing. Packets are eventually
processed by conditionally decrypting and then depacketizing
the contents of the packet data field. The transparent
video session data is sent to the higher layer.

If uncorrectable receive errors are encountered or packet
dropout is detected via a missing send sequence number, any
buffered receive packets are discarded and the higher layer
is signalled. The receiving terminal will then just start
looking for the next packet in the receive stream without
regard for the sequence number. Care must be taken in the
multi-channel case, as the new next packet to receive can be
delayed in transmission. Note that first sequence number
expected upon entering the data phase is zero.

3.2 Procedure For Unsequenced Data Transfer.

After the data transfer phase is entered, the sending
terminal may at any time inject a UI packet into the

transmit packet stream. This packet will contain
transparent supervisory information supplied by the higher
layer within the packet data field. If encryption was

selected for the video session, the data field will be
encrypted. The UI packet may be sent out on either channel.

The receiving terminal will discard the received UI packet
if any errors are detected. Otherwise, the contents of the
data field are conditionally decrypted, depacketized and
sent to the higher layer.

4 ENCRYPTION

If encryption is in effect for the video session, it 1is
applied to the data field of DT and UI packets. Other
control packets than UI are not encrypted at all.

A possible encryption method is the DES CBC (cipher block
chain) algorithm. This is a variant of ECB (electronic code
book). 1In ECB, each successive 64 bit sequence is encrypted
via a one-to-one transformation into another 64 bit
sequence. In CBC however, each 64 bit sequence except the
first in each packet is first OR’ed with the result of the

— ‘F’-

L

- e e

e e e e e e e - L artes v e e ek s D et i et 2 L B L e ma ' T e e b s L v m e B R B Tt S D S b
e il Eal e .

Page 5

previous operation. Thus in general, two identical 64 bit
input values will be coded differently, making the task of
codebreaking more difficult. Since the CBC is restarted in
each packet, error propagation between packets do not occur
due to the encryption.

5 IMPLEMENTATION NOTES ON REED-SOLOMON CODES

A double error correcting Reed-Solomon code combines good
performance with a reasonably simple implementation.

With a code defined over GF(256), each symbol consists of 8

bits. This means that two erroneous octets can be
corrected. Hence, a 9-bit burst error can always be
corrected.

5.1 Encoder

In the encoder, the parity symbols are computed from the
information symbols as outlined in Figure 2. Essentially, a
polynomial division is performed by the circuit. Each
lookup table performs a multiply by a constant. The
registers are initialized to zero at the beginning of a
block. At the end of the block, the parity symbols are
clocked out from the registers.

Four table look-ups and four XOR operations are performed
per symbol. At 64 kb/s, this corresponds to 32000 table
look-ups and 32000 XORs per second. The functions can be
implemented in hardware or software.

5.2 Decoder

The decoder starts by calculating syndromes according to
Figure 3. At the beginning of the block, the registers are
initialized to zero. At the end of the block, the four
syndromes are available in the registers. The number of
operations is the same as for the encoding, and the
implementation can be in hardware or software.

If the syndromes are not zero, one or more symbols were
erroneous. The errors are found by the following steps:

1. Generate an error locator polynomial.

2. Find the zeroes of the error locator polynomial to
obtain the error locations.

— éf._
T

B e T T T I T et e L T TN T

L i Sl ine wmn e e e DL i i el

Page 6

3. Calculate the error values.

For double-error correction, these steps correspond to less
than 150 operations per block (< 5000 op/s at 64 kb/s).
They are most easily implemented in software.

Reference: R E Blahut, Theory and Practice of Error Control
Codes, Addison-Wesley 1983.

’z.g‘.xa._v. JUUS .'Z.S,‘i b SR RS- m_‘. S ——— -
wuT feuT T
j.//._8 . T 8 . ,;7¢.-8.. Lo .
S I T A R S,
D L—ng—t_._b_i"ﬁ'g_j D R,

Figure 2. Paripy symbol generation

N T L R T

Page 7
o pATA b o T oo
| N | — |
11 Tt~ 48 o o
R LY el N L -
I B N 7 . o
8 _ | |
T “'_:D—T“D = cotem T T "
T e T , 25'518 .- 5 Tt T —‘)
g LuT - - ;-
e - X : i -
D P - - -
_[25b*8
~ e - - ,_V.-,_g.d Lu;r e e e o e e e s e - - - —. —
Figure 3. Syndrome generation

