ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Ninth Meeting: Red Bank, New Jersey, 19-22 October, 1999
Document Q15-I-56
Filename: q15i56.doc

Generated: 20 Oct. ’99

Revised: 25 Oct. 1999

Revised 4 Nov. 1999

Question:
Q.15/SG16

Source:
H.26L High Layer Syntax Breakout Group

Contact:

Stephan Wenger
TU Berlin Sekr. FR 6-3
Franklinstr. 28-29
D-10587 Berlin
Germany

Tel:
Fax:
Email:

+49-172-300-0813
+49-30-314-25156
stewe@cs.tu-berlin.de

Title:
A concept for a network friendly high layer syntax for H.26L

Purpose:
Proposal and Discussion

Participants

Thomas Stockhammer, TU München

Miska Hannuksela, Nokia Research Center

Michael Gallant, UBC

Matthieu Tisserand, UCLA

Jiangtao Wen, PacketVideo Corp

Max Lutrell, Eyematic Interfaces

Stephan Wenger, TELES AG

Summary

This document contains the results of the breakout session of seven Q.15 experts working on an outline for a network-friendly high level syntax for H.26L. It provides detailed information about a syntax scheme based on TML1. We are, however, aware that the low level syntax might change in the future significantly. The current high-level syntax and, in particular the partitioning scheme and the assignment of partitions of various data types to priority classes should be seen as an example, which will surely change in the future once TML1 low level syntax changes. On the source coding level it introduces the concept of a Slice. The smallest entity available at the service interface is the Partition, which potentially contains bit information belonging to one given priority class of one or more slices. The high level syntax assumes a transport, that can be scalable in terms of bit-error protection and may or may not achieve an almost bit-error-free environment at least for the higher priority partitions. Partition loss can also occur in case of packet losses of the underlying packet network. The source coder is responsible to achieve error resilience for packet losses, which can be done by well-known means. For any network there is a need for a network adaptation layer, that converts partitions into packets or a bitstream. This adaptation layer is out of the scope of H.26L and this document, and will reside in new standards designed by the relevant standardization bodies.

Assumptions and Constraints

Partitions

Partitions are byte aligned. Their maximum size is network dependent. On most networks, a partition should not be larger than the maximum payload size of the smallest transport packet unit used. In case of mobile H.223, this transport unit is the Mux PDU, resulting in a maximum of 250 bytes per partition. In case of the Internet, the maximum partition size is slightly lower than the MTU size of 1500 bytes, to accommodate IP/UDP/RTP/RTP-payload headers. Partitions include only data of exactly one data type. This helps, for example, in case of a damaged partition to use syntax-based error repair/concealment methods without having to bother about more than one VLC table, or the presence of fixed length coded information.

Bit errors

We have not reached consensus on whether or not we should consider bit errors in the H.26L stream and how the decoder should react to bit errors. Since we do not know all possible channels, protocol hierarchies, and networks on which H.26L will be used, we cannot say now whether or not bit errors will exist in the bitstream. One alternative is to design a standard which can cope with this, such as by using RVLC’s, semi-fixed length VLCs etc., not assuming while designing the syntax that bit errors are impossible.

The other alternative suggested assumes that a channel coder out of the scope of H.26L will eliminate the majority of channel bit errors, and provide information about eventual remaining bit errors at a extremely high probability. Partitions that still contain any errors would be dropped, resulting in a partition loss, and thereby effectively the loss of all partitions of a lower priority class, as essential information for their decoding is not available. We do not assume any bit error resilient high level or low level syntax within H.26L. In so far, the current approach closely follows our current TMN11 test model algorithms.

Partition losses

The channel coder is responsible for keeping the number of lost partitions and bit errors as small as possible. Furthermore, unequal error protection can be applied to assign available error protection bandwidth to partitions of higher priority, thereby increasing the possibility of the loss of partitions of lower priority. Based on the current syntax, whenever any partition of a certain priority class that contains information of a given picture/slice is lost, all data residing in partitions of all lower priority classes regarding the same slice/picture can be disregarded. Channel coders can possibly rely on such mechanisms and use concepts such as the one proposed in Q15-I-36. While this is true within the current low-level syntax constraints, we do believe that both the potential introduction of many additional data types and the introduction of data types whose priority cannot be context-insensitively be discovered, might result in the need of weakening the strong concept discussed above.

Networks

We generally assume the use of a packet network. Practically error-free bit-oriented networks such as ISDN can also be used by adding a simple channel code that adds synchronization markers of sufficient size to avoid start code emulations (or that relies on a flag-based mechanisms as was proposed to Q.15 several times). We discussed in some detail the mobile case with H.223 as transport, and briefly the Internet case with RTP as transport. The H.320 case (almost error free, bit oriented) seems to be trivial.

Partition Types

We propose seven partition types, which are ordered in what we believe might be a reasonable setup for priority classes as well: Picture, Slice, MBTYPE, IntraPred, MV, CBP, IntraCOeff, InterCoeff.

· Picture Partitions are used to code a 32 bit TR (similar to the one in RTP, 90 khz clk, or another more mechanism of at least similar flexibility), and things corresponding to what we have now in Annex L.

· Slice Partitions contain a SliceSize (16 bits, fixed length, measured in macroblocks in scan order), Quant, an INTRA/INTER flag, and a 8 bit TR that is calculated out of the Picture Partition TR by an appropriate, to be defined, hashing algorithm. The presence of an INTRA flag indicates that there is no MBTYPE partition for that Slice.

· MBTYPE Partitions contain all MBTYPEs of a Slice. Syntax follows TML-1. Padding is performed adding ‘1’ bits Padding info can be identified and discarded during the entropy decoding. Alternatively, a 3 bit, fixed length codeword indicating the number of padding bits could be introduced at the begin of the MBTYPE (and any other VLC-type) partition.

· INTRA-Pred Partitions carry all Intra Prediction information. Padding similar to MBTYPE.

· MV Partitions are used to convey all Motion vector data. Padding similar to MBTYPE

· CBP partitions contain the quad trees for the CBPs. Padding as above.

· IntraCoeff Partitions contain only coefficients of INTRA macroblocks, as indicated by MBTYPE. Padding as above. IntraCoeff are intrdoced because INTRA macroblocks are, in error prone environments, more ‘valuable’ than Inter information and should therefore typically be conveyed with higher priority.

· InterCoeff Partitions are used for the remaining Inter coefficients and have the lowest priority class.

Some remarks on channel coders

As mentioned before, we do not consider channel coders in detail in this document. There is, however, a need to briefly touch the ideas we discussed, as they influenced some of our design decisions.

For mobile, typically, higher priority class Partitions might be protected by differently strong forward error correction schemes, as well as by repetitive coding. It would, for example, be possible, to have Picture, and Slice Partitions be protected by FEC, and transmitted twice, once at the begin and once in the middle of the picture. MBTYPE, INTR-Pred, and MV could be protected by a somewhat weaker FEC. CPB and IntraCoeff would receive even less FEC attention, and InterCoeff would finally be transmitted without any protection at all. This would allow for decent motion vector and INTRA based error concealment in case of broken CBP, or INTRA decoding in case of broken InterCoeff.

On the Internet with its much larger packet sizes, things are a little bit more tricky. A payload spec could contain a partition table listing all available partitions of a packet. Together with slices, we could achieve very similar packetization schemes like the ones we use with RFC2429, with a similar amount of overhead.

Finally, a channel coder for ISDN would just code the whole picture in a single slice, put a sync marker in front of all the concatenated slices, and transmit the whole bitstring. The only difficulty for the corresponding channel decoder would be to re-identify the partition boundaries (by parsing the bitstream), and reconstruct the partition structure. Alternatively, both coder and decoder could employ additional sync markers between partitions.

Remarks on Partitions and Slices

As there is a substantial difference between the hierarchical syntax element concepts currently used (such as the one in proposed Annex V of H.263) and our approach, there is a need to discuss the differences in more detail.

A Slice contains 6 different data types. For all those data types, a partition type is defined. Following a traditional approach, and assuming for example 10 slices per picture, that would result in the fragmentation of a coded picture in no less than 60 partitions of very varying sizes. Even if the partitioning overhead can be kept minimal, this seems to be clearly too much. Figure 1 illustrates this situation for 2 slices.

[image: image1.wmf]MBTYPE0

IPred0

MV0

CBP0

ICoeff

0

PCoeff0

MBTYPE1

IPred1

MV1

CBP1

ICoeff

1

PCoeff1

Slice 1

Slice 2

Figure 1: Data of exactly one data type and exactly one data type Partition. All rounded rectangles form a single Partition. The overhead, assuming 6 partitions per slice, would be in case of 2 slices 12 Partitions.

We therefore propose to add information of one data type that belongs to more than one slice into a single partition. On the other hand it must also be possible to split all data of a single slice and a given data type into more than one partition in such cases in which the maximum partition size is smaller than the actual amount of data generated for the given Data Type. Figure 2 depicts both situations: The typically small MBTYPE information of two slices is collected into a single partition, whereas the rather big InterCoeff information from the first slice splits over three partitions. As only a small amount of the third partition is used for data of slice 1, the rest is filled up with slice 2 data of the same data type. It will be up to the implementers to decide how to allocate bits of the same data type to partitions. In so far, the example describes just one out of many possible solutions.

[image: image2.wmf]MBTYPE0

MBTYPE1

IPred

IPred

MV0

MV1

CBP0

CBP1

ICoeff

0

ICoeff

1

PCoeff0

PCoeff1

Figure 2: Arranging same data of more than one slice into a single Partition. Maximum payload size considerations do not allow to collect MVs and P-Coefficients into a single Partition. Note that a) the overhead is reduced, and b) the partitions are more size.

By allowing such an assignment of data belonging to various slices into single partitions, several potential problems can be addressed:

· Generally, the overhead is reduced by having as few partitions as appropriate. On the other hand, overhead can be traded for resilience by having more partitions (e.g. one partition per type per slice).

· Being able to fill up partitions can yield a fairly constant partition size. This is, for example, helpful for block/packet based FEC mechanisms, or for bit oriented FEC mechanissm that employ a fixed block size.

· By fixing a partition size to exactly one – reasonably chosen – value, it is possible to eliminate the need for variable packet sizes, which might be beneficial for some networks.

 Remarks on Priority Classes and Data Types

All partition types whose data is necessary to decode the following partitions belong to one Priority Class. For the H.26L syntax of TML1, the following Priority Classes were identified:

Class 1, highest:
Picture, (Slice), MBTYPE, IntraPred, MV

Class 2:

CBP, IntraCoeff

Class 3:
lowest

InterCoeff

Class 1 contains all the higher layers of the H.26L syntax. The slice layer is noted in brackets, as it is not present in the current H.26L syntax. Picture, (Slice), and MBTYPE alone would be sufficient to start some decoding, but contain only syntaxtical information and no semantic data. Therefore, the IntraPred and the MV Partitions are also included in the Class.

Having Class1 information available would already allow to perform motion compensation without any residual data decoding. Having the IntraPred information available, additionally allows to display any INRTA macroblocks without texture information, as only their DC value is present. This, however, is already a significant improvement compared to not decoding any INTRA DC information at all.

Class 2 contains CBP and IntraCoefficients. As the MBTYPEs and Picture header informations are necessary to decode both data structures, class 2 has a lower priority than class 1. Having Class 1 and Class 2 data available yields a reconstructed picture that yields residual coding.

Class 3 finally contains the Intra Coefficients as the remaining information. Especially for higher bitrates, for many sequences this will be the by far largest partition.

Future Consideration

· Add more than one picture to the partition concept (for streaming purposes)? And if, do we then need at least address information regarding the temporal adress of data within each partition?

· On the other hand we could also leave the collecting of partitions of equal types to the supporting transport layer. That would, for overhead reasons, de facto not allow us to use slices without such a layer, but do we want that at all?

· Should we think about partitioning the coefficients themselves? Most/Least significant bits? High/Low frequencies? This would actually allow for a very fine scaling of error resilience, and could ‘automatically’ give us something like a SNR scalability mode (where, however, the loops would rarely run synchronous). But it does not directly match with the current H.26L syntax. Low level aspects would have to consider something like this very soon.

· Is there a need for providing address and in-picture predictive information at the begin of each partition that is not the first partition of a given type for one picture? If we add such information, it would become possible to decode one partition of a given type even if an earlier partition is missing or damaged. The identification of the necessary data structures might however not be trivial. It is really a design question: if we follow Thomas Stockhammer’s approach mercilessly, then such information is unnecessary and we don’t have to bother with the complexity of the resulting designs. If we do not follow, then we might have to dive into that topic, too.

_1002384238.vsd

_1002382997.vsd

