ITU-Telecommunication Standardization Sector					Q15-D-35


Study Group 16; Question: Q.15/16


Expert’s Group on Very Low Bitrate Visual Telephony


Tampere, Finland, April 21-24, 1998











Source:		Rockwell Semiconductor Systems


Contact:	Anurag Bist [anurag.bist@rss.rockwell.com]


	4311 Jamboree Rd., Newport Beach CA 92658


Authors: 	Anurag Bist, Wei Wu and Albert Hsueh


Title:	  	 Intelligent Pre-Quantization in Motion Compensated Video Coding








 Abstract





We describe an algorithm for pre-quantizing the motion compensated blocks for video coding at very low bit rates. The algorithm is aimed at reducing computations by a significant amount at the encoder. It is based on extracting some  low cost features from the motion compensated blocks prior to DCT and quantization, and using these features for pre-quantization. The algorithm is applied for coding video sequences by H.263 encoder. Several features are used for the thresholding process and it is shown that on an average about 60% savings in DCT and quantization can be obtained at a coding rate of 20 Kbps with no loss in the quality of the coded sequence. This translates approximately to about 20-25% savings in computations at the video encoder at 20 Kbps (more at lower bit rates) with  no loss in the perceived quality of the coded sequence. 








1 Introduction  





We propose an algorithm for reducing the computations in the video encoding process for very low bit rate coding applications. Most of the existing video coding standards (MPEG-1,MPEG-2, MPEG-4, H.261 and H.263) are based on motion estimation, DCT, quantization, and entropy coding.  The core of these algorithms is a differential loop where a displaced frame difference is calculated based on the motion of the current frame from the immediate past frame. This displaced frame difference is then quantized and entropy coded via a variable length code. In the end these variable length codes, along with the codes which contain the header information conforming to the syntax of a particular algorithm, are transmitted over the channel. Motion estimation is the process by which we calculate the displacement of one frame in a sequence with respect to the previous frame. By calculating the displacement on a block basis, we can compute a displaced frame difference which is easier to code, thereby reducing the temporal redundancy. In the next step, DCT of individual blocks (8x8 pixels) helps in removing the spatial redundancy by bringing down the most relevant information into the lower most coefficients in the DCT domain. After having obtained a block of DCT coefficients which contain the energy of the displaced blocks, quantization of these blocks is done. Quantization is a uniform quantization with step size varying from 2 to 62. It is implemented as a division, or as a table look up operation for a fixed point implementation. Lastly, having obtained the quantized coefficients, entropy coding is done to further reduce the overall coding rate. Traditionally most video coding standards use Huffman coding for entropy coding. 





In terms of computations motion estimation is the costliest module. Typically, it accounts for more than half of the MIPs at the encoder. For this reason, most of the video encoding solutions prefer to do motion estimation either by some dedicated hardware, or by some fast sub-optimal software scheme. DCT and IDCT, which is needed in the encoder for reconstructing the quantized frame for motion estimation, comprise the next most costly part of the encoder. Then follows quantization and Huffman encoding.  In very low bit rate applications, after the quantization of the motion compensated DCT blocks, many of the blocks have all of their coefficients as zero. It is observed that a majority of the blocks are zero after quantization. This means that if we can detect a priori which blocks are being zeroed out after quantization, we can forego DCT, quantization, dequantization and IDCT for those blocks. This would translate to a great amount of savings in computations at the encoder. In the remainder of this report we outline a method to achieve this goal with no loss in the perceived quality of the coded sequence. In the next section we describe the different features which can be used for classification and rank them in the order of their performance. Section 3 describes the result of using two of the features in coding different video sequences while using MPEG4 & H.263 coding algorithm. Finally, section 4 summarizes the main results of this proposal.





2  Feature Selection and Pre-Quantization 








We begin with identifying some key features of the motion compensated blocks which will help in classifying them into zero and non-zero blocks. A good feature should allow us to classify the blocks very accurately and at the same time it should be relatively easy to compute too. Using a complicated classification scheme defeats our main goal of reducing the overall computations. We consider several features and rank them in the order of their performance. 





Most of the features we select are easy to compute and are based on first or second ordered moments of the motion compensated blocks. We consider the following features:





SAE: mean absolute error


�EMBED Equation.3���


MSE: mean square error 


�EMBED Equation.3���


MAD: mean absolute difference 


�EMBED Equation.3���


VAR: block variance 


�EMBED Equation.3���


MAX: maximum value 





�EMBED Equation.3���





We use each of the above features in classifying the motion compensated blocks as zero or one.  A zero block is defined as a block with all zero quantized DCT coefficients and a one block as a block with at least one  non-zero quantized DCT coefficient. For doing the classification, we select one of the above features and use a corresponding (experimentally determined) threshold to decide whether or not this block should be classified as zero.  Each time we classify a block as zero, we would be zeroing out the block to  begin with and would not be doing DCT and quantization, and consequently IDCT and inverse quantization. This translates to a lot of savings in computations. Next we define some terminology which would help us in ranking the performance of different features and in quantifying the degradation in  performance while using any such feature based classification scheme. 





As is the case with any multiple hypotheses problem, there are two types of errors associated with this feature based classification scheme. Each time we use a feature to do the above classification, there are instances where we classify a block as zero, when it should have been coded instead (one). We call this error as false alarm (FA). The second type of error we encounter in such a classification scheme is when we classify a block to be one when in reality it should have been zero. We call this as misdetection (MD). We formally define a quantitative measure of false alarm and misdetection as follows:





�EMBED Equation.3���





where FA is the number of blocks classified as zero when they actually should have been one, MD is the number of blocks classified as one when they actually should have been zero, N1 is the number of true zero blocks, and N0 is the number of true one blocks. We compare the effectiveness of different features by plotting false alarm (FA) vs. misdetection (MD)  curves resulting from using the above features in coding a video sequence.  Ideally we would want a feature to give us a low false alarm and a low misdetection.. 





From our experiments we conclude that SAE and MSE have the best performance (lowest false alaram rate and lowest misdetection rate), MAX has the worst performance (highest curve), and MAD, VAR are in between. Since SAE is computationally less expensive to calculate than MSE, we will use SAE as our major feature in classifying the blocks. Also, since MAX is very easy to compute, and it also promises to catch some edge information in a block, we will also investigate using it further.





3  Model Verification





We apply the classification schemes based on above features on a wide range of video sequences. Since motion  estimation acts like a normalization process, the statistics of residue  blocks is expected to be similar.  We verify this fact by  encoding several typical sequences. We observe that the curves for misdetection rate and false alarm rate are similar for all sequences. In other words, the feature classification scheme is quite robust to the variations in the input sequence.





Using SAE to Classify Blocks





Based on above experiments, we find SAE gives best result in terms of false alarm and misdetection rate. Here we will find an optimal threshold which results in negligible number of false alarm blocks and at the same time small number of misdetection blocks. Negligible false alarm rate means only very few true one blocks will be misclassified as zero blocks, therefore, the quality degradation will be totally insignificant. Small misdetection rate means most true zero blocks will be classified as zero blocks, and these blocks will skip DCT and quantization, therefore, computational complexity will be reduced. Here we first calculate the upper bound of SAE which will guarantee zero false alarm rate. 




















The forward DCT is:


�EMBED Equation.3���





In H.263/MPEG4, the quantization for INTER mode blocks AC/DC coefficients can be expressed as:


�EMBED Equation.3���


To guarantee all coeff(u, v)=0, we have


�EMBED Equation.3����EMBED Equation.3���


The above equation implies that if a block’s SAE is less than 20*QP,  it must be a zero block. This will guarantee accurate prediction of zero coefficients both for AC as well as the DC coefficients. 





The following table shows the results of  our experiment (#one blks = number of blocks which have some non-zero coefficients after DCT and quantization; # zero blks = number of blocks which have all coefficients identically equal to zero after DCT and quantization (when the encoder is running of the input frame), TRS = the threshold when we are using Pre-Quantization Scheme); FA = number of blocks which are False Alarm blocks when using Pre-Quantization Scheme; # of skipped blks = number of blocks which Pre-Quantization scheme classifies as zero blocks (this is the number of blocks where we save DCT and Quantization at the encoder) :


�
QP 	# one blks      	 # zero blks         	TRS   	FA   	# skipped blks


8   	44577 (18.8%)  192777 (81.2%)  	160   	10   	103097 (43.4%) 


9   	39725 (16.7%)  197629 (83.3%)  	180   	26   	110601 (46.6%) 


10  	33613 (14.2%)  203741 (85.8%)  	200   	20   	117138 (49.4%) 


11  	29855 (12.6%)  207499 (87.4%)  	220   	20   	122815 (51.7%) 


12  	25591 (10.8%)  211763 (89.2%)  	240   	12   	129019 (54.4%) 


13  	22823 (9.6%)   	214531 (90.4%)  	260   	27   	134062 (56.5%) 


14  	19717 (8.3%)   	217637 (91.7%)  	280   	17   	138029 (58.2%) 


15  	17699 (7.5%)   	219655 (92.5%)  	300   	21   	143737 (60.6%) 


16  	15500 (6.5%)   	221854 (93.5%)  	320   	9    	147366 (62.1%) 


17  	14091 (5.9%)   	223263 (94.1%)  	340   	27   	150316 (63.3%) 


18  	12454 (5.2%)   	224900 (94.8%)  	360   	16   	152438 (64.2%) 


19  	11313 (4.8%)   	226041 (95.2%)  	380   	29   	158574 (66.8%) 


20  	10049 (4.2%)   	227305 (95.8%)  	400   	10   	162680 (68.5%) 


21  	9249  (3.9%)   	228105 (96.1%)  	420   	24   	165761 (69.8%) 


22  	8237  (3.5%)   	229117 (96.5%)  	440   	14   	170033 (71.6%) 


23  	7664  (3.2%)   	229690 (96.8%)  	460   	28   	174485 (73.5%) 


24  	6881  (2.9%)   	230473 (97.1%)  	480   	13   	176952 (74.6%) 


25  	6439  (2.7%)   	230915 (97.3%)  	500   	18   	180307 (76.0%) 


26  	5681  (2.4%)   	231673 (97.6%)  	520   	6    	183267 (77.2%) 


27  	5332  (2.2%)   	232022 (97.8%)  	540   	19   	187766 (79.1%) 


28  	4792  (2.0%)   	232562 (98.0%)  	560   	12   	189308 (79.8%) 


29  	4502  (1.9%)   	232852 (98.1%)  	580   	10   	191930 (80.9%) 


30  	4149  (1.7%)   	233205 (98.3%)  	600   	11   	191761 (80.8%) 


31  	3851  (1.6%)   	233503 (98.4%)  	620   	17   	195876 (82.5%)





The non-zero false alarm is caused by some approximation made to obtain 8x8 SAE for Chroma  and Luma blocks from 16x16 motion estimation. The PSNR degradation in using this threshold is negligible. 





4 Final Implementation and Coding Results





In this section we describe the results of using the pre-quantization scheme as a part of the MPEG4 and H.263 encoder. We use SAE to classify the blocks. Based on the experiments described in the previous section, we use a threshold of 20*QP and 30*QP. With threshold of 20*QP, the PSNR performance of the coded sequence at 20 Kbps is almost identical to that without using any Pre-Quantization, even though a minor modification of actual implementation is made as mentioned above. Figure 1 shows the actual amount of savings obtained frame-by-frame while coding the sequence Akiyo at QP=16 and 10 fps based on the threshold of 20*QP. In order to achieve higher saving, a threshold of 30*QP can be used while the PSNR is still very close to the one without Pre-Quantization. 
































�
Figure1: 


Fractions of blocks saved from doing DCT, Quantization, Inverse Quantization and IDCT. The figure shows the savings obtained in coding of the sequence Akiyo at QP=16, 10 fps. 








�EMBED Excel.Chart.8 \s��� 














Figure 2: Above Figure compares the Rate-Distortion Performance of Pre-Quantization Scheme when applied to H.263 encoding of the sequence Mother and Daughter. PSNR performance per frame is compared with and without Pre-Quantization in the H.263 encoder.


�EMBED Excel.Sheet.8 \s����






Finally, we address the overhead in computations in calculating the feature, or features, when we implement this algorithm. However, we realize that in any motion compensated video coding, during the motion estimation step, we anyway calculate the SAE for a 16x16 block. In H.263/MPEG4, if we are using the advanced prediction mode, we even have to calculate SAE for an 8x8 block. Thus, if we use SAE for classification and Pre-Quantization, in the advanced prediction mode, we require no extra computations! Even when we are not using the advanced prediction mode, we can calculate the SAE for individual blocks while doing motion estimation itself at an insignificant cost. Another alternative is to use 1/4th the SAE of the 16x16 macroblock for SAE of 8x8 block. For Chroma blocks (since there is no motion estimation done for chroma blocks), we also use 1/4th the SAE of the 16x16 luminance block.  





5 Conclusion





We have proposed a novel pre-quantization algorithm which is applicable for any video coding system based on motion estimation and DCT. We have shown that by using this algorithm we can reduce the number of blocks requiring DCT, quantization, inverse quantization and IDCT by 60% at fixed QP of 16. The overall savings vary a little depending upon the sequence and the coding bit-rate. The lower the rate (higher values of QP), the greater are the savings. This algorithm is a valuable tool for any low bit rate applications and directly applies for the video teleconferencing and the visual telephony (MPEG4/H.261/H.263) standards. The gains in savings come at the cost of  no loss in perceptual performance. The algorithm is tried for a wide variety of visual telephony test sequences and is shown to be very robust in terms of performance and savings.








6 References





[MPEG] Coding for Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s, ISO Draft MPEG, 1992.


[H.261] Video Codec for Audiovisual services at p x 64 kbits, ITU Recommendation H.261, March, 1993.


[H.263] Video Coding for Low Bit-rate Communications,  Draft Recommendation H.263, ITU Telecommunication Union, Telecommunications Standardization Sector SG 15, Dec. 1995.























