CCATT Question 4/XV Specialist group on coding for visual telephony Document n° 53 March 86 S/8 /HP/24 Source : FRANCE 1 Title: The use of a N-DCT device to perform a N/2 - DCT Let be Y_0 , Y_1 ,, Y_{N-1} a one dimensional N-length sequence (N = even number) and F_0 , F_1 ,, F_{N-1} the N-DCT components (F_0 is the DC component and F_{N-1} the highest frequency). Let be C_0 , C_1 ,, $C_{\frac{N}{2}-1}$ a N/2 - length sequence. In order to have the same spatial blocksize for luminance (Y_n) or chrominance (C_n) , or to allow compatibility between different bit rates by changing the blocksize, we may envisage to achieve a N/2 - DCT by using a N - DCT device. To reduce the hardware, one can suggest to define an N - length sequence (A) as follows: ($$A_0$$, A_1 , ..., A_{N-1}) = (C_0 , C_0 , C_1 , C_1 , ..., $C_{\frac{N}{2}-1}$, $C_{\frac{N}{2}-1}$) $$A_n = C_{\frac{n}{2}} \quad \text{if } n = 2p$$ $$A_n = C_{\frac{n-1}{2}} \quad \text{if } n = 2p+1$$ or an N-length sequence (A') : $$(A'_0, A'_1, \dots, A'_{N-1}) = (C_0, 0, C_1, 0, \dots, C_{\frac{N}{2}}, 0)$$ $$\begin{cases} A'_n = C_n & \text{if } n = 2p \\ \hline 2 & 0 \leq p \leq N/2-1 \end{cases}$$ $$A'_n = C_n & \text{if } n = 2p+1$$ One can also suggest to define a N-length sequence B : $(B_0, B_1, \dots, B_{N-1}) = (C_0, C_1, \dots, C_{\frac{N}{2}-1}, C_{\frac{N}{2}-1}, \dots, C_1, C_0)$ $\begin{cases} B_n = C_n & \text{if } 0 \leq n \leq N/2-1 \\ B_n = C_{N-1-n} & \text{if } N/2 \leq n \leq N-1 \end{cases}$ Or a N-length sequence B': (B'0, B'1, ..., B'N-1) = (C0, C1, ..., $C_{\frac{N}{2}-1}$, 0, ..., 0) $\begin{cases} B'_n = C_n & \text{if } 0 \leq n \leq N/2-1 \\ B'_n = 0 & \text{if } N/2 \leq n \leq N-1 \end{cases}$ (A_n), (A'_n), (B_n), (B'_n) have N-DCTs: (F_k^A), (F_k^A), (F_k^B), (F_k^B) with $0 \le n \le N-1$ and $0 \le k \le N-1$ (${\rm C_n}$) has a N/2-DCT : (${\rm F}_k^C$) with 0 $\$ n $\$ N/2-1 and 0 $\$ k $\$ N/2-1. We shall examine the advantages and drawbacks when using either (A_n) , (A_n') , (B_n) or (B_n') instead of (C_n) from a hardware point of view, in the pixel and the transform domains. ## SITUATION A $$F_k^A = 1/N \sum_{n=0}^{N-1} A_n \cos \frac{2\pi(2n+1)k}{4N}$$ ${\rm A}_{2p}$ and ${\rm A}_{2p+1}$ can be combined, giving : $$F_{k}^{A} = 1/N \sum_{p=0}^{N/2-1} C_{p} \left[\cos \frac{2\pi(4p+1)k}{4N} + \cos \frac{2\pi(4p+3)k}{4N} \right]$$ $$= 1/N \sum_{p=0}^{N/2-1} 2 C_{p} \cos \frac{nk}{2N} \cdot \cos \frac{\pi(2p+1)k}{N}$$ The N (F_k^Λ) values are not independent because there are only N/2 (C_p) independent data. If we consider the N/2 lowest frequencies (F_k^A) 0 & k & N/2-1 as independent, the N/2 highest frequencies (F_k^A) 0 & k & N-1 are related to the previous ones as follows : $$F^{A} = \sum_{p=0}^{N-1} 2 C_{p} \sin \frac{\pi k}{2N} \cdot (-1) \cdot \cos \frac{\pi (2p+1)k}{N} \qquad 0 \le k \le N/2-1$$ [1] $$F^{A} = - \operatorname{tg} \frac{\operatorname{rrk}}{2N} F_{K}^{A} \quad 0 \leq k \leq N/2-1$$ The situation in the transform domain is not pleasant: instead of having N/2 components there we have N non-independent coefficients. Of course, it is not necessary to transmit the N/2 highest frequencies, but it is necessary to reconstruct them by using [1] before applying the inverse N-DCT. If not we may replace them by zero, but then perform a very strong low pass filter on the (A_n) sequence and blocking effects may appear. From a hardware point of view [1] is not very simple. Moreover, the F_k^A values are not simply related to the N/2-1 DCT values F_k^C . Fig. 2 shows the 2 dimensional situation Fig. 2: Transform block F_{00} components can be considered as independent and $F_{01},\ F_{10}$ and F_{11} components are related to F_{00} ones by a 2 dimensional version of [1]. If one wants to ignore it is a N/2xN/2 block, he has to transmit F_{00} , F_{01} , F_{10} , F_{11} : it is not realistic! On the other hand one may transmit F_{00} components only, but must reconstruct F_{01} , F_{10} , F_{11} before applying the 2-dimensional inverse N-DCT which is not also realistic from a hardware point of view. # Situation A' $$F_{k}^{A'} = 1/N \sum_{n=0}^{N-1} A_{n}^{i} \cos \frac{2\pi(2n+1)k}{4N} \qquad A_{2p}^{i} = C_{p}$$ $$= 1/N \sum_{p=0}^{N/2-1} C_{p} \cos \frac{2\pi(4p+1)k}{4N} \qquad A_{2p+1}^{i} = 0$$ The N $(F_k^{A'})$ values are not independent for the same reason as in the situation A. But this case is worse, because the relationship between, for example, $F_k^{A'}$ and $F_{N-k}^{A'}$ requires the use of the sine transform of the sequence A'. In the transform domain, this situation is completely unpracticable, and the $F_k^{A'}$ values are not simply related to the N/2-DCT values F_k^{C} . ### Situation B The N-DCT coefficients are given by : $$F_k^B = 1/N \sum_{n=0}^{N-1} B_n \cos \frac{2\pi(2n+1)k}{4N}$$ \textbf{B}_n and \textbf{B}_{N-n-1} can be combined, giving : $$F_k^B = 1/N \sum_{n=0}^{N/2-1} c_n \left[\cos \frac{2\pi(2n+1)k}{4N} + \cos \frac{2\pi(2N-2n-1)k}{4N} \right]$$ $$= 1/N \sum_{n=0}^{N/2-1} C_n \left[\cos \frac{2\pi (2n+1)k}{4N} + (-1)^k \cos \frac{2\pi (2n+1)k}{4N} \right]$$ $$F_{21+1}^{B} = 0$$ k=21+1 $$F_{2C}^{B} = 1/N \sum_{n=0}^{N/2-1} 2 C_n \cos \frac{2\pi(2n+1)1}{4N}$$ $$= 1/(N/2) \sum_{n=0}^{N/2-1} C_n \cos \frac{2\pi(2n+1)1}{4N/2}$$ In this case, two sets of interleaved coefficients are obtained: - the odd components F_1^B , F_3^B , ..., F_{N-1}^B are zero values - the even components F_0^B , F_2^B , ..., F_{N-2}^B are the N/2-DCT coefficients F_k^C (0 & k & N/2-1). The coder needs to know that it is a chrominance block (or a $N/2 \times N/2$ block) in order to only scan the even coefficients. The rest of the coding strategy can remain the same, everything being applied to the N/2-DCT coefficients instead of the N-DCT ones. | !
 | F ₀₀ | 0 | F₿ ₁ | 0 | FB ₂ | 0 | FB3 | 0 | -

 | |--------|-----------------|---|-----------------|---|------------------------------|---|-----------------|---|------------| | 1 | | | | | | | | | İ | | 1 | 0 | U | U | U | 0 | U | 0 | 0 | 1 | | 1 | F ₁₀ | 0 | F ₁₁ | 0 | F ₁₂ | 0 | FB
13 | 0 | 1 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | l | | 1 | FB0 | 0 | FB ₁ | 0 | F ^B ₂₂ | 0 | FB ₂ | 0 | 1 | | į | | | | | | | | | 1 | | !
! | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | l | F 30 | 0 | F_{31}^{B} | 0 | F_{32}^{B} | 0 | F_{33}^{B} | 0 | 1 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | I_ | | | | | | | | | ١ | Odd rows and columns are zero values (the first row is numbered by 0, the second one by 1,). The rest represents the N/2-DCT coefficients. Fig. 3: Example for N = 8 In the 2 dimensional case it is necessary to scan only even rows and the same coding scheme can be applied to the N/2-DCT coefficients for N/2xN/2 blocks as well as to the N-DCT coefficients for NxN blocks. Before performing the inverse N-DCT odd rows and columns of the NxN transform block must be set up to zero. #### Situation B' The N-DCT coefficients are given by : $$F_{k}^{B'} = 1/N \sum_{n=0}^{N-1} B_{n}^{*} \cos \frac{2\pi(2n+1)k}{4N}$$ $$= 1/N \sum_{n=0}^{N/2-1} C_{n} \cos \frac{2\pi(2n+1)k}{4N}$$ $$F_{21}^{B'} = 1/N \sum_{n=0}^{N/2-1} C_{n} \cos \frac{2\pi(2n+1)k}{4N}$$ $$B_{n}^{*} = 0$$ $$N/2 \leqslant n \leqslant N-1$$ $$F_{21}^{B'} = 1/N \sum_{n=0}^{N/2-1} C_{n} \cos \frac{2\pi(2n+1)1}{4N/2} = 1/2 F_{1}^{C}$$ The even components F_0^B ', F_2^B ', ..., F_{N-1}^B ' represent half the value of the N/2-DCT coefficients F_0^C , F_1^C , ..., F_N^C /2-1· The odd components are not zero values, but represent nothing interesting. So the coder needs to know that it is a $N/2 \times N/2$ block instead of a N x N block, in order to only scan the even coefficients. Before applying the inverse N x N transform, it is necessary to magnify the even coefficients and to replace the odd ones by zero. The situation is then similar to the situation B. #### Conclusion Bearing in mind that the same N-DCT device could be applied for both NxN blocks and N/2xN/2 blocks, for question of compatibility or other: - in the situation A, no entra hardware is required in the pel domain, but it upsets everything in the transform domain. - in the situation A', it is similar is the pel domain but worse in the transform domain. - in the situation B some entra hardware is required in the pel domain (by repeating the N/2 sequence in the inverse order). But in the transform domain, the even rows and columns represent the N/2 \times N/2 DCT. - The situation B' is obviously the best one : - * The coder needs to know that it is a N/2xN/2 block instead of a NxN block. - * There is no extra hardware in the pixel domain, the N x N block is obtained by completing the $N/2 \times N/2$ block by zero values. - * The even coefficients (in the transform domain) must be magnified by 2 (which can be taken into account by the quantization strategy) to give the N/2xN/2-DCT components of the N/2xN/2-block. - * By only scanning the even components the same coding strategy can be applied. - * It is necessary to set up to zero the odd rows and columns of the NxN transform block before applying the inverse NxN-DCT.