ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Fourth Meeting: Tampere, Finland, 21-24 April, 1998�
Document Q15-D-33

Filename: q15d33.doc

Generated: 13 April ‘98�
�

Question:�
Q.15/16�
�
Source:�
Gary Sullivan,�PictureTel Corp. M/S 635, Brickstone 3B28�100 Minuteman Rd �Andover, MA 01810 USA�
�Tel:�Fax:�Email:�
�+1 978 623 4324�+1 978 749 2804�garys@pictel.com�
�
Title:�
Using C for Syntax Specification, With H.263 Baseline Headers Format in C�
�
Purpose:�
Proposal�
�

SUMMARY

The author recently needed to write a pseudo-C description of the H.263 Baseline syntax, for use in making the MPEG-4 visual draft compatibility changes. With minor alterations to make it conform precisely to the K&R C language and to make it a little more readable, I have provided that description herein for the header levels of the H.263 Baseline syntax. The use of a similar method for future ITU standardization of syntax is proposed.

SPECIFICS

I propose using C for specifying syntax in our future standardization work, because:

It can be compiled, which means:

It enables easy creation of an automatic syntax validity checker

It enables easy creation of a compiled syntax parser for decoder implementation

It may even enable creation of an automatic start-code emulation problem finder

It adds information that cannot be shown in syntax diagrams, since it can easily express more complex relationships and restrictions. In fact it can also represent some relationships much more easily than text.

My initial (relatively uninformed) impression is that C or pseudo-C as used by MPEG has several advantages over the ASN.1 as used in H.245:

It does not lead to losing touch with understanding the underlying binary representation

It does not appear to me to overly encourage inefficient syntax

It can handle VLCs well

It can handle fixed-value fields well, e.g., sync codes, marker bits, and stuffing bits

It has useful dependency constructs, e.g., “if(){ }else{ }”, “do{ }while()”, and “while(){ }”

It has useful operation constructs, e.g., “variable1 = variable2 + 8”, “variable++”

As an illustration, I provide below a complete C-language specification for the headers of the H.263 baseline syntax.

H.263 BASELINE HEADER LAYERS IN C

Following is a complete K&R C specification for the header levels of H.263 Baseline. It has not been tested, but it has been compiled and I believe it is useful for illustration purposes. It is intended to be as readable as possible. Here are a few minor notes for helping understand it:

Four functions are defined for parsing the header levels of the H.263 Baseline bitstream:

BaselineTopHeaderLayer() – process the top-layer loop in the bitstream

BaselinePictureContents() – process the contents of one picture

BaselineGOB_Layer() – process the contents of one GOB

GetBaselineSourceFormat() – set variables depending on three source format bits

Seven undefined functions are shown in use below for reasonably obvious purposes:

NextBits() – peek at a specified number of future bits in the bitstream

NextByteAlignedBits() – peek at specified future byte-aligned bits in the bitstream

NowByteAligned() – check if current location in bitstream is byte aligned

BtoU() – convert quoted bit character string to unsigned int

BitstreamError() – declare something wrong with the bitstream format

ReadUnsigned() – read unsigned int of specified bit length from bitstream

MacroblockLayer() – process the macroblock layer of the bitstream

All variables and functions are of type “int”, and their type definitions have been deleted for brevity. All variables are local to the subroutine in which they are found.

Boldface font type is used for each line in which a parameter is read from the bitstream (following a convention used in MPEG)

BaselineTopHeaderLayer() {�
�
 picture_start_code = BtoU(“0000 0000 0000 0000 1 00000”);�
�
 end_of_sequence_code = BtoU(“0000 0000 0000 0000 1 11111”);�
�
 while(NextBits(22) == picture_start_code) {�
�
 ReadUnsigned(&picture_start_code, 22);�
�
 BaselinePictureContents();�
�
 if(NextBits(22) == end_of_sequence_code) {�
�
 ReadUnsigned(&end_of_sequence_code, 22);�
�
 while(!NowByteAligned()) {�
�
 ReadUnsigned(&zero_bit, 1);�
�
 if(zero_bit != 0)�
�
 BitstreamError(“Bad PSTUF”);�
�
 }�
�
 }�
�
 }�
�
 BitstreamError(“Bad Picture Start Code”);�
�
}�
�

BaselinePictureContents() {�
�
 ReadUnsigned(&temporal_reference, 8);�
�
 ReadUnsigned(&marker_bit, 1);�
�
 ReadUnsigned(&H261_bit, 1);�
�
 ReadUnsigned(&split_screen_indicator, 1);�
�
 ReadUnsigned(&document_camera_indicator, 1);�
�
 ReadUnsigned(&full_picture_freeze_release, 1);�
�
 ReadUnsigned(&source_format, 3);�
�
 ReadUnsigned(&picture_coding_type, 1);�
�
 ReadUnsigned(&UMV_mode, 1);�
�
 ReadUnsigned(&SAC_mode, 1);�
�
 ReadUnsigned(&AP_mode, 1);�
�
 ReadUnsigned(&PB_mode, 1);�
�
 ReadUnsigned(&pquant, 5);�
�
 ReadUnsigned(&CPM_mode, 1);�
�
 do{�
�
 ReadUnsigned(&pei, 1);�
�
 if(pei == 1)�
�
 ReadUnsigned(&psupp, 8);�
�
 } while(pei == 1);�
�
 if(marker_bit != 1 || H261_bit != 0)�
�
 BitstreamError(“Bad or H.261 Picture Header Fixed Bits”);�
�
 GetBaselineSourceFormat(source_format� &gobs_per_picture, &k_mbk_mbrows_per_gob, ¯oblocks_per_row);�
�
 if(UMV_mode || SAC_mode || AP_mode, PB_mode || CPM_mode)�
�
 BitstreamError(“Bitstream is not in Baseline mode”);�
�
 if(pquant == 0)�
�
 BitstreamError(“Bad PQUANT (zero)”);�
�
 for(gob_num=0; gob_num<gobs_per_picture; gob_num++)�
�
 BaselineGOB_Layer(picture_coding_type, &pquant, gob_num,� gobs_per_picture, k_mbrows_per_gob, macroblocks_per_row);�
�
}�
�

BaselineGOB_Layer(picture_coding_type, gquant_pointer, gob_num,� gobs_per_picture, k_mbrows_per_gob, macroblocks_per_row) {�
�
 gob_start_code = BtoU(“0000 0000 0000 0000 1”);�
�
 gob_header_empty = 1;�
�
 if(gob_num != 0)�
�
 if(NextBits(17) == gob_start_code) {�
�
 ReadUnsigned(&gob_start_code, 17);�
�
 ReadUnsigned(&gob_number_in_bitstream, 5);�
�
 ReadUnsigned(&gob_frame_id, 2);�
�
 ReadUnsigned(gquant_pointer, 5);�
�
 if(*gquant_pointer == 0)�
�
 BitstreamError(“Bad GQUANT (zero)”);�
�
 if(gob_number_in_bitstream != gob_num)�
�
 BitstreamError(“Bad GOB number”);�
�
 gob_header_empty = 0;�
�
 }�
�
 for(mbi=0; mbi<macroblocks_per_row * k_mbrows_per_gob; mbi++)�
�
 MacroblockLayer(gob_num, mbi, gquant_pointer,� picture_coding_type, gob_header_empty, macroblocks_per_row);�
�
 if(NextBits(17) != gob_start_code &&� NextByteAlignedBits(17) == gob_start_code)�
�
 while(!NowByteAligned()) {�
�
 ReadUnsigned(&zero_bit, 1);�
�
 if(zero_bit != 0)�
�
 BitstreamError(“Bad PSTUF/ESTUF/GSTUF bits”);�
�
 }�
�
}�
�

GetBaselineSourceFormat(source_format, gobs_per_picture_pointer,� k_mbrows_per_gob_pointer, macroblocks_per_row_pointer) {�
�
 *gobs_per_picture_pointer = 18;�
�
 *k_mbrows_per_gob_pointer = 1;�
�
 if(source_format == 1) { /* Sub-QCIF */�
�
 *gobs_per_picture_pointer = 6;�
�
 *macroblocks_per_row_pointer = 8;�
�
 }else if(source_format == 2) { /* QCIF */�
�
 *gobs_per_picture_pointer = 9;�
�
 *macroblocks_per_row_pointer = 11;�
�
 }else if(source_format == 3) { /* CIF */�
�
 *macroblocks_per_row_pointer = 22;�
�
 }else if(source_format == 4) { /* 4CIF */�
�
 *macroblocks_per_row_pointer = 44;�
�
 *k_mbrows_per_gob_pointer = 2;�
�
 }else if(source_format == 5) { /* 16CIF */�
�
 *macroblocks_per_row_pointer = 88;�
�
 *k_mbrows_per_gob_pointer = 4;�
�
 }else�
�
 BitstreamError(“Bad Baseline Source Format Bits”);�
�
}�
�

File:� FILENAME * MERGEFORMAT �q15d33d2.doc�	Page: � PAGE �1�	Date Printed: � DATE * MERGEFORMAT �04/13/98�

