ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Fifth Meeting: Whistler, British Columbia, CA, 21-24 July, 1998�
Document Q15-E-17

Filename: q15e17.doc

Generated: 02 July ’98�
�

Question:�
Q.15/SG16�
�
Source:�
Gisle Bjontegaard�Telenor Satellite Services�P.O.Box 6914 St.Olavs plass�N-0130 Oslo, Norway�
�Tel:�Fax:�Email:�
�+47 23 13 83 81�+47 22 77 79 80�gisle.bjontegaard@oslo.satellite.telenor.no�
�
Title:�
MPEG-4, 4x4 blocks & long-term memory�
�
Purpose:�
Information�
�

1	Introduction

Telenor was active in defining the H.263 coding standard – which also formed the basis for MPEG-4 efficient coding. Recently, MPEG-4 and ITU have performed parallel improvements on video coding methods and the two groups have had somewhat different focus. In this process we have contributed into the development of H.263+ and now H.263++ within ITU. The reason for choosing ITU is not lack of interest in what is going on in MPEG, but rather limited resources to participate actively in the two groups.

From the Telenor side we see definite benefits if the two standards could have as much in common as possible – and both be as good as possible. In the process for making improvements for H.263++ we are considering coding elements that we believe may also be of interest for MPEG-4. We therefore bring an information document to this meeting. If MPEG-4 see a potential gain in the here presented coding items, we will be more than willing to continue the work also in MPEG-4, by setting up core experiments and also provide coding software.

In the present paper we have tried to compare simulations based on our ITU software with MPEG-4 simulations. (See more details in the section on simulation results). Three new coding items have been included in our software:

Improved motion estimation and prediction model where 16x16, 8x8 and 4x4 motion vectors may be used.

Use of 4x4 DCT (instead of 8x8).

Possible prediction from more than one previous frame.

2	Motion model

There may be one 16x16 vector for a macroblock, 4 8x8 vectors or 16 4x4 vectors. Which one to use is signaled as mode information as in H.263.

2.1	Coding of vector differences

Prediction of vector coefficients is still done by a median filter.

Especially when using 4x4 vectors, this results in a large proportion of the bitrate used for vector information. It is therefore important to optimize the method of vector difference coding. In particular, we found that the situation with both vector differences equal to the predictor occurred in at least 50% of the cases (for 4x4 vectors). This indicates that 1 bit for this situation is more efficient than two bits (that is used at present)

Both MPEG-4 and H.263+ make use of an extended vector table, which is decodable forwards or backwards. A similar table is used here. However, information on whether the vector components are equal to the prediction (vector difference=0) is coded separately with a separate codeword:

1	Both vector differences = 0

001	The horizontal difference = 0 and the vertical difference (0

000	The vertical difference = 0 and the horizontal difference (0

01	Both differences (0

Then only nonzero vector differences have to be coded and the coding table is (see Annex D of H.263+):

 Code	Bits	Vector range covered

 1s	2	(1

 0x00s	4	((2:3)

 0x11x00s	6	((4:7)

 0x21x11x00s	8	((8:15)

 0x31x21x11x00s	10	((16:31)

 ...

Let us look at the resulting total bit allocation to a two-dimensional vector difference. The (0,0) vector is shown in bold:

Bit allocation in the traditional model: Present model

 10 10 8 6 8 10 10 10 10 8 7 8 10 10

 10 10 8 6 8 10 10 10 10 8 7 8 10 10

 8 8 6 4 6 8 8 8 8 6 5 6 8 8

 6 6 4 2 4 6 6 7 7 5 1 5 7 7

 8 8 6 4 6 8 8 8 8 6 5 6 8 8

 10 10 8 6 8 10 10 10 10 8 7 8 10 10

 10 10 8 6 8 10 10 10 10 8 7 8 10 10

It is seen that the present model uses 1 bit instead of 2 for the (0,0) vector. Some of the other values use one bit more in the present model. Overall this gives a gain for 4x4 vector coding - typically 4 bits less to code 4x4 vectors for one MB. For 8x8 and 16x16 vectors it also result in a small bit reduction.

2.2	RD constrained model in motion search

In the search procedure we minimize SADeff (this apply for 16x16, 8x8 or 4x4 vectors):

SADeff = SAD + QUANTx(bits_for_vector - 8xno-motion)

no-motion = 0 except for 16x16 vectors where both components (not differences) = 0. In that case no-motion = 1.

2.3	Search range

QCIF

(10 pixels around the prediction + check of the (0,0) vector for 16x16 vectors.

(5 pixels around the prediction + check of the (0,0) vector for 8x8 and 4x4 vectors.

CIF

(16 pixels around the prediction + check of the (0,0) vector for 16x16 vectors.

(8 pixels around the prediction + check of the (0,0) vector for 8x8 and 4x4 vectors.

Half pixel search is (one ½ pixel for all motion vector block sizes.

2.4	Use of more than one frame for prediction

Use of more than one past frame for prediction has been reported from several experiments. Use of B-frames is also a way of taking advantage of prediction from more than one frame. In ITU Thomas Wiegand recently reported results where prediction from several past frames was used in the ITU coding framework. It showed that considerable gain could be obtained in certain situations.

In the present paper we try to compare MPEG-4 coding with B-frames (M=2) with prediction from 3 (or 5) past frames. We have used the ’Mobile & Calendar’ sequence (MPEG1,2) because for this sequence B-frame coding proved particularly efficient.

We try to show/argue that use of 3 past frames for prediction has the following advantages over use of B-frames (M=2):

Better picture quality, objectively as well as subjectively.

The same memory size (3 frames) is needed at the decoder side for both cases.

No ’reordering delay’ is added since prediction is done only from the past.

The total number of vector search positions is reduced. This is because we always can predict from the most recent past frame whereas with M=2 the P-frame must be predicted from 3 frames back and therefore need a search window 3x3 times as large as for search in the most recent past frame.

Inherent adaptation to different picture material. In B-frame coding it is optimal to use large M (2 or higher) for low motion whereas violent motion material would be better coded with M=0 (no B-frames). Implementation of this flexibility comes at a cost. With the use of several past frames for prediction, the most recent past frame is always available and will automatically be selected for violent motion. For small motion (as Mobcal) on the other hand, mare distant frames in the past will automatically be selected whenever appropriate.

In the present coding model up to 5 past decoded frames may be used for prediction.

2.4.1	Signaling of frame for prediction

1 indicates prediction from the most recent decoded frame. The codewords 000, 001, 010, 011 are used to indicate the other 4 possible frames for prediction. Note: for one MB all vectors have to refer to the same decoded picture.

Search range in ’older’ frames.

The first tests indicated that older frames were most useful with low motion. To save computing, we therefore reduced the search range by a factor of 2 (in both directions) for frames older than the last frame. For ½ pixel search we similarly reduced the number of search positions from 9 to 5.

2.4.2	Vector prediction

To use more than one frame for prediction has an influence on prediction of vectors. Let me give an example. The ’age’ of the frame used for prediction may be 1 - 5 (for fixed frame rate). Agepresent is the age of the vector to be predicted whereas Agepred is the age of a vector V from a neighboring MB to be used for prediction. We then used the scaled down vector:

Vpred = VxAgepresent/Agepred

for prediction.

3	Use of 4x4 transform

Up till now, most video coding standards have used 8x8 DCT transform for the coding of difference from the prediction. Use of DCT over a large number of pixels results in good gain if there is high correlation between pixels to be transformed. As we do better and better prediction, correlation between pixels that are transformed becomes lower and lower. One of our goals is actually to produce a difference from prediction with no correlation between pixels! As a result, we must expect that the use of DCT with large number of pixels is of limited use.

Another issue is the IDCT mismatch problem with the present definition of the 8x8 DCT.

With this as a background, We tried to replace the 8x8 DCT with a 4x4 DCT.

3.1	Possible use of integer number transform

The basis vectors of a 4 pixel DCT are:

	½	½	½	½

	0.6533	0.2706	-0.2706	-0.6533

	½	-½	-½	½

	0.2706	-0.6533	0.6533	-0.2706

It is seen that two of the coefficients only have ½ as multiplication factor. By a small modification of the transform (which is insignificant to coding performance) it is possible to define integer versions of the transform. Two examples:

	½	½	½	½

	42/64	17/64	-17/64	-42/64

	½	-½	-½	½

	17/64	-42/64	42/64	-17/64

This definition gives slightly different norm to the coefficients, however this is considered insignificant.

or:

	13	13	13	13

	17	7	-7	-17

	13	-13	-13	13

	7	-17	17	-7

With this definition additional scaling of coefficients have to be defined at the decoder. The main point is that the exact operations – including shifts and scaling on the decoder side could be defined and thereby avoiding IDCT mismatch.

3.2	Coefficient coding

We need coded block pattern that defines if there are coefficients in each 4x4 block. We group 4 4x4 blocks together and send one CBP to signal which 4x4 block has nonzero coefficients. Therefore, for one MB, 4 CBPs for luma are used. For chroma, the information whether there are nonzero U or V coefficients is still linked to MODE information (as in H.263). If there are nonzero coefficients, a CBP for each of U and V is used to signal which 4x4 block have nonzero coefficients.

A new 3D VLC is designed to code coefficient information. We now need RUN of maximum 15. The size of coefficients is also generally smaller. As a result the VLC has 43 entries compared to 102 in H.263.

3.3	Use of transform in the halfpixel search

In motion search we usually minimize SAD for each block. It is well known that coding efficiency could be improved if we instead performed a complete coding for each vector position and made the choice depending on rate and distortion (RD). However, this procedure usually turns out to require far too much computation.

A somewhat simpler method is to perform the transform in the search loop and compute Sum of Absolute Transform Difference (SATD). With the 8x8 DCT this still requires too much computation. An 8x8 DCT requires about 10 arithmetic operations/pixel (additions and multiplications) even if fast algorithms are implemented.

In the present model we have implemented 4x4 Hadamard transform in the ½ pixel search loop. The Hadamard transform is simpler to implement than the DCT and turns out to give similar performance as using DCT in the search loop (Notice that the Hadamard transform is used only in the search loop. DCT is still used for actual coding of deviation from prediction). For RD-constrained motion search we therefore minimize:

SADeff = 2xSATD + QUANTx(bits_for_vector - 8xno-motion)

3.3.1	Fast implementation of 4 point Hadamard transform

We typically have to compute the Hadamard transform in one pixel position when we already know the coefficients in the neighboring position.

Example:

We have 5 pixels A, B, C, D, E. We have already computed the transform coefficients (h0 – h3) using pixels A to D:

h0 = A + B + C + D

h1 = A + B - C - D

h2 = A - B - C + D

h3 = A - B + C - D

We want to obtain the coefficients (H0 – H3) using pixels B to E. Let (= E – A. Then:

H0 = B + C + D + E	= h0 + (

H1 = B + C - D - E	=-h2 - (

H2 = B - C - D + E	= h1 + (

H3 = B - C + D - E	=-h3 - (

By using a similar technique in the two-dimensional case, one ends up with (1.5-2) additions/pixel to perform the transform. As it is only used in ½ pixel search it is therefore considered to be feasible even for real time implementation. See section for simulation results for coding gains.

4	Use of filtering

In the ITU coding model there is a definition of a deblocking filter in the coding loop for improved coding efficiency. We are aware that MPEG-4 also considered this solution but decided not to include it in their model. For fair comparisons, we therefore deleted the deblocking filter in the ITU model for the present simulations.

Postfilters are defined in MPEG-4 as well as in the H.263++ test model. Use of postfiltering may improve the picture quality significantly. It is also recognized that comparison between to coding methods may come out differently depending on the use of postfilter or not. We therefore decided to do subjective comparison of simulation results after postfiltering. We further decided to use the ITU postfilter due to its simplicity. (Comparisons have shown that the ’full package’ of MPEG-4 postfiltering may result in slight improvement in quality but at a high cost in implementation).

4.1	Definition of the ITU type postfilter

Assume that pixels A,B,C,D,E,F,G are aligned horizontally or vertically. A new value – D1 – for D ill be produced by:

D1 = D + Filter((A+B+C+E+F+G-6D)/8,S)

S defines the strength of the filter. Its value ranges between 1 and 6 and depends on QUANT and whether D is on a block edge or not. The ’shape’ of the filter function Filter(x,S) looks like:

� Filter

�����

��

 S 3S x

Relation between QUANT and S:

QUANT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S inside block edge 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4

S at block edge 2 2 2 2 2 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6

Implementation is done by a table lookup. Filtering is performed horizontally and vertically.

5	Intra coding

It could be expected that Intra block coding would suffer too much from reducing the DCT block size. To see whether this is true, we designed a prediction scheme for Intra coding similar to the one defined in Annex I of H.263 - with one modification. We did prediction in the pixel domain instead of the transform domain.

The figure illustrates which pixels are used for prediction.

����

������ Previously decoded pixel used for prediction.

������ Pixel to be predicted.

�����

�����

There are three prediction modes: 1) the average of the 8 surrounding pixels, 2) vertical prediction, 3) horizontal prediction. Prediction mode is signaled for each 4x4 block to be predicted. The objective coding gain is similar to using the prediction methods defined in MPEG-4 and H.263. In addition the 4x4 based coding seem to give some additional subjective improvement.

6	Simulation results

Three sequences were tested:

Hall Monitor in QCIF format and 10 fps. 100 frames coded.

News in QCIF format and 10 fps. 100 frames coded.

Mobcal in CIF format and 30 fps. 49 frames coded.

The simulation results are labeled ’Telenor’, ’Telenor+’ (ITU based coding) and ’MPEG-4’. Simulations are made with fixed QUANT. RD curves are produced using QUANT values in the range (5-15)

6.1	’Telenor’ simulation conditions

The coder is based on the ITU baseline coding. The functionality of Annex D (Unrestricted motion vector mode) is included. ’Advanced Prediction mode’ is included in a way by allowing 16x16, 8x8 and 4x4 motion vector blocks. OBMC is not used. As described above, an ’Advanced Intra Coding’ is also included. Transforms are all based on 4x4. Concerning use of more than one frame for prediction and SATD in the motion loop: see below.

Telenor:

SAD is used in the motion search loop. Prediction from only one frame is used for the QCIF sequences Hall Monitor and News. Three frames are used for prediction of the CIF sequence Mobcal.

Telenor+:

This should not be compared with the MPEG-4 results. It is included to show potential improvements based on 4x4 transform and use of several frames for prediction. Hence SATD is used in the motion search loop (Based on 4x4 Hadamard). Prediction from only one frame is used for the QCIF sequences Hall Monitor and News. Five frames are used for prediction of the CIF sequence Mobcal.

The results presented here are based on a simulation model that counts bits and does not yet produce a decodable bitstream. We are in a process of implementing this.

6.2	MPEG-4 simulation conditions

The MPEG-4 video simulations were carried out with the MPEG reference software, MoMuSys-VFCD-V01-980507, compiled with Microsoft Visual C++ 4.0. The following parameter settings were used:

	QCIF-sequences	CIF-sequence

B-frames	0 (M=1)	2 (M=3)

Shape coding	no	no

OBMC	yes	yes

Quantizer	fixed, 5-15	fixed, 5-15

Quantizer_type	H.263 (type 0)	H.263 (type 0)

AC/DC prediction	yes	yes

SADCT	no	no

Search range	16	16

Error resilience elements	no	no

Scalable coding	no	no

�
6.3	Objective results

�
Hall monitor, QCIF 10 fps, 100 frames�
�
�
MPEG-4�
Telenor�
Telenor+�
�
QUANT�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
�
5�
37.94�
55.25�
37.58�
40.95�
37.95�
41.67�
�
7�
35.67�
34.35�
35.43�
27.88�
35.72�
27.25�
�
8�
�
�
34.62�
24.29�
34.83�
23.66�
�
9�
34.04�
24.40�
�
�
�
�
�
10�
33.26�
20.85�
33.06�
18.95�
33.35�
18.28�
�
15�
30,87�
13.37�
30.42�
11.95�
30,73�
12.22�
�

�
News, QCIF 10 fps, 100 frames�
�
�
MPEG-4�
Telenor�
Telenor+�
�
QUANT�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
�
5�
37.26�
84.13�
37.02�
65.71�
37.81�
69.86�
�
7�
34.91�
56.76�
34.81�
47.12�
35.39�
48.47�
�
8�
�
�
34.01�
41.54�
34.53�
42.18�
�
9�
33.29�
42.11�
�
�
�
�
�
10�
32.56�
36.41�
32.60�
32.31�
32.99�
32.25�
�
15�
30.24�
23.19�
30.04�
20.77�
30.35�
20.85�
�

�
Mobcal, CIF 30 fps, 49 frames�
�
�
MPEG-4�
Telenor�
Telenor+�
�
QUANT�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
SNRY(dB)�
Rate(kb/s)�
�
5�
34.56�
3695�
34.17�
3017�
35.22�
2888�
�
7�
31.77�
2450�
31.79�
2100�
32.52�
1913�
�
8�
�
�
31.03�
1808�
31.61�
1621�
�
9�
29.86�
1767�
�
�
�
�
�
10�
28.95�
1504�
29.51�
1333�
29.95�
1169�
�
15�
26.43�
859�
26.85�
756�
27.30�
657�
�

� INNEBYGG Excel.Sheet.8 ���

� INNEBYGG Excel.Sheet.8 ���

� INNEBYGG Excel.Sheet.8 ���

6.4	Tape demonstrations

The simulations marked in bold in the table above will be demonstrated on D1 tape. All sequences have been upconverted to full CCIR 601 to fill the whole screen. Sequences to be compared are shown one after each other rather than in split screen mode.

7	Conclusions

Basically 3 new coding elements have been described:

Improved motion estimation and prediction model where 16x16, 8x8 and 4x4 motion vectors may be used.

Use of 4x4 DCT.

Possible prediction from more than one previous frame.

Simulation results based on a few sequences show that these elements can represent both objective and subjective advantage compared with present MPEG-4 coding. We therefore hope that MPEG-4 will consider their inclusion in the coding model. Telenor is prepared to assist as far as possible in such a process.

File:� FILNAVN * FLETTEFORMAT �Q15e17.doc�	Page: � SIDENR �8�	Date Printed: � DATO * FLETTEFORMAT �02.07.98�

