ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Sixth Meeting: Seoul, Korea, November 3-6, 1998�
Document: Q15-F-15

Filename: q15f15.doc

Generated: 20 Oct ’98�
�

Question:�
Q.15/SG16�
�
Source:�
Tien-ying Kuo, JongWon Kim, and C.-C. Jay Kuo Integrated Media Systems Center and �Department of Electrical Engineering-Systems �University of Southern California�Los Angeles, CA 90089-2564�
�Tel:�Fax:�Email:�
�+1-213-740-4658�+1-213-740-4651�{tienying,jongwon,cckuo}@sipi.usc.edu�
�
Title:�
Fast Motion-Compensated Frame Interpolation for H.263�
�
Purpose:�
Proposal�
�

1	Introduction

Fast motion-compensated frame interpolation (FMCI) schemes for the H.263 decoder operating in low bit rates are proposed. The main objective is to improve the video quality by increasing the frame rate without a substantial increase in the computational complexity. The proposed FMCI scheme is considering the deformable block mapping of the block-based motion field to the pixel-based motion field. With proposed schemes, the decoder can perform frame interpolation using motion information received from the encoder. The complexity of FMCI is reduced since no additional motion search in the decoder is needed as required by conventional MCI. It has been observed from experimental results that the visual quality of coded low-bit-rate video is significantly improved at the expense of a small increase in decoder's complexity.

Even though H.263/H.263+ provides the optional PB-frame mode to achieve a similar goal of frame interpolation, the PB-frame still requires extra bits to encode the B frame overhead and the optional B-frame motion vector (MVDB). Besides, the PB-frame mode can only interpolate one B-frame between two P frames. In our proposed FMCI schemes, as many frames as needed can be inserted at any time reference. Furthermore, they require no extra bits and conform the bitstream syntax of the H.263/H.263+ standard.

2	Understanding MCI (Motion Compensated Frame Interpolation)

We review the MCI scheme [1]-[4] and its technical difficulties in this section. First, we define some symbols used throughout the paper. Let p denote the 2-D pixel Cartesian coordinate in a frame, ft refer to the frame at temporal reference t, ft(p) represent the pixel intensity at p of frame ft, B(p) indicate the macroblock which pixel p belongs to, N(p) stand for the eight nearest neighboring macroblocks around B(p), NB(p) equal to B(p) È N(p), Vm,n(B(p)) be the block-based motion vector of block B(p) from ftm to ftn and vm,n(p) denote the displacement motion vector for pixel p from ftm to ftn.

Given two continuous decoded frames, i.e. the preceding frame ft1 and the current frame ft2, where t1 < t2, the goal of frame interpolation is to insert an interpolated frame fti at time ti, where t1 < ti < t2. The concept of MCI is to interpolate frame fti based on the knowledge of the location of moving objects and the corresponding motion trajectories among ft1, ft2 and fti.

The conventional MCI classifies each pixel inside a frame image into one of four classes: moving object (MO), static background (SB), covered background (CB) and uncovered background (UB) so that ft = MOt È SBt È CBt È UBt as shown in the Figure 1. These four classes are mutually exclusive. We use Rf=(ti-t1)/(t2-t1), and Rb=(t2-ti)/(t2-t1), to denote the forward (from the preceding decoded frame to the interpolated frame) and the backward (from the current decoded frame to the interpolated frame) interpolation ratios, respectively. In Figure 1, we assume that MOt1, MOt2 and the motion field {v1,2(p)| p Î MOt2} are all known. Then, we can use the motion trajectory Rb - v1,2(p) along with MOt2 to predict the object location MOti in interpolated frame fti. Once the object class MOti is determined, the uncovered background UBti and the covered background CBti in the interpolated frame can also be identified. It is clear in Figure 1 that UBti is determined by finding out the uncovered background considering object moving from MOt1 to MOt2. Since corresponding position of UBti(p) is occupied by MOt1(p) at time t1, the UBti(p) can only be predicted from the corresponding pixel background in ft2(p). CBti can be determined in a similar way. Finally, All remaining pixels can be classified to SBti. After the class for each pixel p is determined, we can predict the pixel of the interpolated frame by using the following equations:

MOti: fti(p) = Rb × ft1(p + v1,2(p)) + Rf × ft2(p+Rb × v1,2(p)), 	if bi-directional predicted, 	(1)� fti(p) = ft1(p + vp), 					if forward predicted, 		(2)� fti(p) = ft2(p + Rb × v1,2(p)), 				if backward predicted, 		(3)�UBti: fti(p) = ft2(p), 									(4)�CBti: fti(p) = ft1(p), 									(5)�SBti: fti(p) = Rb × ft1(p)+ Rf × ft2(p). 								(6)

Note that, we have three possible situations to interpolate the MOti class in above.

The difficulty of MCI is that we need a good segmentation scheme and an accurate motion prediction result to get a true motion field. In the work of Thomas and Berling [3], the hierarchical displacement prediction has been proposed to obtain a near-true motion field. In this paper, we will deal with MCI without involving motion search and using the block- rather than pixel-level motion vectors. The motion information is very limited. However, after the proper motion post-processing and HVS object segmentation, we will show that a smooth interpolated image frame can be obtained.

3	Deformable Block-Based Fast Motion Compensated Frame Interpolation Schemes (FMCI)

The proposed FMCI [5] is implemented in the decoder as a video post-processing unit, which is cascaded with the standard H.263/H.263+ decoder without changing the bitstream syntax. As shown in Figure 2, FMCI consists of three main units, i.e. motion-preprocessing, segmentation and MCI prediction. The motion-preprocessing unit is used to modify the block-based motion field to achieve a better frame interpolation result. Once the post-processed motion field is obtained, we map it to the pixel-based motion field for MCI prediction. The second unit of FMCI performs object segmentation of decoded frames, which is useful to provide the moving object location for MCI. We do not use any complicated segmentation procedure, not only because we do not want to increase the computational load in the decoder, but also because the segmentation result is rough due to the use of the block-based motion field only. For the third unit, classification of regions into stationary, covered and uncovered backgrounds and the moving object, which are used in conventional MCI, is still adopted here.

Next we will present the fast deformable block-based FMCI scheme step by step. The term of "deformable block'' implies the movement of the block is not only rigid and purely translational, but also considers the block mapping with an affine transform. The detailed FMCI algorithm will be described below.

 	·	Step 1: Perform post-processing on the block-based motion field transmitted from the encoder. �

The performance of the MCI scheme is based on the accuracy of the displacement motion field, which is derived from the block-based motion field transmitted from the encoder. The decoder makes no assumption about which motion estimation scheme is adopted by the encoder. For example, if the exhaustive motion search is used at the encoder, the block-based motion field may be far away from the true motion field. The motion field has to be processed to remove inaccurate motion vectors. In the H.263/H.263+ standard, macroblocks are allowed to be coded as the INTRA blocks even though the frame is coded as the INTER-frame (i.e. P-frame). The INTRA block has no associated block-based motion vector. This is another reason why motion post-processing is important.

By assuming that the target block is B(p), the motion post-processing is performed based on the local temporal motion histogram of NB(p). If V(B(p)) is not near the true motion, we can replace it by taking the median value from the motion set {V(b(p))| b(p) Î N(p)}. We have found from experiments that there are three cases where motion postprocessing is required. The first case is that V(B(p)) is a large motion vector and with a significantly different direction from those of its neighbors. The second case is that B(p) is coded with the INTRA mode. The third case is that more than two blocks among N(p) is coded as INTRA mode. It is needed because the INTRA mode usually implies that no good motion can be found from the encoder. If there are too many INTRA blocks in N(p), the target motion vector is not very reliable.

One worthwhile observation is that, although the residue information represents the motion prediction error and can justify the motion accuracy, it may not be available to the decoder in low bit rates. Therefore, we exclude the use of residual to measure the motion reliability.

	·	 Step 2: Perform the moving object segmentation. �

The framework of Tubaro and Rocca [4] is adopted in our implementation. Three consecutive frames (i.e. the preceding, current, and succeeding frames) are used in segmentation. Let ft3 denote the third (i.e. the succeeding) frame with t3 > t2. The segmentation idea is illustrated in Figure 3. One can obtain two maps of change detection by subtracting ft1 from ft2 and ft2 from ft3. By comparing the two maps of change detection, the segmented object is identified. A small threshold is used in change detection to remove the background noise. The segmentation map gives the preliminary segmentation result.

In this work, additional operations are included to improve the preliminary segmentation result. First, we perform the morphological closure operation to remove small holes inside the segmented object. Second, we further refine the segmentation result by matching blocks with some pre-defined blocks based on the human visual system (HVS) as shown Figure 4. Note that we omit symmetric patterns (such as 90-, 180- and 270-degree of rotations) in Figure 4. In total, thirty four patterns of HVS blocks can be defined. Each HVS block is of size 16 ´ 16, which is of the same size as that of macroblock. There are 16 squares for each pattern in Figure 4, and each square stands for 4 ´ 4 pixels. The small square with the dark and light gray colors represents the moving object and the background, respectively. It is straightforward to convert the morphological segmentation to the HVS segmentation by simply replacing each macroblock from the morphological segmentation result with that of the most similar HVS block. We will use the HVS segmentation result as the final segmentation result for FMCI.

The reason of HVS segmentation is described below. Without performing pixel motion search, we assign the pixel motion of an object directly from the block motion vector. If the segmented object is not representable in a concrete form but with many isolated pixels, the assignment from the block motion to the pixel motion becomes meaningless since the block motion cannot represent such detail information. As shown in Figure 4, each HVS block (except for the last two blocks) allows at most two continuos regions after segmentation. One is for the object and the other is for the background. The HVS segmentation process makes the assignment of the pixel motion field from the block motion field more meaningful. The reason to choose the 4 ´ 4 pixels as one unit for HVS blocks is again to avoid detailed pixel-level segmentation.

	·	Step 3: Determine the displacement motion vector for each pixel in the segmented object region and interpolate the moving object. �

After Steps 1 and 2, we have the post-processed block-based motion V and the segmented moving object MOt2, respectively. We also have MOt1 which was obtained before. By using these three pieces of information, we are ready to interpolate the moving object MOti with MCI prediction.

	·	Step 3.1: Determine the corresponding mapping triangular patches from fti to ft1 and from fti to ft2.�

We consider blocks (called the square patch) of ft2 with the same size of 16 ´ 16 pixels of macroblock to perform transformation. However, the block is not located in the macroblock grid, but offset by 8 pixels in both x and y directions. As shown in Figure 5, we take the central pixel of each macroblock at ft2 as the vertex of the square patch, and assign the associated block motion vector to that vertex as its displacement motion vector, called as the vertex vector. Though the block motion vector sent from the encoder is searched for the whole block with a uniform weighting (instead of searching with a higher weighting in the central part of a macroblock), it is a reasonable approximation to the vertex vector with such limited information available.

By multiplying the proper temporal ratio 1 and Rb with the vertex vectors, we can traverse from four vertices of the square patch in ft2 and then determine the location of the mapping vertex in ft1 and fti, respectively. The traversed mapping quadrilateral patches are then formed for ft1 and fti. Since it is an over-determined problem to map those quadrilateral patches using the affine transform, we cut each square or quadrilateral patch into half on the short diagonal line of quadrilateral patches. We can then use the affine transform to map among triangular patches at ft1, ft2 and fti, which are denoted by TPt1,TPt2 and TPti, respectively. One benefit of splitting the quadrilateral patch into two triangular patches is that the concave quadrilateral patch can be avoided. After setting up the triangular patches, we are ready to perform the affine transform to map from TPti to TPt1 and from TPti to TPt2.

	·	Step 3.2: Determine the affine transform coefficients for each patch and fill in internal pixels within the patch if these pixels belong to the class of "moving object''. �

After getting the mapping triangular patches, we perform the affine transform defined as,

 x'= a1 × x + a2 × y + a3 , 								(7)� y'= a4 × x + a5 × y + a6 								(8)

(x,y) and (x',y') denote the Cartesian coordinates before and after affine transform, respectively, and coefficients a1 to a6 are the affine coefficients.

By using Equations (7)-(8), we can determine the forward affine transform coefficients from TPti to TPt1 by mapping their three corresponding vertices. The backward affine coefficients can also be determined from TPti to TPt2 in the same manner. Once the forward and backward coefficients for TPti are known, we can easily traverse every pixel in TPti to TPt1and TPt2 with Equations (7)-(8). During the traversal, if we find the value of the forward/backward affine transform of a pixel is located within MOt1/MOt2, we classify p in the class of the moving object MOti. Otherwise, p is classified as the background and will be further classified and interpolated in Step 4. For the pixel classified to MOti, we can perform bi-directional MCI for the moving object to obtain its intensity value as shown in Equation (1).

	·	Step 4: Determine the remaining three classified regions UBti, CBti and SBti for the interpolated frame, and then perform conventional MCI accordingly. �

After the previous steps, we have object location MOti. According to the procedure given in Section 3, it is easy to divide the background region into three classes, i.e. UBti, CBti and SBti. Equations (4)-(6) can be applied to these background classes for interpolation. After this step, the whole frame fti is successfully interpolated.

Simulation results

Preliminary experiments are performed based on TMN8 H.263+ (from UBC) video decoder with the replacement of frame repetition to the proposed FMCI scheme. We use Miss America and Suzie QCIF sequences as the test video to demonstrate the visual performance. In the encoder end, the original frame rate of input sequence is 30 frame per second (fps), the basic mode (i.e. no optional mode is activated) is chosen, and the quantization step 20 and frame skip 10 are used. The required bandwidth for this encoded bitstream is only 8k bps due to the adoption of the large frame skip. This bitstream will generate decoded video with 3 fps in the decoder. However, after inserting 9 interpolated FMCI frames, the frame rate can be restored to 30 fps, which is the same as the original video sequence.

To verify the efficiency of motion post-processing, we have tested three block-based motion estimators in the encoder including the Telenor TMN5 (exhaustive search with spiral fashion), UBC TMN8 (meandering search refining from zero motion vector) and the motion search scheme proposed in [6] which exploits both spatial and temporal correlations. The three motion search schemes estimate the motion field with the possibility of near-true motion field from low to high, since the motion estimator considering more correlation will give higher possibility of finding near-true motion field. After the motion post-processing on those different schemes, little visual difference for the interpolated frame is observed with the proposed FMCI scheme. This confirms that FMCI gives an encoder-independent performance. We adopted the exhaustive motion search scheme to generate the bitstream in the experiment.

We show in Figure 6 the generated segmentation results as described in Step 2 of FMCI. Figures 6(a) , (b) and (c) provide the intermediate results of the preliminary, morphological segmentation stages and the final HVS segmentation, respectively. It is clear that the shape of the final HVS segmentation is more suitable for the block-based FMCI interpolation.

Since we cannot demonstrate the playback of FMCI result in this paper presentation, we show some contiguous pictures to demonstrate the results of FMCI algorithm. The performance of FMCI is given in Figures 7 and 8, which are drawn with white line for the visual aid. Figure 7 shows the Miss America sequence with frame skip 10. In Figures 7(a) and (k), which represent decoded frame 80th and the 90th frames, respectively, while all the other frames indicate the interpolated frame generated by proposed FMCI algorithm. We also show some contiguous FMCI frames in Figures 8(a)-(o), which denote the 30th to 44th frames of Suzie sequence, respectively. In this encoder end, we adopt quantization step 20 and frame skip 3 for this Suzie sequence. The reason we uses smaller value of frame skip than that of Miss America is because of the heavy motion behavior occurring in those frames of Suzie. In the decoder, we just insert two interpolated FMCI frames in between of the decoded frames and generate the results as shown in Figures 8. Figures 8 (a),(d),(g),(j) and (m) represent the decoded frame and while all the others stand for the interpolated frames using FMCI algorithm. We can observe that the inserted interpolated FMCI frame provides the smooth transition in between the contiguous decoded frames. During video playback, it is easier to observe FMCI gives a better visual performance with more smooth motion and less artifact in comparison with the frame repetition scheme adopted in TMN8.

Note that PSNR is not a good metric to evaluate the performance of frame interpolation, since the goal of our frame interpolation is making the video object moving smoothly instead of precisely predicting the object location in the uncoded frame of the original sequence.

5	Conclusions

In this work, we developed two block-based fast motion compensated frame interpolation schemes, called FMCI, for the video-conferencing system. FMCI uses the deformable block (i.e., triangular patches with an affine transform) to perform interpolated moving object prediction. Furthermore, since motion-postprocessing and the HVS segmentation are adopted, FMCI can perform independently of the encoder. The interpolated frames by FMCI efficiently increase the frame rate and remove motion jerkiness, which provide us a satisfying video playback result.

The major advantages of FMCI is that no motion estimation is required in the decoder end and no modification is

needed on the standard bitstream syntax.

6	References

[1] A. M. Tekalp, ``Digital Video Processing'', Prentice hall, Upper Saddle River, NJ, 1995.

[2] M. Bierling and R. Thoma, ``Motion compensating field interpolation using a hierarchically structured displacement estimator'', Signal Processing, pp.387-403, 1986.

[3] R. Thoma and M. Bierling, "Motion compensating interpolation considering covered and uncovered background'', Signal Processing: Image Compression 1, pp.191-212, 1989.

[4] S. Tubaro and F. Rocca, "Motion estimators and their application to image interpolation", Motion Analysis and Image Sequence Processing, Kluwer Academic Publishers, 1993.

[5] Tien-ying Kuo and C.-C. Jay Kuo, “Motion-Compensated Interpolation for Low-Bit-Rate Video Quality Enhancement”, SPIE San Diego '98 Annual Meeting , 1998.

[6] J. Chalidabhongse and C.-C. Jay Kuo, ``Fast motion vector estimation using multiresolution-spatio-temporal correlations'', IEEE Trans. on Circuits and Syst. for Video Technology, vol. 7, no. 3, pp. 477-488, June 1997.

Figures

�

Figure � SEQ Figure * ARABIC �1�: Illustration of the moving object (MO), uncovered background (UB), covered background (CB) and static background (SB) for motion compensated frame interpolation (MCI), where the arrow denotes the motion trajectory.

�

Figure � SEQ Figure * ARABIC �2�: The block diagram of proposed FMCI implemented in the H.263/H.263+ decoder as a video post-processing unit.

�

Figure � SEQ Figure * ARABIC �3�: The preliminary segmentation result is obtained by performing change detection between two consecutive frames and a further comparison of two detected change maps.

�

Figure � SEQ Figure * ARABIC �4�: Pre-defined human visual system (HSV) blocks to generate the HVS segmentation result, where each HVS consists of 16 4 ´ 4squares and the blue (dark gray) and green (light gray) colors denote the moving object and the background, respectively.

�

Figure 5: The triangular patches (TPs) before and after the affine transform, where the central points of four nearby macroblocks form a square patch, and the square patch is split into two triangular patches according to the shorter diagonal lines of the corresponding quadrilateral patch.

���

 		(a)				(b)				(c)

Figure 6: Segmentation results for the 80th frame of the Miss America sequence: (a) preliminary segmentation, (b) morphological segmentation, and (c) final HVS segmentation.

�

���� � �

 (a) Decoded 80 th Frame 	(b) Interpolated 81st Frame	(c) Interpolated 82nd Frame

� � �

 (d) Interpolated 83th Frame 	(e) Interpolated 84th Frame	(f) Interpolated 85th Frame

� � �

 (g) Interpolated 86th Frame 	(h) Interpolated 87th Frame	(i) Interpolated 88th Frame

� �

(j) Interpolated 89th Frame 	(k) Interpolated 90th Frame	

Figure 7: The visual performance of FMCI on the Miss America Sequence with frame skip 10: (a) and (k) show the the decoded 80th and 90th frame, respectively. (b)-(j) indicate the 9 inserted frame interpolated by the proposed FMCI algorithm.

�
� � �

�������(a) Decoded 30th Frame 	 (b) Interpolated 31st Frame 	(c) Interpolated 32nd Frame

� � �

(d) Decoded 33th Frame 	 (e) Interpolated 34th Frame 	(f) Interpolated 35th Frame

� � �

(g) Decoded 36th Frame 	 (h) Interpolated 37th Frame	(i) Interpolated 38th Frame

� � �

(j) Decoded 39th Frame 	 (k) Interpolated 40th Frame	(l) Interpolated 41st Frame

�� � �

(m) Decoded 42nd Frame 	 (n) Interpolated 43th Frame	(o) Interpolated 44th Frame

Figure 8 The visual performance of FMCI on the Suzie sequence with frame skip 3: (a), (d), (g),(j) and (m) show the the decoded 30th, 33th, 35th, 39th and 42nd frame, respectively, while all the other pictures show the interpolated frames generated by the proposed FMCI algorithm.

	� PAGE �1�	

�

