ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Sixth Meeting: Seol, Korea, 3-6 November, 1998�Document Q15-F-11

Filename: q15f11.doc

Generated: 26 Oct. ’98��

Question:�Q.15/SG16��Source:�Gisle Bjontegaard�Telenor Satellite Services�P.O.Box 6914 St.Olavs plass�N-0130 Oslo, Norway��Tel:�Fax:�Email:��+47 23 13 83 81�+47 22 77 79 80�gisle.bjontegaard@oslo.satellite.telenor.no��Title:�Response to Call for Proposals for H.26L��Purpose:�Proposal��_____________________________

1	1	Introduction

This document is a response to the call for proposals for H.26L. A modified prediction/transform based method is proposed. This therefore represents an evolution from the present H.263 standard rather than a completely new approach. In the CfP are listed a number of new functionalities that should be supported by the new standard. The present proposal is aimed at improvements of the following functionalities:

Improved coding performance – objectively (SNR) and even more subjectively.

Considerable reduction in complexity.

Potential for low delay since only forward prediction is used.

Potentially improved error robustness.

The method as described in this document will need to be further worked on. For instance, we have not so far implemented change of quantization within a picture. This means for instance that the delay aspect has not been addressed so far. We therefore consider the proposed model to be a framework for further additions/improvements.

2	Overview of the new elements in the proposed method

2.1	Use of only one VLC for coding

In H.263 – and other video standards – a number of different VLCs and FLCs are used for coding different parameters. The different VLCs and FLCs are designed to match with the statistics of the different parameters to be coded.

In the present proposal, only one VLC is used to code all information in a video sequence. To be able to do this and at the same time obtain high coding performance, the coding model have been designed so that all the major parameters to be coded have approximately the same statistics. The particular VLC that we use has a regular structure (see below, refer also to the VLC for motion vector data in H.263+) that can be used for simple implementation.

2.2	Use of different block sizes for prediction

Our model has the possibility of 16x16, 8x8 and 4x4 block sizes for motion prediction. This helps to improve prediction.

2.3	Use of 4x4 blocks for transform

4x4 blocks for transform is used rather than 8x8 blocks. There is little objective gain with the smaller block size. However, for most sequences there is a subjective advantage since there is less coding noise around moving edges. Secondly the 4x4 transform results in fewer computations.

2.4	Use of an exact integer transform instead of DCT

An integer transform that for all practical purposes has the same coding performance as DCT is used. By having an exact definition of the inverse transform, there is no 'IDCT mismatch'.

2.5	Improved Intra coding

An advanced Intra coding mode (see. H.263 annex I) is used. Compared to Annex I, the present method use two additional prediction modes (see below).

2.6	Possibility of prediction from more than one past decoded frame

It has been shown during the last ITU meetings that use of prediction from several past frames may give a coding gain. The proposed method includes this possibility. However, this is not used in the simulations presented in this document.

3	The method has been kept simple

To keep the model simple, practically non of the 'options' from H.263 are included. Actually we believe that we have been able to design a simple model that in itself has about the same performance as it would have had with options similar to those of H.263. Below is a list of the options we have skipped and a short comment to why our model performs well without it:

Annex D: We use no vectors over picture boundaries. By having 4x4 block prediction we have only a marginal loss by skipping this option. Our motion vector range is similar to that of Annex D.

Annex E. We have no SAC, but believe that our match between coding model and VLC to a large extent compensates for this.

Annex F. We already have 3 block sizes for prediction (compared to 2 in Annex F). For simplicity we use no OBMC.

Annex G,M,O. We use no B-or PB frames. Instead there is the possibility of prediction from more than one past frame – which we have already reported may be a better and cheaper alternative than B-frames.

Annex I. Inherent in the model we have Intra prediction that we believe is superior to that of Annex I.

Annex J. We use no deblocking filter in the coding loop. Instead we use a postfilter at the decoder side.

Annex S. This does not apply to our model. On the other hand we have a scheme that adapts to different coefficient statistics for Intra blocks and low quantization values.

Annex T. This annex is basically a set of fixes to shortcomings in earlier versions of H.263. All these aspects are already included in our model.

4	Detailed description of the coding tools

4.1	The one VLC used for coding

We have used the following VLC for coding of all parameters (for notation, see also H.263 annex D).

VLC table in compressed form	Code number	Codewords written in explicit form

1	0	1

0 x0 1	1	0 0 1

0 x1 0 x0 1	2	0 1 1

0 x2 0 x1 0 x0 1 	3	0 0 0 0 1

0 x3 0 x2 0 x1 0 x0 1 	4	0 0 0 1 1

.....	5	0 1 0 0 1

	6	0 1 0 1 1

	7	0 0 0 0 0 0 1

	8	0 0 0 0 0 1 1

	9	0 0 0 1 0 0 1

	10	0 0 0 1 0 1 1

	11	0 1 0 0 0 0 1

	12	0 1 0 0 0 1 1

	13	0 1 0 1 0 0 1

	14	0 1 0 1 0 1 1

	.	..

We will sometimes refer to a codeword with its length in bits (L) and INFO = xn .. x1 x0 . For the code number 5 above, L = 5 and INFO = 2 (10 binary).

Let me first comment on why we use the above VLC instead of the one defined in H.263 Annex D:

1	

0 x0 0	

0 x1 1 x0 0	

0 x2 1 x1 1 x0 0 	

0 x3 1 x2 1 x1 1 x0 0

.....	

I will call this table VLC-D. This table has obviously the same compression performance as the other one. In addition it is 'reverse decodable'. This last property is intended used for error robustness reasons. However, VLC-D has an undesirable property concerning synchronization. If for some reason (biterrors?) the decoder finds a codeword that ends in the middle of e 'true' codeword, the decoder will never synchronize again (until perhaps a new biterror). This does not seem like a convenient property for a code to be used in error prone environments.

The proposed VLC on the other hand is very good concerning self-synchronization. To be exact, after a biterror, the first two codewords may be wrong. After that the decoder is in sync. with the true codewords again. As far as we can see, this fast resynchronization can be used to obtain the same functionality as 'reverse decoding'. In addition the fast resynchronization may generally be of great benefit in error prone environments.

In addition to the definition above, we need interpretation tables from the codewords to different parameter values. All these interpretations - except for the picture header – are given in the table below.

�Table 1. Connection between codeword number and parameter values.

Code no.�Mode�Intra pred1�Vectors�CBP�Coeffis. simple scan2�Coeffs. double scan2����Prob0�Prob1��Intra�Inter�Level�Run�Level�Run��0�Skipped�0�0�0�63�0�EOB�-�EOB�-��1�16x16�1�0�1�0�1�1�0�1�0��2�8x8�0�1�-1�15�15�-1�0�-1�0��3�4x4�0�2�2�1�2�1�1�1�1��4�Intra�1�1�-2�2�3�-1�1�-1�1��5��2�0�3�31�4�1�2�2�0��6��3�0�-3�47�8�-1�2�-2�0��7��2�1�4�3�5�2�0�1�2��8��1�2�-4�4�7�-2�0�-1�2��9��0�3�5�5�10�1�3�3�0��10��0�4�-5�8�11�-1�3�-3�0��11��1�3�6�10�12�1�4�4�0��12��2�2�-6�12�13�-1�4�-4�0��13��3�1�7�13�14�1�5�5�0��14��4�0�-7�14�63�-1�5�-5�0��15��4�1�8�6�6�3�0�1�3��16��3�2�-8�7�9�-3�0�-1�3��17��2�3�9�9�16�2�1�1�4��18��1�4�-9�11�23�-2�1�-1�4��19��2�4�10�30�26�2�2�2�1��20��3�3�-10�46�27�-2�2�-2�1��21��4�2�11�49�29�1�6�3�1��22��4�3�-11�51�30�-1�6�-3�1��23��3�4�12�52�31�1�7�6�0��24��4�4�-12�53�32�-1�7�-6�0��25����13�55�39�1�8�7�0��26����-13�58�42�-1�8�-7�0��27����14�59�43�1�9�8�0��28����-14�60�45�-1�9�-8�0��29����15�61�46�4�0�9�0��30����-15�62�47�-4�0�-9�0��31����16�16�17�5�0�10�0��32����-16�17�18�-5�0�-10�0��33����17�18�19�3�1�4�1��34����-17�19�20�-3�1�-4�1��35����18�20�21�3�2�2�2��36����-18�21�22�-3�2�-2�2��37����19�22�24�2�3�2�3��38����-19�23�25�-2�3�-2�3��39����20�24�28�2�4�2�4��40����-20�25�33�-2�4�-2�4��41����21�26�34�2�5�2�5��42����-21�27�35�-2�5�-2�5��43����22�28�36�2�6�2�6��44����-22�29�37�-2�6�-2�6��45����23�32�38�2�7�2�7��46����-23�33�40�-2�7�-2�7��47����24�34�41�2�8�11�0��48����-24�35�44�-2�8�-11�0��49����25�36�48�2�9�5�1��50����-25�37�49�-2�9�-5�1��51����26�38�50�1�10�3�2��52����-26�39�51�-1�10�-3�2��53����27�40�52�1�11�3�3��54����-27�41�53�-1�11�-3�3��55����28�42�55�1�12�3�4��56����-28�43�56�-1�12�-3�4��57����29�44�57�1�13�2�5��58����-29�45�58�-1�13�-2�5��59����30�48�59�1�14�2�6��60����-30�50�60�-1�14�-2�6��61����31�56�61�1�15�2�7��62����-31�57�62�-1�15�-2�7��63����32�54�54�6�0�12�0��..����..���..�..�..�..��1 Prob0 and Prob1 defines the Intra prediction modes of two blocks relative to the prediction of prediction modes (see details in the section for Intra coding).

2 For the entries above the horizontal line, the table is needed for relation between code number and Level/Run/EOB. For the remaining Level/Run combination there is a simple rule. The Level/Run combinations are assigned a code number according to the following priority: 1) sign of Level (+ -) 2) Run (ascending) 3) absolute value of Level (ascending).

The longest possible codeword in the table above occurs for Coeffs. simple scan and is 27 bits. For that reason we have chosen a picture sync. code with L = 31. Actually all codewords with L = 31 are picture sync code words. The INFO bits contain the following information:

LSB or x0 : 0: picture start code. 1: end of sequence.

Next bit: picture format. 0: QCIF, 1: CIF

Next 5 bits: Quantization parameter.

Next 8 bits: Temporal reference (as in H.263)

In addition the picture header has a codeword to indicate picture type. For the moment there are only two picture types: Inter (code 1) and Intra (code 001).

4.2	Intra coding

4.2.1	Intra prediction modes

A 4x4 block is to be coded (pixels labelled a to p below). The pixels A to I from neighboring blocks are already decoded and may be used for prediction.

 I A B C D

 E a b c d

 F e f g h

 G i j k l

 H m n o p

Mode 0:

Generally all pixels are predicted by (A+B+C+D+E+F+G+H)//8. If four of the pixels are outside the picture, the average of the remaining four is used for prediction. If all 8 pixels are outside the picture the prediction for all pixels in the block is 128. A block may therefore always be predicted in this mode. This mode is always used for Chroma blocks.

Mode 1:

If A,B,C,D is inside the picture, a,e,i,m are predicted by A, b,f,j,n by B etc.

Mode 2:

If E,F,G,H is inside the picture, a,b,c,d are predicted by E, e,f,g,h by F etc.

Mode 3:

This mode is used only if all A,B,C,D,E,F,G,H,I are inside the picture. This is a 'diagonal' prediction.

m is predicted by: 	(H+2G+F)//4

i,n are predicted by 	(G+2F+E)//4

e,j,o are predicted by 	(F+2E+I)//4

a,f,k,l are predicted by 	(E+2I+A)//4

b,g,l are predicted by 	(I+2A+B)//4

c,h are predicted by 	(A+2B+C)//

d is predicted by 	(B+2C+D)//4

Mode 4:

This mode is used only if all A,B,C,D,E,F,G,H,I are inside the picture. This is a 'diagonal' prediction.

a is predicted by 	(B+F)/2

b,e are predicted by 	(C+G)/2

The remaining pixels are predicted by 	(D+H)/2

4.2.2	Coding of Intra prediction modes

Since each of the 4x4 luma blocks shall be assigned a prediction mode, this will require a considerable number of bits if coded directly. We have therefore tried to find more efficient ways of coding mode information. First of all we observe that the chosen prediction of a block is highly correlated with the prediction modes of adjacent blocks. When the prediction modes of A and B are known (including the case that A or B or both are outside the picture) an ordering of the most probable, next most probable etc. of C is given. This ordering table is listed below. For each prediction mode of A and B a list of 5 numbers is given. Example: Prediction mode for A and B is 2. The string 2 0 3 1 4 indicates that mode 2 is also the most probable mode for block C. Mode 0 is the next most probable one etc. In the bitstream there will for instance be information that Prob0 = 1 (see Table1) indicating that the next most probable mode shall be used for block C. In our example this means Intra prediction mode 0. Use of '–' in the table indicates that this instance can not occur.

For more efficient coding, informations on intra prediction of two 4x4 luma blocks are coded in one codeword (Prob0 and Prob1 in Table 1). The order of the resulting 8 codewords is indicated in figure b) below.

����

�����

������

����

 a) b)

 B\A outside 0 1 2 3 4

 outside 0 - - - - 0 1 - - - 1 0 - - - - - - - - - - - - - - - - - -

 0 0 1 - - - 0 2 1 3 4 1 0 2 3 4 0 2 1 3 4 3 0 1 2 4 0 1 2 3 4

 1 - - - - - 0 1 2 3 4 1 0 2 3 4 0 2 1 3 4 1 0 3 2 4 1 0 2 4 3

 2 2 0 - - - 2 0 1 3 4 1 2 0 3 4 2 0 3 1 4 2 3 0 1 4 2 0 4 1 3

 3 - - - - - 0 3 2 1 4 1 3 0 2 4 2 0 3 1 4 3 0 2 1 4 0 1 3 4 2

 4 - - - - - 0 2 4 3 1 0 1 2 4 3 0 2 3 4 1 0 1 2 3 4 0 2 4 1 3

4.3	Use of CBP

The CBP contains information of which 8x8 blocks contain transform coefficients. Notice that a 8x8 block contains 4 4x4 blocks meaning that the statement '8x8 block contains coefficients' means that 'one or more of the 4 4x4 blocks contain coefficients'. The ordering of 8x8 blocks is the same as in H.263:

����

��

 Y CB CR

CBP is a number between 0 and 63. A 0 in position n of CBP (binary representation) means that the 8x8 block number n has no coefficients whereas a 1 in position n means that the 8x8 block number n has non-zero coefficients. The CBP is signalled with a different codeword for Inter macroblocks and Intra macroblocks since the statistics of CBP values are different in the two cases.

4.4	Definition of transform and inverse transform

Instead of DCT, an integer transform with basically the same coding property as a 4x4 DCT is used. The transformation of the pixels a,b,c,d into 4 transform coefficients A,B,C,D is defined by:

A = 13a + 13b + 13c + 13d

B = 17a + 7b - 7c - 17d

C = 13a - 13b – 13c + 13d

D = 7a - 17b + 17c - 7d

The inverse transformation of transform coefficients a,b,c,d into 4 pixels a',b',c',d' is defined by:

a' = 13A + 17B + 13C + 7D

b' = 13A + 7B - 13C – 17D

c' = 13A – 7B – 13C + 17D

d' = 13A – 17B + 13C - 7D

The relation between a and a' is: a' = 676a. This is because the expressions defined above contain no normalization. Normalization will be performed in the quantization/dequantization process and a final shift after inverse quantization.

The transform/inverse is performed both vertically and horizontally in the same manner as in H.263. By the above exact definition of inverse transform, the same operations will be performed on coder and decoder side which means that we have no 'inverse transform mismatch'.

4.5	Quantization

The quantization/dequantization process shall perform 'normal' quantization/dequantization as well as take care of the fact that transform operations are kept very simple and therefore do not contain normalization of transform coeffients. Similar to H.263 we use 32 different QP values. However, they are arranged so that there is an increase of step size of about 12% from one QP to the next. Increase of QP by 6 means that the step size is about doubled. There is no 'dead zone' in the quantization process and the total range of step size from smallest to largest is about the same as for H.263.

Two arrays of numbers are used for quantization/dequantization.

A(QP=0,..,31)

620,553,492,439,391,348,310,276,246,219,195,174,155,138,123,110,98,87,78,69,62,55,49,44,39,35,31,27,24,22,19,17

B(QP=0,..,31)

3881,4351,4890,5481,6154,6914,7761,8718,9781,10987,12339,13828,15523,17435,19561,21873,24552,27656,30847,34870, 38807,43747, 49103,54683,61694,68745,77615,89113,100253,109366,126635,141533

The relation between A() and B() is: A(QP)xB(QP)x6762 = 240.

Quantization of a coefficient with absolute value K QP as quantization value:

LEVEL = (KxA(QP) + fx220)/220 f is in the range (0-0.5). This is similar to 'p' used in H.263 Intra coding.

Dequantization:

K' = LEVELxB(QP)

After inverse transform this results in pixel values that are 220 too high. A shift of 20 bits (with rounding) is therefore needed on the reconstruction side. The definition of transform and quantization is designed so that no overflow will occur with use of 32 bit arithmetic.

4.6	Use of 2D VLC

In the 3D model for coefficient coding (see H.263) there is no good use of a short codeword of 1 bit. On the other hand, with the use of 2D VLC plus End Of Block (EOB) (as used in H.261, H.262) and with the small block size, 1 bit for EOB is usually well matched to the VLC.

Furthermore, with the fewer non-zero coefficients pr. block, the advantage of using 3D VLC is reduced.

As a result we 'go back' to use of 2D VLC plus EOB in the proposed method. See below for the use of double scan for even better match of coefficient statistics to the VLC.

4.7	Scanning of transform coefficients

4.7.1	Simple scan

Except for Intra coding of luma with QP<24, simple scan is used. This is basically zig-zag scanning similar to the one used in H.263. The scanning pattern is:

 0 1 5 6

 2 4 7 12

 3 8 11 13

 9 10 14 15

4.7.2	Double scan

When using the VLC defined above, we use a one bit code for EOB. For Inter blocks and Intra with high QP the probability of EOB is typically 50% which is well matched with the VLC. In other words this means that we on average have one non-zero coefficient pr 4x4 block in addition to the EOB code (remember that a lot of 4x4 blocks only have EOB). On the other hand, for Intra coding we typically have more than one non-zero coefficient pr 4x4 block. This means that the 1 bit EOB becomes inefficient. To improve on this the 4x4 block is subdivided into two parts that are scanned separately and with one EOB each. The two scanning parts are shown below – one of them in bold.

 0 1 2 5

 0 2 3 6

 1 3 4 7

 4 5 6 7

For Intra coding with QP in the range of 20 (corresponding to 9-10 in H.263) this typically gives a bitreduction of (6-8)%

4.8	Motion vector search

4.8.1	Taking bit usage into account during search

Especially since use of 4x4 vectors may be very bit expensive, bit usage is taken into account in the search process. Instead of SAD we use:

SADeff = SAD + kx(bits_for_vector – 16xno_motion)

k (B(QP)/4200

no_motion = 1 for 16x16 vectors where both vector components = 0. Otherwise no_motion = 0.

4.8.2	Use of transform in the ½ pixel search

In motion search we usually minimize SAD for each block. It is well known that coding efficiency could be improved if we instead performed a complete coding for each vector position and made the choice depending on rate and distortion (R/D). However, this procedure usually turns out to require far too much computation.

A somewhat simpler method is to perform the transform in the search loop and compute Sum of Absolute Transform Difference (SATD). With the 8x8 DCT this still requires too much computation. An 8x8 DCT requires about 10 arithmetic operations/pixel (additions and multiplications) even if fast algorithms are implemented.

In the present model we have implemented 4x4 Hadamard transform in the ½ pixel search loop. The Hadamard transform is simpler to implement than the transform described above and turns out to give similar performance as using DCT in the search loop. For RD-constrained motion search we therefore minimize:

SADeff = 2xSATD + kx(bits_for_vector - 8xno-motion)

4.8.3	Fast implementation of 4 point Hadamard transform

We typically have to compute the Hadamard transform in one pixel position when we already know the coefficients in the neighboring position.

Example:

We have 5 pixels A, B, C, D, E. We have already computed the transform coefficients (h0 – h3) using pixels A to D:

h0 = A + B + C + D

h1 = A + B - C - D

h2 = A - B - C + D

h3 = A - B + C - D

We want to obtain the coefficients (H0 – H3) using pixels B to E. Let (= E – A. Then:

H0 = B + C + D + E	= h0 + (

H1 = B + C - D - E	=-h2 - (

H2 = B - C - D + E	= h1 + (

H3 = B - C + D - E	=-h3 - (

By using a similar technique in the two-dimensional case, one ends up with (1.5-2) additions/pixel to perform the transform. As it is only used in ½ pixel search it is therefore considered to be feasible even for real time implementation.

4.9	Postfiltering

A postfilter similar to that defined in the H.263 testmodel has been used. One reason for this is that it has been recommended to use postfilter on the sequences reconstructed from anchor bitstreams.

4.10	Use of more than one past frame for prediction

This will be included in the model, but is at the present not used. Signaling of which frame to be used for prediction of a macro block will be: CODE word number 0 indicate prediction from the most recent frame, CODE word number 1 indicate prediction from the next most recent frame etc.

4.10.1	Vector prediction

To use more than one frame for prediction has an influence on prediction of vectors. Let me give an example. The ’age’ of the frame used for prediction may be 1 - 5 (for fixed frame rate). Agepresent is the age of the vector to be predicted whereas Agepred is the age of a vector V from a neighboring MB to be used for prediction. We then used the scaled down vector:

Vpred = VxAgepresent/Agepred for prediction.

5	Overview of the total syntax

The following syntax elements are used on the macroblock level.

Mode	Indication of no-coding, Inter prediction with different block size or Intra.

	For Intra picture there is no mode information and MODE = 4 is assumed.

Intra prediction	In case MODE = 4, 8 codewords to define prediction mode for all luma blocks.

Motion vectors	If MODE = 1,2,3 there are 1,4 or 16 pairs of vector data.

CBP	Defines which 8x8 blocks have non-zero transform coefficients.

Coefficient data	Coefficient data are included according to the value of CBP.

6	An example of decoding a sequence with biterrors

6.1	Inclusion of Intra GOBs

In order to be able to recover from error situations, regular Intra coding is used. This is done by coding one GOB Intra for each frame – going from top to bottom. Furthermore, restrictions are made to motion vectors around the most recent Intra coded GOB to ensure that possible errors do not 'leak' from before the Intra updating. In this way we can be sure that the sequence will be completely recovered after a full Intra update.

The R/D curve including this Intra updating is shown together with the other R/D curves (Foreman). We see that this curve is typically 1 dB below the corresponding curve without Intra updating.

In a bitstream representing 100 frames we added biterrors to 3 random locations in the bitstream. To simulate biterrors we inverted 5 bytes at each of the locations.

6.2	Decoder action

The decoder takes action if a codeword does not result in an interpretation of a parameter value according to Table 1. Example: The decoder looks for a mode value and finds a code number 8 (illegal) or look for a CBP and finds code number 102. The decoder also takes action if picture sync. does not come when picture sync. is expected.

If such an error is detected, the decoder continues to decode codewords until a new picture sync. but does not reconstruct pictures data. When a new picture sync. is found, normal decoding and reconstruction is resumed.

The resulting decoded sequence will be demonstrated on D1. The decoder could also easily have chosen to 'freeze' the last good picture and wait until a new error free picture was reconstructed. Then we would not see any errors but a larger freeze of motion.

7	Simulation results and tape demonstrations

7.1	Coding of sequences and Intra pictures

Document q15f_11.xls contains all the R/D graphs. The proposed method is compared to the anchor simulations. Curves representing Intra frames (1. frames) and complete sequences are shown on different graphs.

All the tape demonstrations use split screen mode by upconverting the decoded sequences to full screen and displaying half of each sequence (proposed method and anchor) side by side.

7.2	Comparison between the proposed Intra coding method and JPEG 2000

Since there is activity on developing a new still picture compression method – JPEG_2000 – we were curious to compare our proposed Intra coding method with JPEG_2000. Since this method works with RGB signals or greytone images (one component) and not YUV components we did the following modification:

JPEG_2000 was used on the luma component only (in one component mode). We used the version 1 of the JPEG software and default settings were used.

In our method we did not count bits for chroma coefficients.

The resulting R/D curves are shown together with the other Intra curves.

File:� FILENAME * MERGEFORMAT �Q15F11.doc�	Page: � PAGE �10�	Date Printed: � DATE * MERGEFORMAT �26.10.98�

1

0

0

3

A

3

2

2

5

B

C

1

5

4

4

6

6

6

6

n=5

n=4

n=1

n=0

n=3

n=2

