ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Circuit-Switched Network (CSN)

MultimediaTerminals and Systems Experts Group

Vancouver, July 21 -24, 1998�
Document q11gXX

Filename: q11gXX.doc�
�

Question:�
Q.11/16�
�
Source:�
Andreas Rulfs, Fritz Seytter, Bernhard Wimmer

SIEMENS AG

Tel. +49 - 89 - 636 50417

fax. +49 - 89 - 636 52393

email: bernhard.g.wimmer@mchp.siemens.de�
�
Title:�
MPEG-4 over H.324�
�
Purpose�
Proposal�
�

Introduction

This paper intends to provide a clear and simple interface between MPEG-4 DMIF and the underlying H.324 transmission standard. Thus the complete MPEG-4 functionalities can be supported on such a H.324 multimedia terminal with an minimum of addition to the current H.324 standard. This implies that all future MPEG-4 stacks can be supported by this generic DMIF/H.324 interface. This means that the stacks of MPEG-4 and H.324 can be implemented separately by different manufactures and still be integrated into one system. Using partial MPEG-4 standards may require frequent updates of H.245 MPEG4-codepoints.

For MPEG-4 control primitives that need to be exchanged with the underlying network layer are defined in ISO/IEC 14496-6 (MPEG-4 DMIF), while the protocol stack in the data plane is defined in ISO/IEC 14496-1 (MPEG-4 Systems). Thus in order to enable MPEG-4 it is necessary to provide a mapping of control messages between the top layer of the underlying network and the DNI (DMIF Network Interface), as well as the definition of a protocol stack architecture on the data plane.

Our intend is to present a first draft for MPEG-4 over H.324. However comments and improvements are very welcome.

Protocol Stack Architecture

MPEG-4 data are exchanged with the underlying protocols in Flexmux Streams, sent through so-called Transmux Channels with defined QoS parameters which need to be provided by the underlying protocol. In the case of H.324 this mapping is particularly straightforward as MPEG-4 Transmux Channels can directly be defined to be Logical Channels in H.324 (H.223). For critical transmission media (mobile transmission) the extensions of the H.223 allow separate handling of QoS for each Logical Channel, so that MPEG-4 streams can efficiently be carried.

In the framework of H.324, without modifying the text of H.324, logical channels carrying MPEG-4 video and audio information can be treated as data channels. While the default Adaptation Layer (AL) for data is AL1, it is explicitly possible to negotiate any other AL (AL2 or AL3). This seems sensible when transmitting MPEG-4 audio or video streams (or, generally, streams with differing QoS requirments) over separate logical .channels.

� EINBETTEN Word.Picture.6 ���

Control Message Mapping

Using MPEG-4 in the framework of H.324 requires a mapping between the control primitives defined in the DNI and the control protocol standardized for H.324, i.e. H.245. While some of the primitives can directly be mapped onto H.245 messages, others need to be carried in addition. This could happen by using a specific DMIF control channel (using the native DMIF signalling syntax) carrying only those commands that are not available in H.245. As it is unclear whether such a partial mapping is possible providing complete DMIF signalling in an extended version of H.245 seems more apropriate and is described here.

Much of the work defining additional code points in H.245 has already been done in an abandoned proposal for MPEG-4 over H.323.

Control Functions

Successful completion of a call signaling procedure result in the establishment of a reliable channel between the two endpoints which is used by H.324 to exchange H.245 control functions (logical channel 0). DMIF terminals shall follow this mechanism.

The H.245 Control Function uses the H.245 Control Channel to carry end-to-end control messages governing operation of the DMIF entity, including capabilities exchange, opening and closing of logical channels, and flow control messages. In addition, DMIF defines operations which do not exist in H.324. These include request for media-streams and exchange of stream-map-tables (SMTs).

H.245 defines a collection of signaling functions for media-type dependent control. Unlike H.324, DMIF does not make use of these functions, because they are considered above the scope of the DMIF layer. H.245 specifies a number of independent protocol entities which support endpoint to endpoint signaling. A protocol entity is specified by its syntax (messages), semantics, and a set of procedures which specify the exchange of messages and the interaction with the user. DMIF endpoints shall support the syntax, semantics, and procedures of the following protocol entities:

Capability Exchange

Logical Channel Signaling

Bi-directional Logical Channel Signaling

Close Logical Channel Signaling

Round Trip Delay Determination

Maintenance Loop Signaling

The use of these for DMIF might require few extensions to H.245. These are explained later on in this chapter and detailed syntax is provided in section .

In addition, DMIF requires the introduction of the following protocol entities:

SessionSetup

SessionRelease

ServiceAttach

ServiceDetach

Channel Add Request

Channel Add Indication

Channel Delete

Transmux Channel Configure

Explanations are provided below, syntax is provided in section H.245 Extensions for DMIF below.

MultimediaSystemControlMessage messages, and shall send and receive all messages needed to implement required functions and those optional functions which are supported by the terminal.

The use of protocol entities in DMIF is described in the following paragraphs.

Capability Exchange

Capabilities Exchange procedures are used during the establishment of a service to ensure that the two terminals may inter-operate. Both multiplex (i.e. transport layer) capabilities and media capabilities are exchanged. The semantics and syntax of multiplex capabilities are like in H.324, but the media capabilities differ substantially. Instead of referring specific media and decoder types, MPEG-4 profiles are exchanged. This requires H.245 extensions which are detailed in Section H.245 Extensions for DMIF below.

Logical Channel Signalling

Logical Channel Signalling procedures are used for the creation of channels. Unlike H.324 which identifies channels by their media types, DMIF has no knowledge of the media attribute of each stream. In MPEG-4 for example streams are identified by their ES_Ids. This requires H.245 extensions which are proposed in Section H.245 Extensions for DMIF below.

In addition, the sending endpoint may distribute information about available multicast channels and their contents, with the use of the communicationsModeCommand function. This also requires H.245 extensions as specified in Section H.245 Extensions for DMIF below.

H.245 procedures for logical channel signalling make use of a logical channel number. This corresponds to the DMIF concept of TransMux Channel Association Tag (TAT).

Bi-directional Logical Channel Signaling

This is required in DMIF V1 for the creation of ES back channels for upstream feedback or in conversational services where streams flow in both directions. H.245 extension needed for that are specified in Section H.245 Extensions for DMIF below.

Close Logical Channel Signaling

This follows the rules of H.324. No H.245 extensions are needed.

Round Trip Delay Determination

This follows the rules of H.324. No H.245 extensions are needed.

Maintenance Loop Signaling

This follows the rules of H.324. No H.245 extensions are needed.

Service Attach

DMIF terminals explicitly name a service which identifies an entity that responds to the DAI primitives. Service Attach is a protocol entity which makes use of two new functions: dniServiceAttachRequest and dniServiceAttachResponse. A syntax for these functions is defined in Section H.245 Extensions for DMIF below.

[This corresponds to DN_ServiceAttach()]

Service Detach

DMIF terminals need to explicitly detach a service. Service Detach is a protocol entity which makes use of two new functions: dniServiceDetachRequest and dniServiceDetachResponse. A syntax for these functions is defined in Section H.245 Extensions for DMIF below.

[This corresponds to DN_ServiceDetach()]

Channel Add Request

DMIF terminals need to explicitly request channels which contain specific elementary streams. Channel Add is protocol entity which makes use of two new functions: dniChannelAddRequest, and dniChannelAddRequestResponse. A syntax for these functions is defined in Section H.245 Extensions for DMIF below.

[This corresponds to DN_ChannelAddRequest()]

Channel Add Indication

DMIF terminals need to explicitly indicate channels which have already been added that contain specific elementary streams. Channel Add is a protocol entity which makes use of two new functions: dniChannelAddIndicationRequest and dniChannelAddIndicationResponse. A syntax for these functions is provided in Section H.245 Extensions for DMIF below.

[This corresponds to DN_ChannelAddIndication()]

Channel Delete

DMIF terminals explicitly delete already established channels when not needed. Channel Add is a protocol entity which makes use of two new functions: dniChannelDeleteRequest and dniChannelDeleteResponse. A syntax for these functions is provided in Section H.245 Extensions for DMIF below.

[This corresponds to DN_ChannelDelete()]

Transmux Channel Configure

DMIF terminals configure the flexmuxes used over the transmuxes when needed. Transmux Channel Config is a protocol entity which makes use of two new functions: dniChannelConfigRequest and dniChannelConfigResponse. A syntax for these functions is provided in Section H.245 Extensions for DMIF below.

[This corresponds to DN_TransMuxConfig()]

Extensions for DMIF

This section provides extensions to ITU-T Recommendation H.245 Version 2 from June 1996[1].

The function syntax described subsequently include the full syntax of each extended structure. The DMIF extensions are marked with an underline.

RequestMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDetermination	MasterSlaveDetermination,

	terminalCapabilitySet	TerminalCapabilitySet,

	openLogicalChannel	OpenLogicalChannel,

	closeLogicalChannel	CloseLogicalChannel,

	requestChannelClose	RequestChannelClose,

	multiplexEntrySend	MultiplexEntrySend,

	requestMultiplexEntry	RequestMultiplexEntry,

	requestMode	RequestMode,

	roundTripDelayRequest	RoundTripDelayRequest,

	maintenanceLoopRequest	MaintenanceLoopRequest,

	...,

	communicationModeRequest	CommunicationModeRequest,

	conferenceRequest	ConferenceRequest,

	h223AnnexAReconfiguration	H223AnnexAReconfiguration,

	dniSessionSetupRequest	DniSessionSetupRequest

	dniSessionReleaseRequest	DniSessionReleaseRequest

	dniServiceAttachRequest	DniServiceAttachRequest

	dniServiceDetachRequest	DniServiceDetachRequest

	dniTransMuxSetupRequest	DniTransMuxSetupRequest

	dniTransMuxReleaseRequest	DniTransMuxReleaseRequest

	dniChannelAddRequest	DniChannelAddRequest

	dniChannelAddIndRequest	DniChannelAddIndRequest

	dniChannelDeleteRequest	DniChannelDeleteRequest

	dniTransMuxConfigRequest	DniTransMuxConfigRequest

}

ResponseMessage	::=CHOICE

{

	nonStandard	NonStandardMessage,

	masterSlaveDeterminationAck	MasterSlaveDeterminationAck,

	masterSlaveDeterminationReject	MasterSlaveDeterminationReject,

	terminalCapabilitySetAck	TerminalCapabilitySetAck,

	terminalCapabilitySetReject	TerminalCapabilitySetReject,

	openLogicalChannelAck	OpenLogicalChannelAck,

	openLogicalChannelReject	OpenLogicalChannelReject,

	closeLogicalChannelAck	CloseLogicalChannelAck,

	requestChannelCloseAck	RequestChannelCloseAck,

	requestChannelCloseReject	RequestChannelCloseReject,

	multiplexEntrySendAck	MultiplexEntrySendAck,

	multiplexEntrySendReject	MultiplexEntrySendReject,

	requestMultiplexEntryAck	RequestMultiplexEntryAck,

	requestMultiplexEntryReject	RequestMultiplexEntryReject,

	requestModeAck	RequestModeAck,

	requestModeReject	RequestModeReject,

	roundTripDelayResponse	RoundTripDelayResponse,

	maintenanceLoopAck	MaintenanceLoopAck,

	maintenanceLoopReject	MaintenanceLoopReject,

	...,

	communicationModeResponse	CommunicationModeResponse,

	conferenceResponse		ConferenceResponse,

	h223AnnexAReconfigurationAck	H223AnnexAReconfigurationAck,

	h223AnnexAReconfigurationReject	H223AnnexAReconfigurationReject,

	dniSessionSetupResponse	DniSessionSetupResponse

	dniSessionReleaseResponse	DniSessionReleaseResponse

	dniServiceAttachResponse	DniServiceAttachResponse

	dniServiceDetachResponse	DniServiceDetachResponse

	dniTransMuxSetupResponse	DniTransMuxSetupResponse

	dniTransMuxReleaseResponse	DniTransMuxReleaseResponse

	dniChannelAddResponse	DniChannelAddResponse

	dniChannelAddIndResponse	DniChannelAddIndResponse

	dniChannelDeleteResponse	DniChannelDeleteResponse

	dniTransMuxConfigResponse	DniTransMuxConfigResponse

}

Capability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	receiveVideoCapability	VideoCapability,

	transmitVideoCapability	VideoCapability,

	receiveAndTransmitVideoCapabilityVideoCapability,

	receiveAudioCapability	AudioCapability,

	transmitAudioCapability	AudioCapability,

	receiveAndTransmitAudioCapabilityAudioCapability,

	receiveDataApplicationCapabilityDataApplicationCapability,

	transmitDataApplicationCapability	DataApplicationCapability,

	receiveAndTransmitDataApplicationCapability	DataApplicationCapability,

	h233EncryptionTransmitCapability	BOOLEAN,

	h233EncryptionReceiveCapability	SEQUENCE

	{

		h233IVResponseTime	INTEGER (0..255),	-- units milliseconds	

		...

	},

	...,

	conferenceCapability	ConferenceCapability,

	receiveMPEG4Capability	MPEG4Capability,

	transmitMPEG4Capability	MPEG4Capability,

	receiveAndTransmitMPEG4Capability	MPEG4Capability

}

MPEG4Capability	::=SEQUENCE

{

	profile	INTEGER(0..127),

	fromProfileLevel	INTEGER(0..127),

	toProfileLevel	INTEGER(0..127),

	…

}

CommunicationModeTableEntry	::=SEQUENCE

{

	nonStandard	SEQUENCE OF NonStandardParameter OPTIONAL,

	sessionID	INTEGER(1..255),

	associatedSessionID	INTEGER(1..255) OPTIONAL,

	terminalLabel	TerminalLabel OPTIONAL, 	-- if not present,

						-- it refers to all participants

						-- in the conference

	sessionDescription	BMPString (SIZE(1..128)),	 -- Basic ISO/IEC 10646-1 (Unicode)

	dataType	CHOICE

	{

		videoData		VideoCapability,

		audioData		AudioCapability,

		data		DataApplicationCapability,

		...

		mpeg4Data		MPEG4Capability,

	},

	mediaChannel	TransportAddress OPTIONAL,

	mediaGuaranteedDelivery	BOOLEAN OPTIONAL,

	mediaControlChannel	TransportAddress OPTIONAL, -- reverse RTCP channel

	mediaControlGuaranteedDelivery	BOOLEAN OPTIONAL,

	...

}

DniSessionSetupRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10))

}

DniSessionSetupResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

}

DniSessionReleaseRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

reason	INTEGER(0..16383)

}

DniSessionReleaseResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

}

DniServiceAttachRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

serviceId	OCTET STRING(SIZE(2)),

serviceName	OCTET STRING(SIZE(1..255)),

ddDataInBuffer, ddDataInLen	OCTET STRING(SIZE(2))

}

DniServiceAttachResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

ddDataInBuffer, ddDataInLen	OCTET STRING(SIZE(2))

}

DniServiceDetachRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

serviceId	OCTET STRING(SIZE(2)),

reason	INTEGER(0..16383)

}

DniServiceDetachResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

}

DniTransMuxSetupRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

tAT	OCTET STRING(SIZE(2)),

qoSDescriptor	QoSDescriptor,

resources	Resources

-- repeat above 3 Sequence as many as a max of 256 instances

}

DniTransMuxSetupResponse	::=SEQUENCE

{

response	INTEGER(0..16383),

resources	Resources

-- repeat above 2 sequences as many as a max of 256 instances

}

DniTransMuxReleaseRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

TAT	OCTET STRING(SIZE(2)),

-- repeat above sequence as many as a max of 256 instances

}

DniTransMuxReleaseResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

-- repeat above sequence as many as a max of 256 instances

}

DniChannelAddRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

serviceId	OCTET STRING(SIZE(2)),

CAT	OCTET STRING(SIZE(2)),

direction	BOOLEAN,

ddDataInBuffer, ddDataInLen	OCTET STRING(SIZE(2))

-- repeat above 4 sequences as many as a max of 256 instances

}

DniChannelAddResponse	::=SEQUENCE

{

TAT			OCTET STRING(SIZE(2)),

response		CHOICE,

ddDataOutBuffer, ddDatOutLen		OCTET STRING(SIZE(2))

-- repeat above 4 sequences as many as a max of 256 instances

}

DniChannelAddIndRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

serviceId	OCTET STRING(SIZE(2)),

CAT	OCTET STRING(SIZE(2)),

direction	BOOLEAN,

TAT	OCTET STRING(SIZE(2)),

ddDataInBuffer, ddDataInLen	OCTET STRING(SIZE(2))

-- repeat above 5 sequences as many as a max of 256 instances

}

DniChannelAddIndResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

-- repeat above sequences as many as a max of 256 instances

}

DniChannelDeleteRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

CAT	OCTET STRING(SIZE(2)),

reason	INTEGER(0..16383)

-- repeat above 2 sequences as many as a max of 256 instances

}

DniChannelDeleteResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

-- repeat above sequences as many as a max of 256 instances

}

DniTransMuxConfigRequest	::=SEQUENCE

{

networkSessionId	OCTET STRING(SIZE(10)),

TAT	OCTET STRING(SIZE(2)),

ddDataInBuffer, ddDataInLen	OCTET STRING(SIZE(2))

-- repeat above 3 sequences as many as a max of 256 instances

}

DniTransMuxConfigResponse	::=SEQUENCE

{

response	INTEGER(0..16383)

-- repeat above sequence as many as a max of 256 instances

}

