	ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Ninth Meeting: Red Bank, New Jersey, 19-22 October, 1999
	Document Q15-I-39
Filename: q15i39.doc

Generated: 11Oct. ’99

	Question:
	Q.15/SG16

	Source:
	G. Bjontegaard
Telenor Satellite Services
P.O.Box 6914 St.Olavs plass
N-0130 Oslo, Norway
	
Tel:
Fax:
Email:
	
+47 23 13 83 81
+47 22 77 79 80
gisle.bjontegaard@international.telenor.no

	Title:
	Addition of 8x8 transform to H.26L

	Purpose:
	Information

Background

The present 4x4 transform defined in TML-1 is not a DCT but an integer transform with basically the same performance. If for some reason one should include the possibility of 8x8 transform in H.26L, one could use the 8x8 DCT. Since there seems to be strong interest in having unique definition of IDCT, the definition proposed to H.263++ could be used.

Another solution could be to use a similar integer transform as for the 4x4 transform. The integer transform simplifies the exact definition of inverse transform. The present document gives information of a couple of possible integer 8 point transforms.

Another issue in connection with the use of 8x8 transform, is the use of the ULVC of TML-1 for coefficient coding. A possible solution here is also suggested

Two 8 point integer transforms

The set of transform vectors – A, B, C, D, E, F, G, H below is an orthogonal set of vectors which is very close to the 8 point DCT except for vectors D and F which are somewhat different. Since the same kinds of numbers as for the 4x4 transform are used, quantization and dequantization may be done very similarly to the 4x4 transform.

T1:

A 13 13 13 13 13 13 13 13

B 19 15 9 3 -3 -9 -15 -19

C 17 7 -7 -17 -17 -7 7 17

D 9 3 -19 -15 15 19 -3 -9

E 13 -13 -13 13 13 -13 -13 13

F 15 -19 -3 9 -9 3 19 -15

G 7 -17 17 -7 -7 17 -17 7

H 3 -9 15 -19 19 -15 9 -3

To get even closer to the 8 point DCT, we can mix D and F in a different way to obtain:

T2:

13A 169 169 169 169 169 169 169 169

13B 247 195 117 39 -39 -117 -195 -247

13C 221 91 -91 -221 -221 -91 91 221

12D+5F 183 -59 -243 -135 135 243 59 -183

13E 169 -169 -169 169 169 -169 -169 169

12F-5D 135 -243 59 183 -183 -59 243 -135

13G 91 -221 221 -91 -91 221 -221 91

13H 39 -117 195 -247 247 -195 117 -39

T2 is closer to the DCT. However, the multiplication factors are higher by a factor of 13 which may have some implication for implementation. The factor 13 also have some implication for the quantization/dequantization. All this must be compared with the marginal difference in performance between the two transforms. The figure below shows in a graphic way the comparison between basis vectors of the DCT and the two integer transforms. The DCT basis vectors are marked with black solid lines. Red broken lines show T1 whereas blue dotted lines show T2

[image: image1.wmf]0

1

2

3

4

5

6

7

Coding of 8x8 coefficients with the UVLC

The UVLC has a 1 bit code which is suitable to code a value which occurs with a probability of about 50%. This fits well with EOB for the 4x4 transform. However, with the use of 8x8 the probability of EOB is expected to be lover than 50%. Secondly, as we use CBP based on 8x8, we know that the first codeword cannot be EOB. This is a dilemma that most previous standards are facing and which actually are solved by using a different VLC for the first coefficient and for the remaining ones.

The solution I will point out here is to change the definition of an event from (LEVEL,RUN) to (LEVEL,LAST). The LAST parameter is the same as the one used with three dimensional coding (LEVEL, RUN. LAST) in H.263. With the use of (LEVEL,LAST) we need a codeword for LEVEL=0. The one bit code is well suited for exactly that.

Bit allocation:

LEVEL 0 1 2 3 4 5 6 7 8

NOT_LAST(number of bits) 1 3 5 7 7 7 9 9 9

LAST(number of bits) na 5 7 9 9 11 11 11 11

Allocation of code numbers:

LEVEL 0 1 2 3 4 5 6 7 8

NOT_LAST(code number) 0 1 3 7 9 11 15 17 19

LAST(code number) na 5 13 27 29 55 57 59 61

Preliminary tests have showed that this code is pretty efficient.

File:q15i39.doc
Page: 1
Date Printed: 10/11/99

