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Summary



Long-term memory motion-compensated prediction extends the spatial displacement utilized in block-based hybrid video coding by a frame reference parameter. This extension of the motion search range significantly increases the motion-compensated prediction gain. However, the amount of motion search related computation is significantly increased by the new approach as well. This document is intended to provide a showcase on how to lower computation time for long-term memory motion-compensated prediction.



Based on the triangle inequality, we investigate a modified motion search order especially suited for the long-term memory approach. The concept of half-pel refinement is incorporated into the new search ordering method. A hierarchy of triangle inequalities provides an additional speed-up at the cost of memory. It is demonstrated that lossy methods based on the hierarchy of triangle inequalities give additional speed-ups at small losses of prediction gain. At very minor losses in prediction gain, for the sequences Foreman, Mother-Daughter and Stefan a reduction in computation time by factors of 11.2, 8.1, and 3.6, respectively, is reported, when searching 50 frames. For the sequence Foreman, the fastest method searches 10 frames at only twice the computation time of full search on 1 frame. Furthermore, 50 frames are searched using the fastest method using only 6 times the computation time of full search on 1 frame.
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�Introduction

The improved rate distortion performance of long-term memory motion-compensating prediction is shown by means of simulation results when integrating long-term memory prediction into an H.263

codec [WZG97,WZG97b]. The bit-rate savings achieved by using 50 instead of 1 frame in our

rate-distortion optimized H.263-based video codec are 23% for the sequence Foreman and 17% for the sequence Mother-Daughter [WZG97].



The codec utilizes a sliding window of past, decoded frames. Hence, if the long-term memory buffer comprises M frames, a decoded frame is searched M times in the block motion estimation of M successive frames. Therefore, any kind of pre-computation attached to a decoded frame in the long-term memory can be used M times to speed up the motion estimation.



Several methods are known to speed-up motion search that are based on mathematical inequalities [LS95, LT97]. These inequalities, e.g., the triangle inequality, give a lower bound on the norm of the difference between vectors. In block matching, the search criteria very often used for the distortion are the sum of the absolute differences (SAD) or the sum of the squared differences (SSD) between the motion-compensated prediction c[x,y] and the original signal s[x,y]. By incorporating the triangle inequality into the sums for SAD and SSD, we get



� EINBETTEN Equation.2  ���

� EINBETTEN Equation.2  ���	(1)



by varying the parameter p=1 for SAD and p=2 for SSD. Note that for p=2, the inequality used in [LT97] differs from (1). Empirically, we have found not much difference between those inequalities. For some blocks, the inequality used in [LT97] provides a more accurate bound whereas for other blocks the triangle inequality performs better.The set B comprises the sampling positions of the blocks considered, e.g., a block of 16x16 samples.



Assume Dmin to be the smallest distortion value previously computed in the block motion search. Then, the distortion D(s,c) of another block c in our search range is guaranteed to exceed Dmin if the lower bound of D(s,c) exceeds Dmin. More precisely, reject block c if 



	� EINBETTEN Equation.2  ���	(2)



The special structure of the motion estimation problem permits a fast method to compute the norm values of all blocks c[x,y] in the previously decoded frames [LS95].



Search Order

It is obvious that a small value for Dmin determined in the beginning of the search leads to the rejection of many other blocks later and thus reduces computation. Hence, the order in which the blocks in the search range are checked has a high impact on the computation time. For example, given the Huffman code tables for the motion vectors as prior information about our search space, the search ordering should follow increasing bit-rate for the motion vectors. This way, we maximize the probability to find a good match in the search at the beginning. A good approximation of these probabilities is a search spiral, as the one used in the test model for the H.263 standard [TMN-2.0]. Hence, for the long-term memory motion search, a spiral ordering for each frame can be used when searching over the M frames in the long-term memory buffer.



However, an actual motion vector may significantly differ from those long-term statistics that are used to derive the Huffman codes. Much more refined measures about the probabilities of finding a

good match in the search space are given by the values of the block norms. More precisely, a block c[x,y] having a similar norm as the block s[x,y] is very likely to be a good match. Hence, we propose to arrange the order of the motion search according to the order of the absolute differences between the norm of s[x,y] and the norms of the blocks in the search range c[x,y]. The norm-ordered search stops if Eq. (2) is violated. Thus, the algorithm does not even have to look at those positions which can not yield distortion values lower than the one previously found. 



Half-Pel Refinement

When searching in spiral order over the M frames in the long-term memory buffer, the method we choose for half-pel refinement in [WZG97] is the following: for each frame, find the best motion vector by full search on integer-pel positions using the spiral ordering followed by half-pel refinement, and determine the final motion vector by choosing among the motion vectors found for each frame.



Using the norm-ordered search, the half-pel refinement procedure needs to be modified since we are not successively searching over the frames in the long-term memory. Hence, we keep the best N integer-pel vectors found throughout the norm-ordered search and conduct the half-pel refinement procedure for these candidates. The final motion vector is determined by choosing among these half-pel refined candidates.



In Table1, several approaches to motion search using the triangle inequality are compared for three test sequences: Foreman, Mother-Daughter, and Stefan. These sequences were chosen so as to represent extreme cases among the publicly available test sequences.



The experiment conducted to produce the results in Table 1 as well as all following results is to predict blocks of size 16x16 in frames 200 to 299 of those sequences using M past original frames that are sampled at 10 Hz. The motion search finds the corresponding block in the M past frames in a spatial search range of [-15..15]x[-15..15] that minimizes the SSD. When computing the SSD of the 16x16 block, after each line of 16 samples, the distortion computed so far is compared against Dmin and the current block is rejected if Dmin is exceeded. The experiments are conducted on a 300 MHz Sun UltraSPARC, single processor, 1GB RAM, Solaris 2.5. No VIS instructions are used.  Note that the results highly depend on the machine used. The run time measurements have been reproduced several times.



In Table1, full search (F), is compared against three search methods using the triangle inequality. These methods are spiral-ordered search (S), and two norm-ordered search methods (NM and NV). Note that without loss in prediction efficiency (PSNR), the overall computation time (T) is reduced up to a factor of 3.5 for the Foreman sequence for M=50 when comparing the results for search methods F and NV. However, there is no benefit in using our method for M=1 frame, indicating, that in our current implementation, the norm-ordering produces too much overhead.

Table 1. Comparison of spiral-ordered full search, spiral-ordered search using the triangle inequality, and norm-ordered search while varying memory size over 1, 10, 50 and the number of positions for half-pel refinement. The abbreviations are: M: memory, F: spiral-ordered full search, S: spiral-ordered search using the triangle inequality, NM: norm-ordered search using the triangle inequality when half-pel refining the M best integer-pel vectors, NV: norm-ordered search using the triangle inequality when half-pel refining a variable number of best integer-pel vectors, where the numbers are N=1 for M=1, N=5 for M=10, and N=10 for M=50. The PSNR values in dB represent the prediction error variance. Higher values indicate smaller prediction errors.T stands for the computation time in seconds per frame.



M�1�10�50���PSNR�T� PSNR�T�PSNR�T��Foreman

F�27.84�0.34�29.12�4.21�29.68�23.74��S�27.84�0.26�29.12�3.02�29.68�17.29��NM�27.85�0.26�29.15�1.90�29.72�9.94��NV�27.85�0.26�29.13�1.54�29.71�6.72��Mother-Daughter

F�40.46�0.20�41.07�2.27�41.27�15.66��S�40.46�0.13�41.07�1.49�41.27�11.28��NM�40.46�0.14�41.09�1.51�41.27�9.57��NV� 40.46�0.14�41.07�1.19�41.27�5.86��Stefan

F�20.37�0.47�21.16�5.71�22.16�30.86��S�20.37�0.46�21.16�5.45�22.16�28.83��NM�20.39�0.57�21.19�5.34�22.20�25.96��NV�20.39�0.57�21.18�4.74�22.18�21.12��



Multiple Triangle Inequalities

Assume a partition of B into subsets Bn so that



	� EINBETTEN Equation.2  ���	(3)



The triangle inequality (1) holds for all possible subsets Bn. Rewriting the formula for D(s,c) we get



	� EINBETTEN Equation.2  ���	(4)



and applying the triangle inequality for all Bn yields



	� EINBETTEN Equation.2  ���

	� EINBETTEN Equation.2  ���	(5)



Note that (5) is a tighter lower bound than (1), however, requires more computation. Hence, at this point we can trade-off the sharpness of the lower bound against computational complexity.



An important issue within this context remains to be the choice of the partitions Bn. Of course, (5) works for all possible subsets that satisfy (4). However, since the norm values of all blocks in our search space have to be pre-computed we want to take advantage of the fast method described in [LS95]. Therefore, a random sub-division of B into n arbitary subsets may not be the appropriate choice. Instead, for sake of computation, a symmetric sub-division of B is may be more desirable. In [LT97], it is proposed to divide a square 16x16 block into two different partitions. The first partitioning produces 16 subsets Bn each being one of 16 lines containing 16 samples. The second partition consists of 16 subsets Bn each being one of 16 columns containing 16 samples.



Note that the H.263 video coding standard permits blocks of size 16x16 and blocks of size 8x8 in the advanced prediction mode. Hence, we follow the approach proposed in [LC95] where a

16x16 block is decomposed into 4 different partitions. The 16x16 block is partitioned into 1 set of 16x16 samples, into 4 subsets of 8x8 samples, into 16 subsets of 4x4 samples and, into 64 subsets of size 2x2 samples. The various (subset) triangle inequalities are successively applied in the order of the computation time to evaluate them, i.e., first the 16x16 triangle inequality is checked, then the inequalities relating to blocks of size 8x8, 4x4, and 2x2 samples are computed using (5).



Table 2 presents the comparison of the norm-ordered search (NV in Tab. 1) to the approach of additional comparisons on the 8x8, 4x4 and 2x2 block level (H4). Again, for M=1 frames, the methods proposed are not beneficial. However, as we search over more frames such as M=50, a speed-up factor of 1.4 against the norm-ordered search (NV) and 5.0 against full search (method F in Tab. 1) is achieved for the sequence Foreman. 



Table 2. Comparison of the norm-ordered search (NV in Tab. 1) to the approach of additional comparisons on the 8x8, 4x4 and 2x2 block level H4. The experimental settings and abbreviations are the same as for Tab. 1.



M�1�10�50���PSNR�T�PSNR�T�PSNR�T��Foreman

NV�27.85�0.26�29.13�1.54�29.71�6.72��H4�27.85�0.22�29.13�1.11�29.71�4.73��Mother-Daughter

NV�40.46�0.14�41.07�1.19�41.27�5.86��H4�40.46�0.15�41.07�1.05�41.27�5.00��Stefan

NV�20.39�0.57�21.18�4.74�22.18�21.12��H4�20.39�0.57�21.18�4.59�22.18�20.91��



Lossy Search Methods Using the Triangle Inequality

In many applications the computation time available is very often not sufficient in order to conduct a full block motion search. Hence, the computation time needs to be cut down, which, in general, results in inferior prediction gain. Two ideas have mainly been emphasized in the context of lossy search methods:



sub-sampling of the block for which distortion is measured and

sub-sampling the search range.



Item 1 reduces the computation time to check a particular block by evaluating the distortion criterion on a smaller amount of samples. When using a hierarchy of triangle inequalities, the sub-sampling can be incorporated by stopping the checking at a certain level in the hierarchy. We adapt the level in the hierarchy by measuring the amount of activity in the block for which the motion search is conducted. The activity is measured as the sum of the absolute differences of neighboring samples. Then, if the mean activity measure is below a certain threshold, we measure distortion only on the 2x2 block level of the triangle inequality hierarchy and never evaluate the distortion on the sample level. We found that if the samples on average change in the range of 1-2 intensity values, the search can be conducted on the 2x2 block level of the triangle inequality hierarchy with very minor losses. Note that this lossy method only affects the integer-pel search and that we left the half-pel search unchanged for all experiments.



Item 2, the sub-sampling of the search space, is realized by early termination of the norm-ordered search. For that (2) is modified to



	� EINBETTEN Equation.2  ���	(6)



where K is adapted to a value K(1. A heuristic to adapt to the variance of the norm histogram in

the search range is to set K=150 (/L, where ( is the number of searched positions checked so far, and L is the total number of positions in the search range. The number 150 has been obtained empirically.



Table 3 shows a comparison of the two lossy methods and the fastest non-lossy method. When applying the lossy method related to N1, we only get significant gains for Mother-Daughter. The results for method N2 show significant gains for all sequences, while the combination of the lossy methods N12 additionally improves for all sequences at very moderate PSNR losses. For the sequence Foreman, when searching over 50 frames, at a PSNR loss of 0.09 dB (for method N12) a speed-up of 2.2 is achieved against the fastest non-lossy method (H4) and against full search (F) our method is 11.2 times faster.



Table 3. Comparison of the two lossy methods related to item 1 (N1), item 2 (N2), and their combination (N12). These three lossy search methods are compared to the values relating

to method H4 in Tab. 2, i.e., the fastest non-lossy method. Otherwise the settings are the same as for Tables 1 and 2.



M�1�10�50���PSNR�T� PSNR�T�PSNR�T��Foreman

H4�27.85�0.22�29.13�1.11�29.71�4.73��N1�27.85�0.22�29.13�1.09�29.70�4.54��N2�27.61�0.15�28.99�0.63�29.62�2.19��N12�27.61�0.15�28.99�0.61�29.62�2.11��Mother-Daughter

H4�40.46�0.15�41.07�1.05�41.27�5.00��N1�40.45�0.14�41.03�0.86�41.26�4.10��N2�40.43�0.13�41.04�0.60�41.27�2.31��N12�40.42�0.12�41.02�0.52�41.26�1.92��Stefan

H4�20.39�0.57�21.18�4.59�22.18�20.91��N1�20.39�0.57�21.18�4.56�22.18�20.39��N2�20.28�0.28�21.11�2.02�22.14�8.51��N12�20.28�0.28�21.11�2.00�22.14�8.38���Final Remarks

We also checked our fast search method when incorporating an entropy constraint into the minimization criterion for the motion estimation [WZG97,CM97]. As in [CM97], the computation time decreases with increasingly weighted rate constraint. Also, when using distorted instead of original frames as reference frames we observed only a small increase in computation time which we also observed for the spiral search. At the cost of increased memory requirements, the methods described in this document reduce computation time for long-term memory motion search. At minor losses in PSNR, for the sequences Foreman, Mother-Daughter and Stefan, a reduction in

computation time by factors of 11.2, 8.1, and 3.6, respectively, is reported, when searching over 50 frames.
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