
ITU-T Q.15 Red Bank Document

Q15-I-54 (q15i54.doc)

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11N2930

October, 1999

Subject: Working Draft of a Proposed Amendment to ISO/IEC 13818-2

From:
Video

INFORMATION TECHNOLOGY -

GENERIC CODING OF MOVING PICTURES AND AUDIO: VIDEO

Working Draft: Use of the Extension Start Code Identifier ‘1101’ for a Content Data Extension

ISO/IEC 13818-2/WD

International Standard

INTERNATIONAL STANDARD

INFORMATION TECHNOLOGY -- GENERIC CODING OF MOVING PICTURES AND ASSOCIATED AUDIO INFORMATION: VIDEO

Working Draft

Justification

Due to the changes in the user environment since the creation of ISO/IEC 13818-2, the supplemental information about the production process is needed in order for the specification to remain useful in a backward compatible, and ubiquitous way. Although private data and user data are potential fields that can be used for the carriage of this additional information, they have not been monitored by a registration authority and no information is available on whether new syntax will collide with existing uses of these fields. The use of one of the extension start code identifiers allows us to create an extensible way to carry the additional information related to the content without risk of collision. In addition, the information will be synchronised with the related frame or field.

Proposed Syntax

Below is a proposal for some changes in the syntax for an extensible mechanism to contain some yet to be determined set of information. Several current issues have been identified and a description of those issues and their proposed solutions will be described following the syntax description below.

1) Replace table 6-2 with the following:

“
Table 6-2. extension_start_code_identifier codes.

	Extension_start_code_identifier
	Name

	0000
	Reserved

	0001
	Sequence Extension ID

	0010
	Sequence Display Extension ID

	0011
	Quant Matrix Extension ID

	0100
	Copyright Extension ID

	0101
	Sequence Scalable Extension ID

	0110
	Reserved

	0111
	Picture Display Extension ID

	1000
	Picture Coding Extension ID

	1001
	Picture Spatial Scalable Extension ID

	1010
	Picture Temporal Scalable Extension ID

	1011
	Camera Parameters Extension ID

	1100
	ITU-T Extension ID

	1101
	Content Data Extension ID

	1110
	Reserved

	1111
	Reserved

”
2) Add the following after subclause 6.2.3.8:

“

6.2.3.9
Content Data extension

	Content_data_extension() {
	No. of bits
	Mnemonic

	
extension_start_code_identifier
	4
	uimsbf

	
content_data_identifier
	4
	uimsbf

	
while (nextbits() != ‘0000 0000 0000 0000 0000 0001’) {
	
	

	

while (nextbits() == ‘1111 1111’) {
	
	

	

data_type_increment
	8
	uimsbf

	

}
	8
	uimsbf

	

data_type
	8
	uimsbf

	

while (nextbits() == ‘1111 1111’) {
	
	

	

data_length_increment
	8
	uimsbf

	

}
	
	

	

data_length
	8
	uimsbf

	

marker_bit
	1
	bslbf

	

for (i=0; i<data_length; i++) {
	
	

	

content_data
	8
	uimsbf

	

marker_bit

	1
	bslbf

	

}
	
	

	
}
	
	

	}
	
	

”

3) Add the following after subclause 6.3.15

“
6.3.16 Content data extension

One or more data_types can be encoded within this extension. If the same data_type identifier is encountered, its values shall replace those values previously decoded. Otherwise, the content_data for that data_type is assumed to be unchanged.

content_data_identifier -- A 4 bit unsigned integer value that allows for future extensibility.

data_type_increment – An 8 bit unsigned integer whose value is ‘1111 1111’. For each occurrence of the data_type_increment, the value 255 should be added to the following data_type value. The resulting value is the data_type identifier.

data_type – An 8 bit unsigned integer value that, together with the data_type_increment, defines the data_type identifier. The data_type identifier identifies the type of data to follow. See Table 6-17.

data_length_increment – An 8 bit unsigned integer whose value is ‘1111 1111’. For each occurrence of the data_length_increment, the value 255 should be added to the following data_length value. The resulting value is the number of bytes of content_data that is encoded.

data_length – An 8 bit unsigned integer value that, together with the data_length_increment, defines the number of bytes of content_data that is encoded. This value does not include the addition of marker_bits. The use of a data_length field allows decoders to remain backward compatible if new data_types are added in the future.

content_data -- This is an 8 bit integer, an arbitrary number of which may follow one another. Content data is defined below for each type of data indicated by the data_type value. For the data defined for each data_type, it is expected that all data will be packed into contiguous bytes and encoded separating each byte by one marker_bit. If the content_data does not consist of a whole number of bytes, enough marker_bits will be added at the end of the byte stream to create a whole number of content_data bytes. This will allow for the data_length to accurately define the number of content_data bytes that are encoded.

padding_bits – 0-7 bits whose value is ‘1’. The use of marker bits at the end of the content data is expected to allow for an integer number of bytes to be encoded for each data_type.

Table 6-17. content_data_identifiers codes

	data_type identifier
	Meaning

	0000
	reserved

	0001
	production process supplemental information

	…
	reserved

	…
	reserved

	1111
	reserved

Table 6-18. data_type identifiers codes

	data_type identifier
	Meaning

	0000 0000
	reserved

	0000 0001
	padding_bytes

	0000 0010
	input_timecode

	0000 0011
	output_timecode

	0000 0100
	additional_pan-scan_parameters

	0000 0101
	repeated_frame_data

	0000 0110
	active_region_window

	…
	

	…
	

	1111 1111
	reserved

6.3.16.1.1 padding_bytes

Use of this data_type identifier is intended to allow for a content creator to optionally include padding bytes, equal to ‘1111 1111’. These bytes can then be included in VBV calculations and defined later in a multi-pass system.

6.3.16.1.2 input_timecode

Note: An investigation of the existing timecodes is being conducted. If a timecode exists that will provide a useful industry-wide solution, that timecode will be carried here.

The input_timecode is a 24-bit integer that is the xxxx timecode that indicates the timing of each frame if progressive or each field if interlaced of the content prior to any timing conversion. For example, if a 24 frame film is converted to a 60 fields through the use of repeated fields, the input_timecode would reflect the time for each original frame. The decoder may use this information to signal the rendering system when the reconstructed frame is to be displayed and what it’s duration should be.

input_timecode

	
	No. of bits
	Mnemonic

	
top_field_input_timecode_exists
	4
	bslbf

	
top_field_input_timecode_byte_1
	8
	uimsbf

	
top_field_input_timecode_byte_2
	8
	uimsbf

	
top_field_input_timecode_byte_3
	8
	uimsbf

	
top_field_input_timecode_byte_4
	8
	uimsbf

	
bottom_field_input_timecode_exists
	4
	bslbf

	
bottom_field_input_timecode_byte_1
	8
	uimsbf

	
bottom_field_input_timecode_byte_2
	8
	uimsbf

	
bottom_field_input_timecode_byte_3
	8
	uimsbf

	
bottom_field_input_timecode_byte_4
	8
	uimsbf

	NOTE – The input_timecode data is sent as bytes of content_data. Interspersed with this data as appropriate are start code emulation prevention bits as specified in the wrapper definition. The formal syntax description shown above defines the only payload contents sent in content_data and thus does not explicitly show the emulation prevention bits.

top_field_input_timecode_exists – A 4-bit flag that indicates the presence of the following top_field_input_timecode bytes. If top_field_input_timecode_exists is set to ‘1111’, top_field_input_timecode bytes will follow it. If it is set to ‘0000’, there is no data following it. If the input content was a progressive frame, either the top_field_input_timecode or the bottom_field_input_timecode will be used to indicate the timing of the frame. If both the top_field_input_timecode and the bottom_field_input_timecode exist, it is assumed that the input content was an interlaced frame.

top_field_input_timecode_byte_1 – An 8-bit unsigned integer value that is the most significant 8 bits of the top_field_input_timecode.

top_field_input_timecode_byte_2 – An 8-bit unsigned integer value that is the 2nd most significant 8 bits of the top_field_input_timecode.

top_field_input_timecode_byte_3 – An 8-bit unsigned integer value that is the 3rd most significant 8 bits of the top_field_input_timecode.

top_field_input_timecode_byte_4 – An 8-bit unsigned integer value that is the least significant 8 bits of the top_field_input_timecode.

bottom_field_input_timecode_exists – A 4-bit flag that indicates the presence of the following bottom_field_input_timecode bytes. If top_field_input_timecode_exists is set to ‘1111’, bottom_field_input_timecode bytes will follow it. If it is set to ‘0000’, there is no data following it.

bottom_field_input_timecode_byte_1 – An 8-bit unsigned integer value that is the most significant 8 bits of the top_field_input_timecode.

bottom_field_input_timecode_byte_2 – An 8-bit unsigned integer value that is the 2nd most significant 8 bits of the bottom_field_input_timecode.

bottom_field_input_timecode_byte_3 – An 8-bit unsigned integer value that is the 3rd most significant 8 bits of the top_field_input_timecode.

bottom_field_input_timecode_byte_4 – An 8-bit unsigned integer value that is the least significant 8 bits of the bottom_field_input_timecode.

6.3.16.1.3 output_timecode

Note: An investigation of the existing timecodes is being conducted. If a timecode exists that will provide a useful industry-wide solution, that timecode will be carried here.

The output_timecode is an 24-bit integer that is the xxxx timecode that indicates the timing of each frame if progressive or each field if interlaced of the content at the output of the decoding process. For example, if a 24 frame film is converted to a 60 fields through the use of repeated fields, the output_timecode would reflect the time for each frame after it has been reconstructed. The decoder may use this information to signal the rendering system when the reconstructed frame is to be displayed and what it’s duration should be.

output_timecode

	
	No. of bits
	Mnemonic

	
top_field_output_timecode_exists
	4
	bslbf

	
top_field_output_timecode_byte_1
	8
	uimsbf

	
top_field_output_timecode_byte_2
	8
	uimsbf

	
top_field_output_timecode_byte_3
	8
	uimsbf

	
top_field_output_timecode_byte_4
	8
	uimsbf

	
bottom_field_output_timecode_exists
	4
	bslbf

	
bottom_field_output_timecode_byte_1
	8
	uimsbf

	
bottom_field_output_timecode_byte_2
	8
	uimsbf

	
bottom_field_output_timecode_byte_3
	8
	uimsbf

	
bottom_field_output_timecode_byte_4
	8
	uimsbf

	NOTE – The output_timecode data is sent as bytes of content_data. Interspersed with this data as appropriate are start code emulation prevention bits as specified in the wrapper definition. The formal syntax description shown above defines the only payload contents sent in content_data and thus does not explicitly show the emulation prevention bits.

top_field_output_timecode_exists – A 4-bit flag that indicates the presence of the following top_field_output_timecode bytes. If top_field_output_timecode_exists is set to ‘1111’, top_field_output_timecode bytes will follow it. If it is set to ‘0000’, there is no data following it. If the reconstructed frame is a progressive frame, either the top_field_output_timecode or the bottom_field_output_timecode will be used to indicate the timing of the frame. If both the top_field_output_timecode and the bottom_field_output_timecode exist, it is assumed that the reconstructed frame is an interlaced frame.

top_field_output_timecode_byte_1 – An 8-bit unsigned integer value that is the most significant 8 bits of the top_field_output_timecode.

top_field_output_timecode_byte_2 – An 8-bit unsigned integer value that is the 2nd most significant 8 bits of the top_field_output_timecode.

top_field_output_timecode_byte_3 – An 8-bit unsigned integer value that is the 3rd most significant 8 bits of the top_field_output_timecode.

top_field_output_timecode_byte_4 – An 8-bit unsigned integer value that is the least significant 8 bits of the top_field_output_timecode.

bottom_field_output_timecode_exists – A 4-bit flag that indicates the presence of the following bottom_field_output_timecode bytes. If top_field_output_timecode_exists is set to ‘1111’, bottom_field_output_timecode bytes will follow it. If it is set to ‘0000’, there is no data following it.

bottom_field_output_timecode_byte_1 – An 8-bit unsigned integer value that is the most significant 8 bits of the top_field_output_timecode.

bottom_field_output_timecode_byte_2 – An 8-bit unsigned integer value that is the 2nd most significant 8 bits of the bottom_field_output_timecode.

bottom_field_output_timecode_byte_3 – An 8-bit unsigned integer value that is the 3rd most significant 8 bits of the bottom_field_output_timecode.

bottom_field_output_timecode_byte_4 – An 8-bit unsigned integer value that is the least significant 8 bits of the bottom_field_output_timecode.

6.3.16.1.4 additional_pan-scan_parameters

The additional_pan-scan_parameters are integers that define additional pan-scan parameters if more than one display type is to be supported. For example, if the pan-scan information encoded in the sequence_header, sequence_display_extension, and picture_display_extension is used to define the parameters needed for display on a 3(4 display aspect ratio display, the additional_pan-scan_parameters can define the parameters needed for display on a 9(16 aspect ratio display.

additional_pan-scan_parameters

	
	No. of bits
	Mnemonic

	
aspect_ratio_information
	4
	uimsbf

	
display_horizontal_size
	14
	uimsbf

	
display_vertical_size
	14
	uimsbf

	
for (i=0; i<number_of_frame_centre_offsets; i++) {
	
	

	

frame_centre_horizontal_offset
	16
	simsbf

	

frame_centre_vertical_offset
	16
	simsbf

	
}
	
	

	NOTE – The additional_pan-scan_parameters data is sent as bytes of content_data. Interspersed with this data as appropriate are start code emulation prevention bits as specified in the wrapper definition. The formal syntax description shown above defines the only payload contents sent in content_data and thus does not explicitly show the emulation prevention bits.

aspect_ratio_information – A 4-bit integer value that is defined in subclause 6.3.3 (sequence header).

display_horizontal_size – A 14-bit integer value that is defined in subclause 6.3.6 (sequence display extension).

display_vertical_size – A 14-bit integer value that is defined in subclause 6.3.6 (sequence display extension).

frame_centre_horizontal_offset – A 16-bit signed integer that is defined in subclause 6.3.12 (picture display extension). The value of the number_of_frame_centre_offsets can also be found in 6.3.12.

frame_centre_vertical_offset – A 16-bit signed integer that is defined in subclause 6.3.12 (picture display extension).

6.3.16.1.5 repeated_frame_data

The repeated_frame_data are integers that indicate that this picture is numerically equal to a previously decoded frame. This data will allow for encoding and decoding efficiency and allows for progressive frames to be converted from low source frame rates to higher frame rates. For example, 24 progressive frame source material can be converted to 60 progressive frame source material by applying 2/3 pulldown pattern on progressive sequence.

repeated_frame_data

	
	No. of bits
	Mnemonic

	
repeat_count
	8
	uimsbf

	
repeated_frame_temporal_reference
	10
	uimsbf

	
padding_bits
	11 1111
	bslbf

	NOTE – The repeated_frame_data data is sent as bytes of content_data. Interspersed with this data as appropriate are start code emulation prevention bits as specified in the wrapper definition. The formal syntax description shown above defines the only payload contents sent in content_data and thus does not explicitly show the emulation prevention bits.

repeat_count – An 8-bit integer value that defines the number of times a frame should be repeated.

repeated_frame_temporal_reference – A 10-bit integer value that indicates the temporal reference of the frame that should be repeated.

6.3.16.1.6 active_region_window

The active_region_window are integers that define the rectangle that contains the actual active content. This rectangle would allow the content creator to define a window that excludes undesirable artifacts on edges or extra encoded information such as letterbox banding. Since some rendering systems and displays are able to display overscan regions, it cannot be assumed that this region will not be visible. Information such as this can be used in the absence of pan-scan information particular to a system’s aspect ratio to optimally display the content. This active_region_window is not related to a particular aspect ratio.

active_region_window

	
	No. of bits
	Mnemonic

	
top_left_x
	16
	uimsbf

	
top_left_y
	16
	uimsbf

	
rectangle_horizontal_size
	16
	uimsbf

	
rectangle_vertical_size
	16
	uimsbf

	NOTE – The active_region_window data is sent as bytes of content_data. Interspersed with this data as appropriate are start code emulation prevention bits as specified in the wrapper definition. The formal syntax description shown above defines the only payload contents sent in content_data and thus does not explicitly show the emulation prevention bits.

top_left_x – A 16-bit integer that defines the column number of the sample in the reconstructed frame that is the upper left corner of the active_region_window’s rectangle.

top_left_y – A 16-bit integer that defines the row number of the sample in the reconstructed frame that is the upper left corner of the active_region_window’s rectangle.

rectangle_horizontal_size – A 16-bit integer that together with rectangle_vertical_size defines a rectangle that may be considered the active region. If this rectangle is smaller than the encoded frame size, then the display process may be expected to display only that portion of the encoded frame. This display rectangle cannot, by definition, be larger than the encoded frame.

rectangle_vertical_size – See the definition for rectangle_horizontal_size.

”
4) Add the following after the last Annex:

“
Annex Z
(draft version 1999-09-28)

The Impact of Practices for Non-Progressive Sequence Bitstreams
in Consideration of Progressive-Scan Display

(This annex does not form an integral part of this Recommendation | International Standard)

Z.1
Progressive and Non-Progressive Encoding

This annex discusses the effect of encoding practices on the use of non-progressive ITU-T Rec. H.262 | ISO/IEC 13818-2 video sequences on systems with progressive-scan displays. It is intended primarily to encourage content producers to encode material in a manner that is free of unnecessary artifacts when played on systems with progressive-scan displays. While the display process is beyond the scope of this Recommendation | International Standard, a number of syntax elements are included in the bitstream that can help the display process, such as the sequence display extension and the picture display extension. This annex discusses the optimization of syntax usage in view of its impact on the display process.

The normative semantics of the progressive_frame flags describe the source temporal relationship between the fields within a coded picture of a non-progressive sequence, and decoders that display content on progressive-scan devices normally rely on this flag to pair fields for presentation.

The general display practice is as follows: if a picture is encoded as a progressive frame, the two fields are interleaved for presentation on the progressive-scan device; otherwise, some interlace-to-progressive conversion process is performed to convert the output field data to frame data for display. If the picture was actually generated with a progressive scan, but is encoded with an incorrect non-progressive source timing indication, the interlace-to-progressive conversion process will be erroneously applied and may result in serious artifacts and loss of vertical resolution on the display.

Z.2
Video Source Timing Information Syntax

The represented video source sampling timing for pictures in non-progressive sequences (when progressive_sequence is ‘0’) depends on the progressive_frame flag in the picture coding extension defined in subclause 6.3.10. (See also Figures 6-2, 6-3, and 6-4.) It is important to note that in frame pictures of such sequences (when picture_structure is ‘11’), progressive_frame can be either ‘0’ or ‘1’ with no effect on the decoding process and thus serves only to indicate the source sampling timing.

The represented source sampling timing in a non-progressive sequence includes a field-time offset between the time of the fields of the picture whenever the one-bit progressive_frame flag is ‘0’. This includes the following cases:

· when picture_structure is ‘01’ (top field) or ‘10’ (bottom field) – in which case progressive_frame is required to be ‘0’, or

· when picture_structure is ‘11’ (frame picture) and progressive_frame is ‘0’ (non-progressive).

The represented source sampling timing is that of a frame picture sampled at a single time instant in the remaining case:

· when picture_structure is ‘11’ (frame picture) and progressive_frame is ‘1’ (progressive).

In this last case the picture is indicated as progressive, as would be the case if progressive_sequence was ‘1’.

The display process for progressive-scan display of progressive frames normally simply uses all of the lines of the decoded picture with interleaving of the two fields. The display process for progressive-scan display of non-progressive frames usually differs substantially from this simple interleaving of fields.

Z.3
Content Generation Practices

If the original source material that is to be encoded was sampled as full frames of progressive scan content, it is important that the progressive nature of the source material is properly represented in the video bitstream. Progressive content should therefore be encoded using a properly-paired progressive representation. If this practice is not followed, significant unnecessary artifacts may appear on systems using progressive-scan displays. It is similarly important to ensure that truly interlaced material be encoded with progressive_frame = ‘0’ to avoid improper display processing on systems using progressive-scan displays.

If an entire source sequence consists of progressive frames, then if possible the sequence should simply be encoded as progressive frames with progressive_sequence set to ‘1’. In non-progressive sequences (when progressive_sequence is ‘0’), the progressive nature of individual frames can still be represented by encoding progressive pictures as frame pictures with progressive_frame equal to ‘1’.

Experience has shown that content producers have sometimes neglected to properly signal the progressive nature of progressive frames encoded within non-progressive sequences. Certain video editing practices can also cause a progressive source to lose its progressive nature to some degree and thus to lose its ability to be encoded as properly progressive frames. The primary purpose of this annex is to help content producers to avoid creating video bitstreams that produce unnecessary artifacts as a result of these problems.

Z.3.1
Frame-Rate Conversion Pre-Processing

Source material generated at some particular frame rate is commonly converted for encoding as a video bitstream at a different frame rate. If the source frame rate is moderately lower than the encoded frame rate, this is often done in non-progressive sequences by adding repeated single fields of encoded content using progressive_frame = ‘1’ with repeat_first_field = ‘1’.

Currently the most common such practice is the conversion of 24 frame per second material to approximately 30 frames per second by a process known as 3:2 pull-down (also known as 2:3 pull-down, which is an arguably more technically correct term). In this process, a set of four progressive scanned pictures, denoted as pictures A, B, C, and D, are converted to ten fields of video content by repeating the first field of pictures B and D. The same pattern is then repeated again and again for each subsequent set of four pictures.

In the case of 3:2 pull-down use, the most important preferred practice consideration is that each source picture (A, B, C, and D) should be represented in the bitstream as a distinct encoded picture. In other words, that source pictures B and D in the pattern be encoded as distinct pictures with progressive_frame = ‘1’ and repeat_first_field = ‘1’. One example of poor use of syntax would be to encode source pictures A and B as the first two encoded pictures (each with repeat_first_field = ‘0’), then encode the repeated first field of source picture B and the first of the two fields of source picture C together as the third encoded picture, then encode the second field of source picture C and the first field of source picture D together as the fourth encoded picture, and then encode the two fields of source picture D as the fifth encoded picture; and repeating this pattern for each set of four source pictures. This poor use of syntax would be likely to generate significant artifacts on a system with a progressive scan display, as the display process would most likely be unable to recover the correct field pairing and timing information needed to properly reconstruct the progressive format pictures.

In addition, it is very important that even the source pictures that do not have a repeated first field contain a proper representation of their progressive nature. This requires that source pictures A and C be encoded as frame pictures with progressive_frame = ‘1’ (as well as with repeat_first_field = ‘0’). In cases in which the encoder must attempt to infer the presence of 3:2 pull-down within a series of video source fields, the presence of repeated fields may be useful to determine that the source material is progressive and to determine the proper association of fields to frames (although the output quality will be significantly better if the actual source nature can be known to the encoder, rather than needing to be detected using such an imperfect detection process).

Following these preferred encoding practices requires that the progressive nature of source frames and the proper association of fields to frames be retained intact through the encoding process.

Z.3.2
Detrimental Field-Oriented Editing Practices

Certain video editing practices which operate without awareness of the correct pairing of fields to form progressive frames can be detrimental to the progressive nature of source material and therefore should be avoided to the maximum possible extent, due to the artifacts they may create on systems which use progressive scan displays. In order to avoid the difficulties that may arise due to these practices, the complete chain of production, editing, and encoding processes should be designed in a manner to ensure that correct information regarding the progressive or interlaced nature of each part of the video content is preserved. In 3:2 pull-down processing, the editing practices should operate with the same pattern of field-paired processing as that of the underlying source material in order to avoid such difficulties.

Z.3.2.1
Field-Oriented Scene Cuts

One example of such a harmful editing practice would be to switch between two progressive video sources in field-based processing between the two fields of a progressive frame, such as the occurrence of a scene cut just after the first field of source picture C in a 3:2 pull-down series as described in sub-clause Z.3.1. The result of a scene cut at such a location is to create a “stranded field” of source video content – an isolated field of source video which cannot be properly paired with another field to create an encoded progressive frame of source video content. If such a condition exists and must be encoded in a video bitstream, it is important to set progressive_frame to ‘0’ on the particular picture containing the stranded field in order to properly signal its non-progressive nature.

Z.3.2.2
Field-Structured Overlays and Compositing

Another case of field-oriented editing which may have an effect on whether or not a picture can be properly characterized as progressive is the insertion of moving text overlays and other such content. If such material is inserted in an otherwise-progressive scene using an interlace-oriented editing process, the source material can no longer be properly characterized as either truly progressive or truly interlaced. As a result, it becomes unclear whether a picture should be marked with progressive_frame = ‘0’ or ‘1’, and systems using a progressive scan display may have significant difficulty determining how to present the decoded pictures for display. To the extent possible, any such overlays and compositing of pictures should be performed using progressive scan representations to avoid such difficulties.

Z.3.2.3
Field-Oriented Fades, Scene Transitions

If gradual transitions between progressive scan scene content is performed, such as a “fade in,” a “fade out”, a gradual scene switch or a “wipe” transition, such transitions should be performed using frame-oriented progressive scan processing to the maximum possible extent – operating on the properly-paired true progressive frames. Unless this practice is followed, the source material can no longer be properly characterized as either truly progressive or truly interlaced. As a result, it becomes unclear whether a picture should be marked with progressive_frame = ‘0’ or ‘1’, and systems using a progressive scan display may have significant difficulty determining how to present the decoded pictures for display.

Z.3.2.4
Field-Oriented Special Effects

Special effects such as a zoom that may have been applied after the initial capture of the video content should similarly be performed with great care as to the progressive nature of source material. These effects should be applied in operation on properly paired progressive pictures rather than in an arbitrary fashion so as to preserve the progressive nature of the material.

Z.3.2.5
Field-Oriented Speed Adjustments

If the number of field times associated with progressive scan source pictures is altered in order to adjust the speed of motion in a scene, care must be taken to ensure that the speed adjustments do not cause subsequent processing (e.g. 3:2 pull-down detection in an encoder as described in sub-clause Z.3.1) to lose track of the progressive nature of the pictures and the proper association of fields to pictures.

Z.3.2.6
Frame Centering

If the frame centre to be indicated in a picture_display_extension() indicates differing values of frame_centre_vertical_offset or frame_centre_horizontal_offset for different fields in the same picture, this creates another form of indicated temporal change between fields of what might otherwise be progressive scan pictures. The underlying frame rate of the progressive scan source pictures would then be effectively altered by this process, potentially creating a displayed sequence that has field-oriented changes for each such progressive picture.

Z.4
Post-Encoding Editing of the Progressive Frame Flag in Video Bitstreams

It is important to note that in frame pictures of non-progressive sequences (when progressive_sequence is ‘0’), the value of progressive_frame has no effect on the decoding process and thus serves only to indicate the source sampling timing.

Because of the importance of the value of progressive_frame to systems using progressive scan displays, it may be advisable in some cases to consider altering the value of this bit in bitstreams which have been created with improper settings of this flag. The restrictions on when such alteration can be performed for this purpose without harm to the decoding process are that:

· progressive_sequence must be ‘0’ (a non-progressive sequence),

· picture_structure must be ‘11’ (a frame picture),

· progressive_frame cannot be changed from ‘1’ to ‘0’ if repeat_first_field is ‘1’, and

· progressive_frame cannot be changed unless chroma_420_format is also changed to have the same value as progressive_frame.

NOTE – These statements are noted for informational purposes only – as is the case with all statements in this Annex, these statements do not alter in any way the specifications found in the integral parts of this Recommendation | International Standard.

Z.5
Post-Processing for Systems with Progressive Scan Displays

If the decoding system detects the presence of an isolated non-progressive frame within a series of progressive frames, this may indicate the presence of a stranded field as described in sub-clause Z.3.2.1. Display processing designers should consider providing some special handling for this situation.

If the decoding system detects the presence of a repetitive pattern of progressive frames with repeat_first_field = ‘1’ mixed with non-progressive frames, this may indicate the behavior of an encoder which is unaware of the progressive nature of the source content frames and is only able to detect that a frame is progressive if its first field is repeated in the source video sequence. Display processing designers should consider treating even the frames with repeat_first_field = ‘0’ and progressive_frame = ‘0’ as being actually progressive scan frames if a persistent pattern repetitive pattern of this phenomenon is encountered in the bitstream.

”
Supplementary Information for the Reader

In an effort to provide you with insight into the problems we are trying to solve, this supplement has been created. This will not be included in any future Amendment that may result from this Working Draft, however, portions of it could be included in an informative annex if your comments indicate that this is desired. The syntax defined above contain only a subset of the possible data types that can prove to be useful to the industry that uses the ISO/IEC 13818-2 Specification. Your inputs are needed to make this potential Amendment include as much useful information as possible.

2/3 Pulldown in MPEG-2

It is a common practice to encode 24 frame film content as 59.94 fields for 525/60 television environments. This is accomplished by applying 2/3 pulldown to the content. This process is shown below.

When the 2/3 cadence is maintained, it is a fairly simple matter for an encoder to determine the progressiveness of two or three sequential fields. It is also a fairly simple matter for decoders to determine that the actual number of frames to decode is 24, not 29.97 which is indicated by the frame_rate_code found in the sequence header. However, there are many ways for the 2/3 cadence to be disrupted such as editing, the insertion of 29.97 frame video, and speed shifts. The resulting relationship between the source and the reconstructed content may now appear like what is shown below.

The loss of a strict 2/3 cadence makes the task of detecting the progressiveness of paired fields much more difficult. As a result, encoder makes errors in their decisions and occasionally incorrectly mark a pair of fields as interlaced when indeed they are not. More rarely, an encoder may also mark a pair of fields as progressive when it is in fact interlaced. In addition, it is not possible to “instantly” know what the source frame rate is since the only indication that the source frame rate was not 29.97 is the presence of a repeat_first_field that has been set to ‘1’.

It is desirable to provide this timing to the rendering/processing system so that it can display the content optimally for its display. The inclusion of a timecode that describes the timing of the source as well as the timing of the frame at the output of the decoder will allow a decoder to know immediately that a change in the source frame rate has occurred. There are several efforts currently in process in other committees such as SMPTE. It is believed that this information is available throughout the content creation process. The timecode that best serves the entire industry for an end to end solution will be included in this extension.

MPEG-2 in Broadcast

It is exciting news that this specification will be used to serve the emergence of the DTV/HDTV industry. New challenges in the end to end process have uncovered some issues that require the current syntax in the ISO/IEC 13818-2 specification to be extended. One of these issues is the problem of converting 24 progressive frames to 60 progressive frames. The current method for repeating fields for coding efficiency does not allow for the amount of repeated frames that are needed without encoding frames that are exactly the same as another. The inclusion of the repeated_frame_data in the extension can address this issue.

MPEG-2 Content on Other Aspect Ratio Displays

In the past, it was a safe assumption that the aspect ratio of the display was 3(4. Increasingly, other aspect ratios are supported in consumer electronic equipment. The ISO/IEC 13818-2 Specification only allows you to specify one display aspect ratio, display window size, and one set of pan-scan information per sequence. This imposes limitations that does not allow for extensibility for additional display types . The additional_pan-scan_information and active_region_window were created to allow for support of more display types.

Top Field

Bottom Field

Source frame boundaries

Source frame boundaries

Bottom Field

Top Field

2

