ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Fourth Meeting: Tampere, Finland, 21-24 April, 1998�
Document Q15-D-41

Filename: q15d41.doc

Generated: 14 April ’98�
�

Question:�
Q.15/SG16�
�
Source:�
Barry Andrews, Stephane Bryant, May Chiang, Ruili Hu, Kathy Kwan, Paul Ning�8x8, Inc.�2445 Mission College Blvd.�Santa Clara, CA 95054 USA�
�Tel:�Fax:�Email:�
�408-654-0905�408-980-0432�andrews@8x8.com�
�
Title:�
The Effect of IDCT Mismatch on H.263 Deblocking Filter Mode�
�
Purpose:�
Information�
�

Objective

We wish to characterize an IDCT-related divergence which occurs when using the H.263 Annex J Deblocking Filter mode and whose visual artifacts worsen over time.

We include example test data which shows that when the encoder IDCT differs from the decoder IDCT, divergence artifacts occur over a very short period of time. These artifacts occur even though both IDCTs are H.263 Annex A compliant. Furthermore, the artifacts do not occur if the loop filter is turned off. It is therefore possible that the deblocking filter may enhance the mismatch between encoder and decoder IDCT.

II. 	Setup

To reproduce the described divergence artifacts use the following setup:

Encoder: UBC encoder tmn-3.1.2 using their floating point IDCT, with Annex J enabled. For simplicity, only enable loopfilter with Annex J, and keep unrestricted motion vector mode and four motion vector modes OFF.

 >tmn -i rawseq -B bs_q1_j -a 0 -b 99 -q 2 -A 2 -k 0 -J

Decoder : UBC decoder tmndec-3.1.2 using a modified fixed-point IDCT. The fixed-point IDCT was modified to make it H.263 Annex A compliant and is listed in Appendix A.

>tmndec –o4 –x –l bs_q1_j

Test sequence: A one hundred frame natural sequence showing a stationary color grid is included via a file, "rawseq" in q15d41ab.tar.gz.

III. 	Experimental Results

We performed simulations using the above described setup on the included dataset for QP values ranging from 1 to 31. Included in q15d41ab.tar.gz are coded bitstreams where Annex J is both on and off (bs_q1_j, bs_q1), with QP = 1.

For low QPs (0 < QP <5), obvious divergence patterns appear along edges. For QP=1 (bs_q1_j) a vertical line along the right edge of the yellow patch, as well as spots along the 8x8 block boundaries in the lower right blue patch appear. When QP is increased, the patterns become blurred, but divergence patterns are still noticeable along the edges of the green center-low patch and the blue right-low patch up to QP=4.

Note that the INTRA MB refresh rule (threshold = 132 coded MBs) does not prevent artifacts with the test sequence since the threshold is not reached. In general, even if the threshold is reached, divergence may have already leaked into other MBs under the following conditions:

(1) uncoded blocks that border coded blocks are filtered based on the pixels in the coded blocks. These uncoded blocks are not fixed by the refresh since their threshold are never triggered.

(2) MVs of neighboring MBs may reference areas of divergence. The neighboring MBs are not fixed by the refresh if they stop referencing the refreshed MB.

Condition (1) is specific to the deblocking filter and gives rise to an interesting scenario. Refreshing a MB may not even fix divergence within the refreshed MB since the deblocking filter may immediately pull in divergence errors just outside the MB boundaries.

Analysis

The observed visual artifacts indicate that the deblocking filter is not stable in a control sense. Ie. A small difference in the encoder/decoder is amplified by the filter. This amplification is demonstrated for a specific range of the filter in the following example.

The deblock equations are:

B1 = clip(B + d1)

C1 = clip(C – d1)

A1 = A – d2

D1 = D + d2

d = (A-4B+4C-D)/8

d1 = UpDownRamp(d, STRENGTH)

d2 = clipd1((A – D)/4, d1/2)

Consider the case where A=D, and for simplicity no clipping is required. Then the equations are:

B1 = B + d1

C1 = C – d1

A1 = A

D1 = D

d = (C – B)/2

d1 = UpDownRamp((C – B)/2, STRENGTH)

d2 = 0

Note that only B and C get updated by the deblock filter.

Let’s say the encoder has

C’ – B’ > 0

and the decoder has

C” – B” > 0

and there is a slight encoder/decoder IDCT mismatch such that

(C” – B”) – (C’ – B’) = D > 0

 2d” 2d’

If these (d’, d”) are in the negative slope range of the UpDownRamp, then d1’ > d1”. Now since

				C1’ – B1’ = (C’ – B’) – 2d1’

				C1” – B1” = (C” – B”) – 2d1”

the encoder/decoder mismatch after the deblock filter will be:

				D1 = (C1” – B1”) – (C1’ – B1’)

 = (C” – B”) – (C’ – B’) – 2d1” + 2d1’

 = D + 2(d1’ – d1”)

			 				

The quantity (d1’ – d1”) is positive and therefore

				D1 > D

which implies that the filter amplifies the encoder/decoder mismatch.

�
Appendix A – H.263 Annex A compliant IDCT

/**

 *

 * idct.c, inverse fast DCT for tmndecode (H.263 decoder)

 * Copyright (C) 1995, 1996 Telenor R&D, Norway

 *

 * Contacts:

 * Robert Danielsen <Robert.Danielsen@nta.no>

 *

 * Telenor Research and Development http://www.nta.no/brukere/DVC/

 * P.O.Box 83 tel.: +47 63 84 84 00

 * N-2007 Kjeller, Norway fax.: +47 63 81 00 76

 *

 * Copyright (C) 1997 University of BC, Canada

 * Modified by: Michael Gallant <mikeg@ee.ubc.ca>

 * Guy Cote <guyc@ee.ubc.ca>

 * Berna Erol <bernae@ee.ubc.ca>

 *

 * Contacts:

 * Michael Gallant <mikeg@ee.ubc.ca>

 *

 * UBC Image Processing Laboratory http://www.ee.ubc.ca/image

 * 2356 Main Mall tel.: +1 604 822 4051

 * Vancouver BC Canada V6T1Z4 fax.: +1 604 822 5949

 *

 **/

/* Disclaimer of Warranty

 *

 * These software programs are available to the user without any license fee

 * or royalty on an "as is" basis. The University of British Columbia

 * disclaims any and all warranties, whether express, implied, or

 * statuary, including any implied warranties or merchantability or of

 * fitness for a particular purpose. In no event shall the

 * copyright-holder be liable for any incidental, punitive, or

 * consequential damages of any kind whatsoever arising from the use of

 * these programs.

 *

 * This disclaimer of warranty extends to the user of these programs and

 * user's customers, employees, agents, transferees, successors, and

 * assigns.

 *

 * The University of British Columbia does not represent or warrant that the

 * programs furnished hereunder are free of infringement of any

 * third-party patents.

 *

 * Commercial implementations of H.263, including shareware, are subject to

 * royalty fees to patent holders. Many of these patents are general

 * enough such that they are unavoidable regardless of implementation

 * design.

 *

 */

/* based on mpeg2decode, (C) 1994, MPEG Software Simulation Group and

 * mpeg2play, (C) 1994 Stefan Eckart <stefan@lis.e-technik.tu-muenchen.de>

 *

 */

/**/

/* inverse two dimensional DCT, Chen-Wang algorithm */

/* (cf. IEEE ASSP-32, pp. 803-816, Aug. 1984) */

/* 32-bit integer arithmetic (8 bit coefficients) */

/* 11 mults, 29 adds per DCT */

/* sE, 18.8.91 */

/**/

/* coefficients extended to 12 bit for IEEE1180-1990 */

/* compliance sE, 2.1.94 */

/**/

/* Coefficients extended to 14 bits, for experimental */

/* purposes. These new coefficients are used */

/* with the former ones; they are only used in the */

/* idctrow function. */

/* this code assumes >> to be a two's-complement arithmetic */

/* right shift: (-2)>>1 == -1 , (-3)>>1 == -2 */

#include "config.h"

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

/* 12 bit coefficients */

#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */

#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */

#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */

#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */

#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */

#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */

/* 14 bit coefficients */

#define w1 11363 /* 8192*sqrt(2)*cos(1*pi/16) */

#define w2 10703 /* 8192*sqrt(2)*cos(2*pi/16) */

#define w3 9633 /* 8192*sqrt(2)*cos(3*pi/16) */

#define w5 6436 /* 8192*sqrt(2)*cos(5*pi/16) */

#define w6 4433 /* 8192*sqrt(2)*cos(6*pi/16) */

#define w7 2260 /* 8192*sqrt(2)*cos(7*pi/16) */

/* global declarations */

void init_idct _ANSI_ARGS_ ((void));

void idct _ANSI_ARGS_ ((short *block));

/* private data */

static short iclip[1024]; /* clipping table */

static short *iclp;

/* private prototypes */

static void idctrow _ANSI_ARGS_ ((short *blk));

static void idctcol _ANSI_ARGS_ ((short *blk));

/* row (horizontal) IDCT

 *

 * 7 pi 1 dst[k] = sum c[l] * src[l] * cos(-- *

 * (k + -) * l) l=0 8 2

 *

 * where: c[0] = 128 c[1..7] = 128*sqrt(2) */

static void idctrow (short *blk)

{

 int x0, x1, x2, x3, x4, x5, x6, x7, x8;

 /* shortcut */

 if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |

 (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))

 {

 blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;

 return;

 }

 x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */

 /*The 14 bits extended factors are only used in the 1st */

 /* multiplication. The resulting coefficients are then properly */

 /* scaled, and the rest of the idct is the same as before. */

 /* This was done on purpose to make the idct "just" compliant, */

 /* regardless of the efficiency ... */

 /* first stage */

 x8 = w7 * (x4 + x5);

 x8 = x8 >> 2;

 x4 = (w1 - w7) * x4;

 x4 = x4 >> 2;

 x4 = x8 + x4;

 x5 = (w1 + w7) * x5;

 x5 = x5 >> 2;

 x5 = x8 - x5;

 x8 = w3 * (x6 + x7);

 x8 = x8 >> 2;

 x6 = (w3 - w5) * x6;

 x6 = x6 >> 2;

 x6 = x8 - x6;

 x7 = (w3 + w5) * x7;

 x7 = x7 >>2 ;

 x7 = x8 - x7;

 /* second stage */

 x8 = x0 + x1;

 x0 -= x1;

 x1 = w6 * (x3 + x2);

 x1 = x1 >> 2;

 x2 = (w2 + w6) * x2;

 x2 = x2 >> 2;

 x2 = x1 - x2;

 x3 = (w2 - w6) * x3;

 x3 = x3 >> 2;

 x3 = x1 + x3;

 x1 = x4 + x6;

 x4 -= x6;

 x6 = x5 + x7;

 x5 -= x7;

 /* third stage */

 x7 = x8 + x3;

 x8 -= x3;

 x3 = x0 + x2;

 x0 -= x2;

 x2 = (181 * (x4 + x5) + 128) >> 8;

 x4 = (181 * (x4 - x5) + 128) >> 8;

 /* fourth stage */

 blk[0] = (x7 + x1) >> 8;

 blk[1] = (x3 + x2) >> 8;

 blk[2] = (x0 + x4) >> 8;

 blk[3] = (x8 + x6) >> 8;

 blk[4] = (x8 - x6) >> 8;

 blk[5] = (x0 - x4) >> 8;

 blk[6] = (x3 - x2) >> 8;

 blk[7] = (x7 - x1) >> 8;

}

/* column (vertical) IDCT

 *

 * 7 pi 1 dst[8*k] = sum c[l] * src[8*l] *

 * cos(-- * (k + -) * l) l=0 8 2

 *

 * where: c[0] = 1/1024 c[1..7] = (1/1024)*sqrt(2) */

static void idctcol (short *blk)

{

 int x0, x1, x2, x3, x4, x5, x6, x7, x8;

 /* shortcut */

 if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |

 (x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) | (x7 = blk[8 * 3])))

 {

 blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5] = blk[8 * 6] = blk[8 * 7] =

 iclp[(blk[8 * 0] + 32) >> 6];

 return;

 }

 x0 = (blk[8 * 0] << 8) + 8192;

 /* first stage */

 x8 = W7 * (x4 + x5) + 4;

 x4 = (x8 + (W1 - W7) * x4) >> 3;

 x5 = (x8 - (W1 + W7) * x5) >> 3;

 x8 = W3 * (x6 + x7) + 4;

 x6 = (x8 - (W3 - W5) * x6) >> 3;

 x7 = (x8 - (W3 + W5) * x7) >> 3;

 /* second stage */

 x8 = x0 + x1;

 x0 -= x1;

 x1 = W6 * (x3 + x2) + 4;

 x2 = (x1 - (W2 + W6) * x2) >> 3;

 x3 = (x1 + (W2 - W6) * x3) >> 3;

 x1 = x4 + x6;

 x4 -= x6;

 x6 = x5 + x7;

 x5 -= x7;

 /* third stage */

 x7 = x8 + x3;

 x8 -= x3;

 x3 = x0 + x2;

 x0 -= x2;

 x2 = (181 * (x4 + x5) + 128) >> 8;

 x4 = (181 * (x4 - x5) + 128) >> 8;

 /* fourth stage */

 blk[8 * 0] = iclp[(x7 + x1) >> 14];

 blk[8 * 1] = iclp[(x3 + x2) >> 14];

 blk[8 * 2] = iclp[(x0 + x4) >> 14];

 blk[8 * 3] = iclp[(x8 + x6) >> 14];

 blk[8 * 4] = iclp[(x8 - x6) >> 14];

 blk[8 * 5] = iclp[(x0 - x4) >> 14];

 blk[8 * 6] = iclp[(x3 - x2) >> 14];

 blk[8 * 7] = iclp[(x7 - x1) >> 14];

}

/* two dimensional inverse discrete cosine transform */

void idct (short *block)

{

 int i;

 for (i = 0; i < 8; i++)

 idctrow (block + 8 * i);

 for (i = 0; i < 8; i++)

 idctcol (block + i);

}

void init_idct ()

{

 int i;

 iclp = iclip + 512;

 for (i = -512; i < 512; i++)

 iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i);

}

File:� FILENAME * MERGEFORMAT �Document1�	Page: � PAGE �8�	Date Printed: � DATE * MERGEFORMAT �04/15/98�

