ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eighth Meeting: Berlin, Germany, 3-6 August, 1999
Document Q15-H-25
Filename: q15h25.doc

Generated: July 28th, 1999

Question:
Q.15/SG16

Source:
Hyun-Duk Cho, Yoo-Sok Saw, and Victor V. Redkov
LG Information & Communications
533, Hogye-dong, Dongan-gu, Anyang-shi, Kyoungki-do, 431-080, Rep. Of Korea

Tel:
Fax:
Email:

+82 343 450 2956
+82 343 450 2944
chohd@lgic.co.kr

Title:
A New Error Resilient Coding Method using Data Partitioning and Reed-Solomon Protection

Purpose:
Proposal

1.
Introduction

According to the increase of need for video communication in mobile channel, a robust video coding algorithm against channel errors has been strongly requested. In recent years, there have been many researches to develop good error resilient video coding algorithm. Furthermore, the coding and communication methods presented by the international standardization groups such as ITU and MPEG also come to adopt various error resilient functions (for example, independent segment decoding, reference frame selection, data partitioning, video packetization, reversible VLC) in their syntax [1][2]. But, unfortunately, a satisfactory solution has not been founded yet.

In this contribution, we present a new error resilient coding algorithm, which provides very good performance even in high BER such as 10-3. The major features of the algorithm are data partitioning using a partition table (not using marker bits for partition) and the protection of each partition using Reed-Solomon (RS) code. The proposed method does not only correct channel errors, but also makes it easy to conceal distorted image blocks when the unrecoverable errors are detected. Details of the proposed method as well as its other advantage will be explained in the next chapter.
2.
The proposed method

The core part of our algorithm is the data partitioning (DP) scheme. But, it does not use partitioning markers to divide each partition like the DP of MPEG-4. Instead, it adopts the partition table.

· As shown in Table 1, a GOB or slice in the syntax of the proposed method consists of 5 partitions (Header, partition1 to 4). (In Table 1, number of blocks for RS coding will be explained later.) Each partition boundary can be known by partitioning table to contain the number of bits in each partition, in the header instead of the partitioning marker. All the partitions are protected by RS codes, respectively. The proposed DP scheme let us be given the following merits:

· Detect errors by the information of the partition boundary. (I.e., the decoder recognizes the current partition has been corrupted when it tries to go on processing even at the partition boundary. After all, the decoder has another good detection mechanism except the detection by RS code.)

· Prevent errors from propagating into the neighboring partition.

· Conceal the GOB/slices corrupted by unrecoverable errors by excluding erred partitions and using error-free partitions

· Apply different protection levels of RS code according to importance of each partition.

2. 1 Header structure

As different protection levels of RS code may be applied to each partition, the encoder has to inform the decoder which protection level will be allocated to each partitions. (See Table 2.) These data have only to be sent once at the start of the sequence. The DCT_LOW_MAX field represents the boundary of low frequency DCT coefficients when DCT_2_PART mode is applied. (This mode will be explained later.)

After sending this information, header information and partition table of every frame and every GOB/slice in whole data of the sequence is sent. (See Table 3.) It should be noticed that header information and partition table are byte-aligned. In partition table, the number of bits in each partition is written. Consequently, the partition table comes to perform the same function as the partition marker in the DP structure of MPEG-4 does.

Table 1. Partitions in GOB/slice and its contents

Contents
Number of blocks for RS coding

Header
Header in a GOB/slice (or a frame) and partition table
2 blocks

Partition 1
CODs and MCBPCs for all macroblocks in a GOB/slice
1 block

Partition 2
Motion vectors for all macroblocks in a GOB/slice
1 block

Partition 3
CBPYs and DQUANTs for all macroblocks in a GOB/slice
1 block

Partition 4
DCT coefficients for all macroblocks in a GOB slice
(Number of DCT coefficients bits/80) blocks

Of course, both of the partition table and the partition marker are important data. That is, when the data are corrupted, its effect may be propagated to one or more GOB/slices. But, while partition table can be easily protected by RS code, it is very difficult to protect partition marker from channel errors. The reason is that even though lots of redundancies are added to partition marker, it is probable that the partition marker is misunderstood as other information such as motion vectors and DCT coefficients when the preceding bits are corrupted. That is the reason why we adopt the partition table instead of the partition marker.

Anyway, the partition table is the most important information compared with all other information.

Length of partition table depends on the type of partition table and GOB as follows:

· Normal_PT: lengths of all kinds of information are included in partition table. Partition table consists of 5 bytes.
· Short_PT: Compared with the case of normal_PT, length of DCT coefficients is excluded. Partition table consists of 2 bytes.

· Not_coded_GOB: Partition table consists of 2 byte and partitions are not transmitted.

Header information and partition table is divided into 2 blocks for RS code. The length of block varies according to the situation:

· Picture header and partition table
Block 1: 4 bytes, Block 2: 3 bytes

· GOB header and partition table
Block 1: 4 bytes, Block 2: 3 bytes
· Slice header and partition table
Block 1: 5 bytes, Block 2: 3 bytes

· Picture header, the first slice header and partition table
Block 1: 5 bytes, Block 2: 5 bytes

Table 2. Information about coding scheme

DATA
Length, bit
Value
Comments

PEI flag
1
1
Always = 1

DP_SUBMODE
3
xxx
Error resilience mode

000 – H.263

001 – NORMAL

010 – DCT_2_PART

Others – reserved

RSA
4
xxxx
General protection level

(1..9)

RSA_mapD[0]
4
xxxx
Header protection level

(1..9)

RSA_mapD[1]
4
xxxx
Partition 1 protection level

(1..9)

RSA_mapD[2]
4
xxxx
Partition 2 protection level

(1..9)

RSA_mapD[3]
4
xxxx
Partition 3 protection level

(1..9)

RSA_mapD[4]
4
xxxx
Partition 4 protection level (Low part) (1..9)

RSA_mapD[5]
4
xxxx
Partition 4 protection level (High part) (1..9)

DCT_LOW_MAX
5
xxxxx
DCT Low part size (only if DCT_2_PART mode is used)

(1..31)

PEI flag
1
0
Always = 0

Table 3. Contents of header and partition table

Parameter
value
N bits
Comments

1. Frame Header

HEADFLAG
0
1
Indication of frame header

Pict_type
Х
1
pict_type

QUANT
XXXXX
5
PQUANT

Stuffing
0
1

TR
XXXXXXXX
8
Time Reference

TOTAL
16
= 2 bytes

2. GOB Header

HEADFLAG
1
1
Indication of GOB header

GN
XXXXX
5
GOB Number

GQUANT
XXXXX
5
GQUANT

GN
XXXXX
5
GOB Number (duplicate)

TOTAL
16
= 2 bytes

3. Slice Header (not FIXED_SLICE mode)

HEADFLAG
1
1
Indication of Slice header

SEPBA
XXXXXXX
7
MB address of first MB in slice

SQUANT
XXXXX
5
SGQUANT

SWI
XXXX
4
Slice Width Indication

SMBN
XXXXXXX
7
Number of MB in slice

TOTAL
24
= 3 bytes

4. Partition Table

4.1. Normal_PT

INFO
XX
2
PT short info

00 - not_coded_GOB

01 - short_PT

11 - normal_PT

B2
XXXX
4
Partition 1 size (COD+MCBPC) in bytes

B3
XXXXX
5
Partition 2 size (MV) in bytes

B4
XXXXX
5
Partition 3 size (CBPY) in bytes

B5_RSB
XXXXXX
6
Partition 4 size (DCT low part) in blocks

B5_RSA
XXXX
4
Partition 4 (DCT low part) size of last block in bytes

B6_RSB
XXXXXXXX
8
Partition 4 size (DCT high part) in blocks

B6_RSA
XXXX
4
Partition 4 (DCT high part) size of last block in bytes

Stuffing
XX
2

TOTAL
40
= 5 bytes

4.2. Short_PT

INFO
XX
2
PT short info

00 - not_coded_GOB

01 - short_PT

11 - normal_PT

B2
XXXX
4
Partition 1 size (COD+MCBPC) in bytes

B3
XXXXX
5
Partition 2 size (MV) in bytes

B4
XXXXX
5
Partition 3 size (CBPY) in bytes

TOTAL
16
= 2 bytes

2.2 Partitions for all other information

Each of partition 1, 2, and 3 consists of 1 block regardless of its length. And, partition 4 for DCT coefficients consists of lots of blocks each of who has 80 bits and redundancy for error protection. If the DCT_2_PART mode is set, partition 4 is divided into two parts: one is for low frequency coefficients and the other is for high frequency coefficients. It is the DCT_LOW_MAX value that determines whether a coefficient is low frequency or high frequency.

2.3 Reed-Solomon (RS) coding

Let us assume that length of data in a block is N words and length of redundancy for protecting data is M words. And, if we denote length of recoverable words in the decoder side as t, length of redundancy per length of recoverable words can be represented as M/t. In the proposed method, M/t is set to 2.

And number of bytes of redundancy for a block is determined by the value of protection level multiplied by 2. That is, when protection level is 1, two additional bytes are added, and when protection level is 2, 18 additional bytes are added. In the proposed method, the protection level may be selected a value from 1 to 9.

2.4 Marker utilization

In the conventional methods such as H.263 and MPEG4, if errors are detected in a GOB/slice, decoder begins to search the resynchronization marker for the next GOB/slice. The proposed method also has the resynchronization marker. But, the decoder does not always search the resynchronization marker for resynchronization. In the proposed method, the following resynchronization methods are possible:

· When the decoder succeeds in recovering of the whole data in a GOB/slice:
Since the decoder already know the length of the GOB/slice, the resynchronization marker is skipped after decoding all bits in the current GOB/slice. After skipping, the decoder begins to read bits in the next GOB/slice.

· When the decoder succeeds in recovering of the partition table, but fails to recover other

information:

Although parts of bits in the GOB/slice are corrupted, but the decoder still know the length of the GOB slice, the resynchronization marker is skipped after decoding all bits in the current GOB/slice. After skipping, the decoder begins to read bits in the next GOB/slice.

· When the decoder fails to recover even the partition table:
Since the received partition table informs incorrect information of length of the current GOB/slice, the decoder ignores all the data in the GOB/slice and begins to find the resynchronization marker for the next GOB/slice.

2.5 Error concealment

As data is divided into more partitions, error propagation is localized into a smaller region. It means more partitions make the corrupted GOB/slice approximate to the real GOB/slice (i.e., conceal the errors) by using information of uncorrupted partitions. Since data generated from the proposed encoder is well partitioned, the proposed decoder can conceal the errors and provide good subjective quality. Because there are 6 partitions in a GOB/slice (including 2 partitions in DCT coefficients), 6 different concealment methods are possible:

· Errors in the header and partition table:

The decoder copies the previous GOB/slice corresponding to the current GOB/slice. The decoder begins to find the resynchronization marker as explained previously.

· Errors in the partition 1 (COD and MCBPC):

The decoder copies the previous GOB/slice corresponding to the current GOB/slice. The decoder begins to find first bit in the next GOB/slice by the knowledge of the length of the current GOB/slice as explained previously.

· Errors in the partition 2 (MV)

The decoder copies the motion vectors in the previous GOB/slice corresponding to the current GOB/slice. And the decoding process is continued.

· Errors in the partition 3 (CBPY)

The decoder sets all CBPY in the current GOB/slice to zeros. And then, in case of the INTRA macroblocks, the decoder copies the previous macroblocks corresponding to the current macroblocks, and in case of the INTER macroblocks, all coefficients are set to zeros. And the decoder begins to find first bit in the next GOB/slice by the knowledge of the length of the current GOB/slice.

· Errors in the first sub-partition in the partition 4 (Low DCT)

In case of the INTRA macroblocks, the decoder copies the previous macroblocks corresponding to the current macroblocks, and in case of the INTER macroblocks, all coefficients are set to zeros. And the decoder begins to find first bit in the next GOB/slice by the knowledge of the length of the current GOB/slice.

· Errors in the second sub-partition in the partition 4 (High DCT)

The decoder sets high frequency coefficients to zeroes. And the decoder begins to find first bit in the next GOB/slice by the knowledge of the length of the current GOB/slice.

In this section, we’ve explained why the proposed coder will provide good performance. In the following section, we will demonstrate its performance by experiments.

3.
Experimental results

We experimented upon various algorithms: H.263 without any error resilience algorithm, MPEG-4 error resilience algorithm and the proposed algorithm. The MPEG-4 algorithm adopts video packetization in 500 bits, data partitioning and RVLC. And, as the proposed method, two kinds of coders are presented. In one case, all partitions are equally error-protected by protection level 1, and in the other case, all partitions except the DCT high partition are error-protected by protection level 3 and the DCT high partition is protected by level 1. We used carphone image sequence for simulation. Fig. 1 shows the results of the simulations. The MPEG-4 coder is rather resilient against channel errors until BER 10-4, although it is not satisfactory. But, in the high BER, the performance is steeply decreased. Furthermore, it could not proceed to high BER such as 5x10-3, since decoder worked abnormally.

Two kinds of proposed methods provide good performances even for BER 10-3. Although the proposed 2 does not provide good performance in error-free environment because of its heavy redundancy, it provides the performance of about 21 dB at extremely high BER, i.e., 5x10-3. On the other hand, in the case of proposed 1, its performance is slightly lower than the performance produced by H.263 without redundancy, although the very poor image is generated at extremely high BER. Anyway, both of the proposed coders produce very good quality image sequences compared with the conventional methods.

[image: image1.wmf]5

10

15

20

25

30

35

1

10

100

1000

BER (x 10-5)

PSNR

H263

MPEG4

Proposed 1

Proposed 2

Fig. 1. PSNR graphs of various algorithms: The x-axis is logarithmic scale. That is, each points represent error-free, 10-4, 5x10-4, 10-3 and 5x10-3.
4.
Conclusions

In this contribution, we’ve presented a new error resilient algorithm that uses data partitioning scheme and its Reed-Solomon protection. We’ve showed the proposed coder provides good performance. The combination of data partitioning and RS code lets the codec have good error detection and concealment tools. And it makes the codec prevent errors from propagating into neighboring partitions and apply different protection levels of RS code according to importance of each partition. In conclusion, good performance of the proposed codec is achieved from the synergy effect of data partitioning and RS code, not only from RS code.

Reference

[1] Raj Talluri, “Error-resilient Video Coding in the ISO MPEG-4 standard”, IEEE Comm. Magazine, Vol. 36, No. 6, 1998, pp.112-119.
[2] Niko Farber, “Extensions of ITU-T Recommendation H.324 for Error-Resilient Video Transmission”, IEEE Comm. Magazine, Vol. 36, No. 6, 1998, pp. 120-128.

File: q15h25.doc
Page: 7
Date Printed: 99-7-28

_994628542.xls
Chart1

		0		0		0		0

		1		1		1		1

		5		5		5		5

		10		10		10		10

		50		50		50		50

H263

MPEG4

Proposed 1

Proposed 2

BER

PSNR

33.319385

32.363233

32.008535

30.320344

21.579537

26.663927

32.008535

30.320344

13.266492

14.403664

31.523872

30.320344

10.958742

13.385149

30.925578

30.320344

9.719554

20.940336

Chart2

		0		0		0		0

		1		1		1		1

		5		5		5		5

		10		10		10		10

		50		50		50		50

H263

MPEG4

Proposed 1

Proposed 2

BER (x 10-4)

PSNR

33.319385

32.363233

32.008535

30.320344

21.579537

26.663927

32.008535

30.320344

13.266492

14.403664

31.523872

30.320344

10.958742

13.385149

30.925578

30.320344

9.719554

20.940336

Chart3

		1		1		1		1

		10		10		10		10

		50		50		50		50

		100		100		100		100

		500		500		500		500

H263

MPEG4

Proposed 1

Proposed 2

BER (x 10-5)

PSNR

33.319385

32.363233

32.008535

30.320344

21.579537

26.663927

32.008535

30.320344

13.266492

14.403664

31.523872

30.320344

10.958742

13.385149

30.925578

30.320344

9.719554

20.940336

Sheet1

				H263		MPEG4		Proposed 1		Proposed 2

		1		33.319385		32.363233		32.008535		30.320344

		10		21.579537		26.663927		32.008535		30.320344

		50		13.266492		14.403664		31.523872		30.320344

		100		10.958742		13.385149		30.925578		30.320344

		500						9.719554		20.940336

Sheet2

		

Sheet3

		

