ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Fourth Meeting: Tampere, Finland, 21-24 April, 1998�
Document Q15-D-36� = Q11-E-09

Filename: q15d36.doc� = q11e09.doc

Generated: 15 April ’98�
�

Question:�
Q.15/SG16�
�
Source:�
Matt Bace and Gary Sullivan �PictureTel Corporation�100 Minuteman Road, M/S 635�Andover, MA 01810, USA�
Tel:�Fax:�Email:�
+1 978.623.4324�+1 978.749.2804�garys@pictel.com�bace@pictel.com�
�
Title:�
On H.263+ in H.320�
�
Purpose:�
Proposal�
�

At the January 1998 meeting of SG16, H.263v2 was decided. This new video coding standard added many new optional features the existing H.263 standard (these new features will be informally referred to as “H.263+” throughout this document). The H.263+ features significantly improve the performance and extend the capabilities of H.263.

Currently support of the H.263+ features is decided in the H.324 terminal standard and determined in the H.323 standard, but H.320 adoption has lagged behind. Because the vast majority of existing videoconferencing systems are H.320 terminals, there are clear benefits to including support for the H.263+ features within H.320 as well. The H.263v1 video coding standard is already part of H.320, so adding support for the new features is simply a logical extension of an existing H.320 capability.

At the December 1997 meeting of SG16, a proposal for adding the capability to negotiate and support H.263+ features to H.320 was presented in Document Q15-C-12. The basic structure of this proposal is sound; however, some of the specific details still need to be worked out and the result needs to be written into a concrete draft form. The goal is determination in September of 1998. The following is list of comments and proposed revisions to Document Q15-C-12:

1.	General Comments�

1.1.	Semantics are missing for many of the descriptions in the document and need to be defined.�

2.	Section 2 (Enhanced Video Algorithm Hierarchy)�

2.1.	The wording in the second paragraph describing "equivalent resolutions" should read "the largest standard resolution which is smaller than or equal to the upper bound of the resolution range specified in the Custom Picture Format in both width and height." (i.e. it should allow equality, and it should specify a two-dimensional understanding of size). Additionally, there should be some provision that if a certain custom picture clock frequency is supported with a given picture format, all lesser standard picture clock frequencies shall be supported with that picture format, regardless of whether the picture format is custom or standard.�

2.2.	It might be better if the video algorithm hierarchy did not make a distinction between H.263 and H.263+. Instead, distinctions should be made only between the standard picture formats and custom picture formats. Below is a revised video algorithm hierarchy diagram illustrating this difference.���EMBED Visio.Drawing.4����

3.	Section 3 (Enhanced Video Algorithm Capability Sets)�

3.1.	On page 4, Appendix III should be Appendix II.�

3.2.	Several of the acronym names given to the various negotiable modes of operation should be changed to clarify their meaning. Specifically, "UnlimitedMotionVectors" should be changed to "UnlimitedUnrestrictedMotionVectors" to make it clear this is not a signal for the normal UMV mode. Also, "Transparency" should be "TransparencyChromaKey". More generally, all of these modes need exact semantic definition with appropriate references to H.263. We cannot assume that because an acronym is specified within H.245 its use will be clear within H.242.�

3.3.	It would be more appropriate if the core option list (used when feature support is signalled explicitly) had a direct correspondence to Levels 1 and 2 of the recommended levels of support given in H.263 Appendix II. Because there is space for only 6 option bits in the core option byte, one of the 7 Level 1 or 2 features must be excluded from the list. There are two reasonable possibilities for doing this:��Core Option List (3.4a)			Core Option List (3.4b)			�Implied: fullPictureFreeze			Implied: Nothing�(a) advancedIntraCodingMode			(a) advancedIntraCodingMode�(b) deblockingFilterMode			(b) deblockingFilterMode�(c) modifiedQuantizationMode			(c) fullPictureFreeze�(d) unlimitedMotionVectors			(d) modifiedQuantizationMode�(e) sliceStructuredMode			(e) unlimitedMotionVectors�(f) dynamicPictureResizingbyFour		(f) dynamicPictureResizingbyFour��The first possiblity (3.4a) excludes the fullPictureFreeze capability from the six signaled bits. Note that in Document Q15-C-12 this feature was left out completely because of its similarity to the H.320 “freeze frame” command. However, there is a significant difference between the H.320 (asynchronous) “freeze frame” command and the H.263+ (frame accurate) freeze mechanism. For this reason, it is important that terminals be capable of negotiating support for fullPictureFreeze. Thus, in our vision of this scenario (3.4a), support for this feature shall be implied if support for any other H.263+ feature is indicated.� �Unfortunately, there is one oddity in this arrangement. If sliceStructuredMode is indicated, extra information will need to be sent (to indicate whether rectangular and/or arbitrary slices are supported). This requirement somewhat defeats the purpose of the core option list, which is to signal support for the most commonly used options with just a single byte. Thus an alternative core option list (3.4b) is presented as an alternative. In this case, sliceStructuredMode would be moved to the enhancement options and fullPictureFreeze would be include among the core options for which a support signal is explicitly indicated.�

3.4.	The document as it is now (using the H.245 interpretation of the slice structured submodes) does not offer any way to signal support for more than one submode configuration of the slice structured mode. In H.245, each of the four possible submode configurations (slicesInOrder-NonRect, slicesInOrder-Rect, slicesNoOrder-NonRect, slicesNoOrder-Rect) has an independent BOOLEAN associated with it (4 bits total). The proposal in Document Q15-C-12 has only one bit to signal Rect or Non-Rect and one bit to signal InOrder or NoOrder. This format allows for only one submode configuration to be negotiated. This limitation is a problem and needs to be fixed. ��The solution we suggest for this problem would be to redefine the field at Byte13[6-7] to the following:��00	slicesInOrder-NonRect�01	slicesInOrder-RectOrNonRect�10	slicesAnyOrder-NonRect�11	slicesAnyOrder-RectOrNonRect��In the above descriptions, “slicesAnyOrder” shall imply support of both the possibilities slicesInOrder and slicesNoOrder (it is trivial to support slicesInOrder when supporting slicesNoOrder). Note also that the last signal has been renamed to “RectOrNonRect” to mean support for both rectangular and non-rectangular slices. Thus this syntax structure changes the sense of the two bits so that they become submode support bits (indications of support for the optional submode features of Arbitrary Slice Ordering and Rectangular Slices).�

3.5.	There is a similar problem when Annex N (Reference Picture Selection with error-resilient backchannel) is indicated. With the syntax in Document Q15-C-1, it is possible to signal support for the ackMessageOnly, nackMessageOnly, ackOrNackMessageOnly, and ackAndNackMessage submode options, but not for the “none” (i.e. no ACK or NACK messages) submode option. This omission is a definite problem and needs to be fixed. Without an ability to negotiate the “none” submode option, Video Redundancy Coding, for example, would be impossible.��The solution we suggest for this problem would be to redefine the fields at Byte13[0-2] to the following:��000	ackMessageOnly�001	nackMessageOnly�010	ackOrNackMesageOnly�011	ackAndNackMessage�100	none�101	reserved�110	reserved�111	forbidden��Note that this syntax guarantees that there is a “0” bit somewhere within the first 3 bits of the byte (thus preventing a long string of “1” bits).�

3.6.	It seems wasteful to use 3 bits to signal support for fullPictureSnapshot, partialPictureSnapshot, and videoSegmentTagging independently. Because of the close similarity of these features and because of their non-normative nature, support for these features could be signalled collectively with a single bit.�

3.7.	It should be noted that alternative capabilities cannot be expressed within H.320. At least, this is our understanding.�

3.8.	The profiles referred to in section 3.2.1 must be explicitly defined (H.320 cannot normatively refer to H.263 Appendix II; it must instead define the same things normatively, and may then inform the user that this corresponds to the current contents of H.263 Appendix II).�

4.	Section 4 (Enhanced Video Commands)�

4.1.	The term "H.263+ capabilities" is used where "H.263+ modes" is meant (e.g., CPFMT, CPCF, CPAR are H.263+ capabilities).�

4.2.	The video commands use a different definition for "H.263+" than what is usual. The sense here appears to be that “H.263+” means having some options turned on, as opposed to baseline. This is somewhat confusing.�

4.3.	Why should the system have a different way of requesting baseline than something with options?�

4.4.	Does H.320 already provide a way to request H.263 video? Also, what is the need for the H263BaselineVideoOn and H263+VideoOn commands?�

4.5.	In order to limit unnecessary bitstream overhead, the videoSendSyncEveryGOB command should be replaced with a videoSendSyncEveryNGOBs<NumberOfGOBs> command. This new command has a single parameter, NumberOfGOBs, indicating the number of GOBs per sync. Specifying NumberOfGOBs = n shall require that GOBs 0, n, 2n, 3n, … shall all have GOB headers (additional headers may be sent). Support for this shall be implied by support for any H.263+ feature.��Similarly, the videoSendSyncEveryGOBCancel command should be replaced with a videoSendSyncEveryNGOBsCancel command. Also, in the wording of the description of this command, "should" should be replaced with "may".�

4.6.	In the wording of the descriptions of all of the "Progression" and "Refinement" commands, "shall" should be replaced with "should". We alternately considered the idea that support in a terminal's decoder for a "progression" or "refinement" feature would imply support in the terminal's encoder for the corresponding feature. In this case, the "shall" wording would be left in place.�

4.7.	There is no way to signal support for a single custom picture format whose dimension(s) are an odd multiple of 4. This limitation is undesirable, but we understand the motivation for keeping the number of bits used for capability signalling to a minimum. There should, however, be some clarification as to whether support for odd multiples of 4 within a size range is implied.�

4.8.	Note: Much of the syntax of Document Q15-C-12 is based on H.245, which has changed somewhat since Document Q15-C-12 was written. The syntax should therefore be double-checked to ensure that no changes need to be propagated.�

5.	Appendix A�

5.1.	Appendix A is described as an "example" but it is the only place where much of the information about how signals are sent appears. Perhaps “Proposed Syntax for” would be better terminology than “An Example of”. Also note that nothing normative can be in an appendix.�

5.2.	This section in particular is in need of better semantic definition. In particular, each of the modes specified in the mode option bytes needs a complete semantic description, including appropriate references to H.263.�

5.3.	In the description of bits 0-1 of byte 1, the terms "closest standard format" and "larger format" need to be defined. If “closest standard format” is supposed to have the same meaning as “equivalent resolution” (from section 2), then that terminology should be used instead.�

5.4.	When custom pixel aspect ratio is indicated, two additional bytes are sent to specify the ratio. We observe that it would probably be sufficient to use the 4-bit abbreviated codes for the most common pixel aspect ratios, as specified in H.263 (in fact, because of the limited number of these codes actually defined, only 3 bits would necessary). The explicit specification of an extended CPAR (using 2 bytes for the numerator and denominator) would follow only if “extended PAR” were indicated within the 3-bit CPAR field. If the 3-bit CPAR field could be packed into a byte with other format information, this syntax would save 13 bits for the most common pixel aspect ratios.

File:� FILENAME * MERGEFORMAT �q15d36.doc�	Page: � PAGE �1�	Date Printed: � DATE * MERGEFORMAT �04/15/98�

