ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Fourth Meeting: Tampere, Finland, 21-24 April, 1998�
Document Q15-D-39

Filename: q15d39.doc

Generated: 15 April ’98�
�

Question:�
Q.15/SG16�
�
Source:�
Dong-Seek Park�Multimedia Lab. Samsung Electronics

416 Maetan-Dong

Suwon, Kyoungi-Do, Korea�
�Tel:�Fax:�Email:�
�+82/331-200-3674�+82/331-200-3717�dspark@mmrnd.sec.samsung.co.kr�
�
Title:�
Use of an error-resilient mode in H.263++ against error-prone channels�
�
Purpose:�
Proposal�
�

I.	Introduction

This document presents a couple of possible ways in the context of layered protection of H.263-family syntax to achieve improved error resilience in H.263++. Although H.263-family features some error resilient schemes (e.g., Annexes H, K, N, and R), all of them would not be quite enough against burst errors in wireless channels. Therefore, need for more enhanced error resilience to be added to H.263-family would be highly clear. Furthermore, a set of possible syntax-based layered schemes designed for error resilience would also play a great role in mobile video communication with many options to be negotiated with respect to channel conditions. Also, long picture start code (PSC) in the layered protection structure was turned out to be useful for improved synchronization.

Brief introduction of H.263 video distortion over error-prone channel is described in section 2, while a possible syntax-based layered structure of error resilient mode is given in section 3, which also presents computer simulation results illustrating that long PSC can reduce PSC emulation and frame loss in wireless links. Finally, conclusions and caveats are given in section 4.

I.	H.263-Family in the Error-Prone Channels

In the case of current video coding standards in the error-prone channels where both random and burst errors exist, the following two facts are well known:

1. Due to inherent nature of variable length codes (VLC) the actual position of an erroneous MB is usually (much) earlier than that of a detected erroneous MB. Even a single bit corruption will cause the decoder to erroneously decode the received bitstream, which results in decoding the current GOB/frame ending prematurely or overrunning into the next GOB/frame.

2. Due to the prediction based on DPCM loop, errors occurred in the bitstream always propagate in time. In the case that wrongly decoded parts (distorted or green-and-pink noisy MBs) are used as references for the next GOB/frame, errors smear in spatial direction and propagate in temporal direction.

For simplicity in implementation and to keep (almost) constant channel throughput, an error-resilient codec without use of retransmission can be considered. This kind of feedforward-only codec usually requires an error-resilient video coder and an intelligent video decoder, which don’t have interaction with each other during communication. At the decoder side, error concealment methods can also be used for further enhancement of a received corrupted video bitstream. When performing error detection, possibly incorporated with backward decoding, can be used to minimize the MBs to be discarded. One of the simplest error concealment methods is GOB based copy using error-free GOBs in the previous frame, as presented in figure 1. Simple GOB copying might cause aberration when frame difference between current and previous frames is large. On the other hand, simple frame copying usually causes frozen frames until full-frame refresh is done.

When the system pursues refresh for good picture quality instead of keeping constant total channel throughput, retransmission method can be used. Uptodate, many retransmission techniques (e.g., Type1, Type2, and hybrid scheme) and back-channel based methods (e.g., error tracking) have been devised.

�

Figure 1. Simple GOB copying for error concealment

I.	Syntax-Based Layered Structure of the Error Resilient Mode in H.263++

A.	Macroscopic View of H.263-Family Syntax

Macroscopic view of baseline H.263 syntax can be represented as in figure 2. For simplicity, detail information such as PLUSPTYPE, MVD2-4, and others are not illustrated.

�

Figure 2. Macroscopic illustration of H.263-family syntax

As in figure 2, the H.263-family bitstream can be grouped into three layers - picture header, GOB, and MB layer. It is important to note that the synchronization code in each layer is always followed by other administrative information and only the MB layer contains the picture data.

�

Figure 3. Classification of H.263-family bitstream

Also, as illustrated in figure 3, the bitstream can be categorized roughly into two groups - administrative information (synchronization codes and picture/MB/GOB information in the picture header and GOB header layers) and pure picture data (motion vectors, DC/AC coefficients in the MB layer).

Considering the overall picture quality and decoding, it would be worthwhile mentioning the features/importance of, in particular, synchronization codes against error-prone channels. Among many possible errors in the bitstream, loss of synchronization causes GOB/frame loss. Furthermore, consequent wrong decoding remains an critical errors when decoding bitstreams. If the decoder wrongly decode PSC and/or group of block start code (GBSC) corrupted, the resultant reconstructed images will surely have visually annoying aberration and other artifacts due to the wrong GOB number, which can also propagate. For the simplest way that can prevent aberration, the decoder simply tries to detect the next correct start code with displayed frame frozen. However, this kind of operation will be very inefficient in that the decoder has to discard all MBs lied between the two sync codes. In reality, it is quite probable that some MBs between the sync codes are not corrupted. Therefore, minimization of discarded MBs and visually annoying aberration artifact is of importance. Provided that the decoder can have frame/GOB-based delayed decision with properly error-resilient sync codes, the decoder can do error concealment at least to prevent such a serious aberration and resultant error propagation. In other words, error-resilient sync codes can help limit possible erroneous range so that the decoder can employ other intelligent decoding such as backward decoding, etc. However, when the sync codes detected in the decoder are wrong, sync code emulation is inevitable.

Meanwhile, if the picture/MB information (e.g., PTYPE, MCBPC, etc.) is well protected, then the decoding process can further be reliable. Also, if the bandwidth of the total system is allowable and high picture quality is needed, then protection of picture data (e.g., DC, MVD, AC) can also be performed.

A.	Syntax-Based Layered Approach of Error-Resilient Mode in H.263++

As mentioned before, H.263+ has some error-resilient features in Annexes H, K, N, and R. All of them are used for correction of small amount of corrupted bits or suppression of error propagation. However, if the channel gets severely error-prone having bit-error-rate (BER) of O(10-3) or below, more error protection is indeed reuired. Furthermore, it is also highly desirable to have a optimized set of error-resilient options aiming at high coding efficiency.

In general, the relationship between error robustness and coding efficiency (picture quality, compression, frame rate, etc.) can be modeled as in figure 4, illustrating inverse relationship with each other at the constant system bandwidth. Figure 4 also reflects the priority of syntax shown in figure 3.

�

Figure 4. Error robustness vs. coding efficiency

Referring to figure 4, it is important to design a set of classes along a high-slope dotted line. Based on the priority of syntax illustrated in figure 3, we would like to establish a optimum set of error-robust options having progressively improved error robustness as is presented in figure 5.

�

Figure 4. A layered structure for the error-resilient mode in H.263++

We can here have two observations with the proposed scheme over error-prone channels:

1. Based on the concept proposed in figure 4, it is highly possible to construct an optimized error-protection layer. This can be explained as follows - If there are a number of error protection methods irrelevant to the above-proposed layered scheme, then each one of them might have common features causing overhead when combining a couple of methods. As a result, joint use of these methods induces reduction of coding efficiency, which can be represented along a line whose slope gets lower in figure 4.

2. Since the channel can be time-varying in terms of noise characteristics, a decoder does not have to employ strong error protection for all the time during communication, which also means that an encoder/decoder pair might need more coding efficiency rather than error-resilience in some cases. Therefore, it would be highly desirable that the encoder can dynamically control the amount of error resilience with respect to the channel status monitored. This kind of dynamic change can be realized via system level control.

1.	Level 1 (Improved Synchronization): Exactly locating the sync codes is highly important to prevent overrunning into next frame/GOB and/or prematurely ending current frame/GOB decoding causing severe error propagation. Also, if the decoder can have reliable sync codes, it can try to get improved picture quality by employing various techniques such as error concealment, backward decoding. Unless the encoder does protection of whole syntax, sync codes should have uniqueness. As an example for improved synchronization, use of long PSCs was investigated. A long PSC having guaranteed uniqueness implemented by using duplicated PSCs (as shown in figure 5 (b)) was turned out to be effective to reduce frame loss with much reduced PSC emulation compared to the normal 22-bit PSCs. The decision rule incorporated with the long PSC, which is illustrated below, seems to be fair to reduce frame loss with almost zero PSC emulation at DECT1 and Rayleigh fading (16, 20, 22dB). Obviously, there should be other decision rules to select PSCs.

�

 (a) A normal 22-bit PSC (b) A long PSC

Figure 5. Normal PSC and an example of long PSC

We have performed computer simulations with normal 22-bit PSCs and long PSCs made by using duplication of normal 22-bit PSCs. Simulation conditions1 are shown below:

Test QCIFs: Foreman at 24 kbps, Mother&daughter, Container, and Hall at 10 kbps

QP: Foreman (INTRA: 15, INTER 10), others (15 for both INTRA and INTER)

Channel error profiles: DECT1, Rayleigh fading (16, 20, 22 dB)

Only the first PSC left error-free

The baseline H.263 was used

Frame skip = 2

Tables 1 through 4 show the computer simulation results. A threshold value K is used in searching for PSCs, that is to say, K bits are expected to be corrupted.

The normal PSC was found by checking 22 bits coming into the 22-bit window, say, if a set of 22-bit captured within the window differs from the desired PSC (0000 0000 0000 0000 1 0000 0) by specified K bits or lower, the 22-bit was regarded as a PSC. Finding a long PSC might be more flexible than the former case. To begin with, the decoder needs a 44-bit window to capture 44 bits to have a decision. Referring to figure 5 (b), decision was done for each PSC independently. A set of 44-bit was regarded as a correct long PSC if the first 22 bits of a long PSC match desired PSC value satisfying K condition, while the other 22 bits differ from the desired PSC by K+2 bits or lower. In addition to the method presented right above for long PSC selection, other decision methods can be also performed.

Table 1. In case of Foreman sequence (116 frames and mean QP=23.87 with normal PSC, 115 frames and mean QP=24.18 with long PSC)

Table 2. In case of Mother&daughter sequence (304 frames and mean QP=20.64 with normal PSC, 303 frames and mean QP=21.05 with long PSC)

�

Table 3. In case of Container sequence (84 frames and mean QP=22.19 with normal PSC, 83 frames and mean QP=23.04 with long PSC)

Table 4. In case of Hall sequence (93 frames and mean QP=20.21 with normal PSC, 93 frames and mean QP=20.60 with long PSC)

�

As is expected, use of long PSC does not have advantage in case of K = 0 due to strict comparison. In case of K = 1, however, use of the long PSC offers reduced frame loss with improved synchronization with almost zero PSC emulation�22, while the use of normal PSC causes numerous PSC emulation. Because of possible PSC emulation proportional to K, increasing K (K>0 for normal PSC, K>1 for long PSC) does not offer benefit anymore. Overhead in adding 22 bits per frame does not seem to be a big burden at bitrate of 10 kbps or higher.

The above-concept could be straightforwardly extended to build long GBSC and the slice start code (SSC). With sacrifice of compression efficiency, it is anticipated that much more improved synchronization could be achieved.

1.	Level 2 (Level 1 + Protection of Picture/GOB/MB Information): Protection of these administrative information is also very helpful for preventing erroneous decoding. If PTYPE field is, for example, well protected, then misunderstanding the picture size and use of options can be well reflected to decoding.

2.	Level 3 (Level 2 + DC/MVD Protection): This level further improves MB layer protection for INTRA frames or frames having high motion. Since DC values much more affect on visual quality than AC, this layer should precede AC protection.

3.	Level 4 (Level 3 + AC Protection): If the encoder needs protection of whole syntax, protection of AC coefficient can also be employed.

4.	Level 5 (Refresh): When noticeable error propagation occurs, refresh would be used. Refresh of whole frame, region of interest, and other kinds of refresh will be included in this level.

Each level can have some different sub-modes having different protection capability so as to have more diversity in choosing options for precise tuning with various channels.

A.	Enabling the Use of Error-Resilient Mode

In order to have the receiver know the use of error resilient mode and its contents the transmitter can have interaction with the receiver during “Capability Exchange” session via the control part (e.g, H.245). During communication after call-setup, use of an error-resilient mode and its contents can also be signaled by dynamic change of capability.

I.	Conclusion and Caveats

In conclusion, use of a syntax-based layered structure for error-resilient mode in H.263-family would be highly effective for an optimized set of error protection schemes. With this method it is also possible to achieve dynamic capability change and diversity in choosing options in time-varying wireless links. Use of long PSC even without any other forward error correction codes contributes to improved synchronization. Related to this reports, future works should include the followings:

Quantitative evaluation to show feasibility of the proposed scheme

Establishment of common conditions for simulations in error-prone channels. It would be desirable that the common conditions can consider realistic situations such as source encoding parameters, baseband modulation methods, bandwidth/BER/SNR of the wireless channels, decision (hard vs. soft) methods, etc.

1 Due to lack of common conditions for mobile environments, we simply used the existing common conditions established in past Eibsee Q15 meeting. It would be desirable that the group can define common conditions for mobile channel in terms of channel error profiles, coding parameters, error resilient TMN (and number of retransmission, if needed) etc.

2 It should be noted that with different (worse, perhaps) channel characteristics and coding parameters, the long PSC can also cause PSC emulation. However, a proper decision scheme for long sync codes can lead to the fact that with long sync codes the frequency of PSC emulation can be quite reduced with guaranteed synchronization.

File:�filename * Mergeformat �Q15D39�		�date * Mergeformat �04/16/98�	Page: �page �1�

�page \# "'ÂÊ: '#'�'" �

