INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N1797

MPEG97/

Stockholm, July 1997

Source: 	Video & SNHC Groups

Status: 	For Approval at the July 1997 MPEG meeting

Title: 	Working Draft4.0 of ISO/IEC 14496-2

Authors: 	A. Puri (Editor),

		T. Ebrahimi, C. Horne, J. Ostermann, E. S. Jang,

		and the Ad hoc Groups on Video&SNHC VM/WD Editing

Version of: 25 July, 1997

Please address any comments or suggestions to mpeg4-vm@ltssg3.epfl.ch

Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc394441651 � PAGEREF _Toc394441651 �vi��

1.1 Purpose	� GOTOBUTTON _Toc394441652 � PAGEREF _Toc394441652 �vi��

1.2 Application	� GOTOBUTTON _Toc394441653 � PAGEREF _Toc394441653 �vi��

1.3 Profiles, levels and flex	� GOTOBUTTON _Toc394441654 � PAGEREF _Toc394441654 �vi��

1.4 Object based coding syntax	� GOTOBUTTON _Toc394441655 � PAGEREF _Toc394441655 �vii��

1.4.1 Overview of the object based nonscalable syntax	� GOTOBUTTON _Toc394441656 � PAGEREF _Toc394441656 �vii��

1.4.2 Generalized scalability	� GOTOBUTTON _Toc394441657 � PAGEREF _Toc394441657 �ix��

1. Scope	� GOTOBUTTON _Toc394441658 � PAGEREF _Toc394441658 �1��

2. Normative references	� GOTOBUTTON _Toc394441659 � PAGEREF _Toc394441659 �1��

3. Definitions	� GOTOBUTTON _Toc394441660 � PAGEREF _Toc394441660 �3��

4. Abbreviations and symbols	� GOTOBUTTON _Toc394441661 � PAGEREF _Toc394441661 �11��

4.1 Arithmetic operators	� GOTOBUTTON _Toc394441662 � PAGEREF _Toc394441662 �11��

4.2 Logical operators	� GOTOBUTTON _Toc394441663 � PAGEREF _Toc394441663 �12��

4.3 Relational operators	� GOTOBUTTON _Toc394441664 � PAGEREF _Toc394441664 �12��

4.4 Bitwise operators	� GOTOBUTTON _Toc394441665 � PAGEREF _Toc394441665 �12��

4.5 Assignment	� GOTOBUTTON _Toc394441666 � PAGEREF _Toc394441666 �12��

4.6 Mnemonics	� GOTOBUTTON _Toc394441667 � PAGEREF _Toc394441667 �12��

4.7 Constants	� GOTOBUTTON _Toc394441668 � PAGEREF _Toc394441668 �13��

5. Conventions	� GOTOBUTTON _Toc394441669 � PAGEREF _Toc394441669 �14��

5.1 Method of describing bitstream syntax	� GOTOBUTTON _Toc394441670 � PAGEREF _Toc394441670 �14��

5.2 Definition of functions	� GOTOBUTTON _Toc394441671 � PAGEREF _Toc394441671 �15��

5.2.1 Definition of bytealigned() function	� GOTOBUTTON _Toc394441672 � PAGEREF _Toc394441672 �15��

5.2.2 Definition of nextbits() function	� GOTOBUTTON _Toc394441673 � PAGEREF _Toc394441673 �15��

5.2.3 Definition of next_start_code() function	� GOTOBUTTON _Toc394441674 � PAGEREF _Toc394441674 �15��

5.2.4 Definition of next_resync_marker() function	� GOTOBUTTON _Toc394441675 � PAGEREF _Toc394441675 �16��

5.3 Reserved, forbidden and marker_bit	� GOTOBUTTON _Toc394441676 � PAGEREF _Toc394441676 �16��

5.4 Arithmetic precision	� GOTOBUTTON _Toc394441677 � PAGEREF _Toc394441677 �16��

6. Visual bitstream syntax and semantics	� GOTOBUTTON _Toc394441678 � PAGEREF _Toc394441678 �18��

6.1 Structure of coded visual data	� GOTOBUTTON _Toc394441679 � PAGEREF _Toc394441679 �18��

6.1.1 Video session	� GOTOBUTTON _Toc394441680 � PAGEREF _Toc394441680 �18��

6.1.2 Macroblock	� GOTOBUTTON _Toc394441681 � PAGEREF _Toc394441681 �22��

6.1.3 Block	� GOTOBUTTON _Toc394441682 � PAGEREF _Toc394441682 �22��

6.2 Visual bitstream syntax	� GOTOBUTTON _Toc394441683 � PAGEREF _Toc394441683 �24��

6.2.1 Start codes	� GOTOBUTTON _Toc394441684 � PAGEREF _Toc394441684 �24��

6.2.2 Video Session	� GOTOBUTTON _Toc394441685 � PAGEREF _Toc394441685 �25��

6.2.3 Video Object	� GOTOBUTTON _Toc394441686 � PAGEREF _Toc394441686 �26��

6.2.4 Video Object Layer	� GOTOBUTTON _Toc394441687 � PAGEREF _Toc394441687 �27��

6.2.5 Group of Video Object Plane	� GOTOBUTTON _Toc394441688 � PAGEREF _Toc394441688 �28��

6.2.6 Video Object Plane	� GOTOBUTTON _Toc394441689 � PAGEREF _Toc394441689 �29��

6.2.7 Macroblock	� GOTOBUTTON _Toc394441690 � PAGEREF _Toc394441690 �35��

6.2.8 Block	� GOTOBUTTON _Toc394441691 � PAGEREF _Toc394441691 �39��

6.2.9 Still Texture Object	� GOTOBUTTON _Toc394441692 � PAGEREF _Toc394441692 �40��

6.2.10 View Dependent Object	� GOTOBUTTON _Toc394441693 � PAGEREF _Toc394441693 �41��

6.2.11 Mesh Object	� GOTOBUTTON _Toc394441694 � PAGEREF _Toc394441694 �43��

6.2.12 Face Object	� GOTOBUTTON _Toc394441695 � PAGEREF _Toc394441695 �45��

6.3 Visual bitstream semantics	� GOTOBUTTON _Toc394441696 � PAGEREF _Toc394441696 �51��

6.3.1 Semantic rules for higher syntactic structures	� GOTOBUTTON _Toc394441697 � PAGEREF _Toc394441697 �51��

6.3.2 Video Session	� GOTOBUTTON _Toc394441698 � PAGEREF _Toc394441698 �51��

6.3.3 Video Object	� GOTOBUTTON _Toc394441699 � PAGEREF _Toc394441699 �51��

6.3.4 Video Object Layer	� GOTOBUTTON _Toc394441700 � PAGEREF _Toc394441700 �51��

6.3.5 Group of Video Object Plane	� GOTOBUTTON _Toc394441701 � PAGEREF _Toc394441701 �54��

6.3.6 Video Object Plane	� GOTOBUTTON _Toc394441702 � PAGEREF _Toc394441702 �55��

6.3.7 Macroblock related	� GOTOBUTTON _Toc394441703 � PAGEREF _Toc394441703 �59��

6.3.8 Still texture object related	� GOTOBUTTON _Toc394441704 � PAGEREF _Toc394441704 �61��

6.3.9 View Dependent Object related	� GOTOBUTTON _Toc394441705 � PAGEREF _Toc394441705 �61��

6.3.10 Mesh related	� GOTOBUTTON _Toc394441706 � PAGEREF _Toc394441706 �61��

6.3.11 Face Animation related	� GOTOBUTTON _Toc394441707 � PAGEREF _Toc394441707 �61��

7. The visual decoding process	� GOTOBUTTON _Toc394441708 � PAGEREF _Toc394441708 �62��

7.1 Higher syntactic structures	� GOTOBUTTON _Toc394441709 � PAGEREF _Toc394441709 �62��

7.2 Variable length decoding	� GOTOBUTTON _Toc394441710 � PAGEREF _Toc394441710 �63��

7.3 Video Texture decoding	� GOTOBUTTON _Toc394441711 � PAGEREF _Toc394441711 �64��

7.3.1 Inverse scan	� GOTOBUTTON _Toc394441712 � PAGEREF _Toc394441712 �64��

7.3.2 Inverse quantisation	� GOTOBUTTON _Toc394441713 � PAGEREF _Toc394441713 �64��

7.3.3 Inverse DCT	� GOTOBUTTON _Toc394441714 � PAGEREF _Toc394441714 �68��

7.4 Shape decoding	� GOTOBUTTON _Toc394441715 � PAGEREF _Toc394441715 �69��

7.5 Motion compensation decoding	� GOTOBUTTON _Toc394441716 � PAGEREF _Toc394441716 �70��

7.6 Generalized video scalability	� GOTOBUTTON _Toc394441717 � PAGEREF _Toc394441717 �71��

7.6.1 Temporal scalability	� GOTOBUTTON _Toc394441718 � PAGEREF _Toc394441718 �72��

7.6.2 Spatial scalability	� GOTOBUTTON _Toc394441719 � PAGEREF _Toc394441719 �73��

7.6.3 Hybrid scalability	� GOTOBUTTON _Toc394441720 � PAGEREF _Toc394441720 �74��

7.7 Texture object decoding	� GOTOBUTTON _Toc394441721 � PAGEREF _Toc394441721 �75��

7.8 FAP decoding	� GOTOBUTTON _Toc394441722 � PAGEREF _Toc394441722 �76��

7.9 MITG Decoding	� GOTOBUTTON _Toc394441723 � PAGEREF _Toc394441723 �77��

7.10 2D Mesh geometry decoding	� GOTOBUTTON _Toc394441724 � PAGEREF _Toc394441724 �78��

7.11 Output of the decoding process	� GOTOBUTTON _Toc394441725 � PAGEREF _Toc394441725 �79��

8. Visual - Systems Composition Interfaces	� GOTOBUTTON _Toc394441726 � PAGEREF _Toc394441726 �80��

8.1 Temporal Scalability Composition	� GOTOBUTTON _Toc394441727 � PAGEREF _Toc394441727 �80��

8.2 TTS Assisted Facial Animation	� GOTOBUTTON _Toc394441728 � PAGEREF _Toc394441728 �82��

8.3 Visual APIs	� GOTOBUTTON _Toc394441729 � PAGEREF _Toc394441729 �83��

9. Profiles, levels and flex	� GOTOBUTTON _Toc394441730 � PAGEREF _Toc394441730 �84��

9.1 Interoperability	� GOTOBUTTON _Toc394441731 � PAGEREF _Toc394441731 �84��

9.2 Relationship between defined profiles	� GOTOBUTTON _Toc394441732 � PAGEREF _Toc394441732 �84��

9.3 Relationship between defined levels	� GOTOBUTTON _Toc394441733 � PAGEREF _Toc394441733 �84��

9.4 Scalable layers	� GOTOBUTTON _Toc394441734 � PAGEREF _Toc394441734 �84��

10. Annex A	� GOTOBUTTON _Toc394441735 � PAGEREF _Toc394441735 �85��

11. Annex B	� GOTOBUTTON _Toc394441736 � PAGEREF _Toc394441736 �87��

11.1 Macroblock type	� GOTOBUTTON _Toc394441737 � PAGEREF _Toc394441737 �87��

11.2 Macroblock pattern	� GOTOBUTTON _Toc394441738 � PAGEREF _Toc394441738 �89��

11.3 Motion vector	� GOTOBUTTON _Toc394441739 � PAGEREF _Toc394441739 �91��

11.4 DCT coefficients	� GOTOBUTTON _Toc394441740 � PAGEREF _Toc394441740 �93��

11.5 Shape Coding	� GOTOBUTTON _Toc394441741 � PAGEREF _Toc394441741 �99��

11.6 Sprite Coding	� GOTOBUTTON _Toc394441742 � PAGEREF _Toc394441742 �112��

12. Annex C	� GOTOBUTTON _Toc394441743 � PAGEREF _Toc394441743 �114��

13. Annex D	� GOTOBUTTON _Toc394441744 � PAGEREF _Toc394441744 �115��

13.1 Overview	� GOTOBUTTON _Toc394441745 � PAGEREF _Toc394441745 �115��

13.2 Object based coding	� GOTOBUTTON _Toc394441746 � PAGEREF _Toc394441746 �115��

13.3 Scalability	� GOTOBUTTON _Toc394441747 � PAGEREF _Toc394441747 �115��

13.4 Error resilience	� GOTOBUTTON _Toc394441748 � PAGEREF _Toc394441748 �115��

14. Annex E	� GOTOBUTTON _Toc394441749 � PAGEREF _Toc394441749 �116��

14.1 VOP Generation	� GOTOBUTTON _Toc394441750 � PAGEREF _Toc394441750 �116��

14.2 Noise Reduction	� GOTOBUTTON _Toc394441751 � PAGEREF _Toc394441751 �116��

15. Annex F	� GOTOBUTTON _Toc394441752 � PAGEREF _Toc394441752 �117��

16. Annex G	� GOTOBUTTON _Toc394441753 � PAGEREF _Toc394441753 �118��

16.1 Block	� GOTOBUTTON _Toc394441754 � PAGEREF _Toc394441754 �119��

16.2 Macroblock	� GOTOBUTTON _Toc394441755 � PAGEREF _Toc394441755 �120��

16.2.1 Motion Vector	� GOTOBUTTON _Toc394441756 � PAGEREF _Toc394441756 �124��

16.3 Video Object Plane	� GOTOBUTTON _Toc394441757 � PAGEREF _Toc394441757 �125��

16.3.1 Combined Motion Shape Texture Coding	� GOTOBUTTON _Toc394441758 � PAGEREF _Toc394441758 �129��

16.3.2 Motion Coding	� GOTOBUTTON _Toc394441759 � PAGEREF _Toc394441759 �130��

16.3.3 Shape Coding	� GOTOBUTTON _Toc394441760 � PAGEREF _Toc394441760 �130��

16.3.4 Texture Coding	� GOTOBUTTON _Toc394441761 � PAGEREF _Toc394441761 �133��

16.4 Video Object Layer	� GOTOBUTTON _Toc394441762 � PAGEREF _Toc394441762 �134��

16.5 Texture Object (TBD)	� GOTOBUTTON _Toc394441763 � PAGEREF _Toc394441763 �135��

16.6 Video Object	� GOTOBUTTON _Toc394441764 � PAGEREF _Toc394441764 �136��

16.7 Video Session	� GOTOBUTTON _Toc394441765 � PAGEREF _Toc394441765 �136��

17. Annex H	� GOTOBUTTON _Toc394441766 � PAGEREF _Toc394441766 �137��

18. Annex I	� GOTOBUTTON _Toc394441767 � PAGEREF _Toc394441767 �138��

�

�Foreword	

 (Foreword to be provided by ISO)

�Introduction	

Purpose

This Part of this specification was developed in response to the growing need for a coding method that can facilitate access to visual objects in natural and synthetic moving pictures and associated natural or synthetic sound for various applications such as digital storage media, internet, various forms of wired or wireless communication etc. The use of this specification means that motion video can be manipulated as a form of computer data and can be stored on various storage media, transmitted and received over existing and future networks and distributed on existing and future broadcast channels.

Application

The applications of this specification cover, but are not limited to, such areas as listed below:

IMM	Internet Multimedia

IVG	Interactive Video Games

IPC	Interpersonal Communications (videoconferencing, videophone, etc.)

ISM	Interactive Storage Media (optical disks, etc.)

MMM	Multimedia Mailing

NDB	Networked Database Services (via ATM, etc.)

RES	Remote Emergency Systems

RVS	Remote Video Surveillance

WMM	Wireless Multimedia

Profiles, levels and flex

This specification is intended to be generic in the sense that it serves a wide range of applications, bitrates, resolutions, qualities and services. Furthermore, it allows a number of modes of coding of both natural and synthetic video in a manner facilitating access to individual objects in images or video, referred to as content based access. Applications should cover, among other things, digital storage media, content based image and video databases, internet video, interpersonal video communications, wireless video etc. In the course of creating this specification, various requirements from typical applications have been considered, necessary algorithmic elements have been developed, and they have been integrated into a single syntax. Hence this specification will facilitate the bitstream interchange among different applications.

This specification includes one or more complete decoding algorithms as well as a set of decoding tools. Moreover, the various tools of this specification as well as that derived from ISO/IEC 13818-2 can be combined to form other decoding algorithms. Considering the practicality of implementing the full syntax of this specification, however, a limited number of subsets of the syntax are also stipulated by means of ÒprofileÓ and ÒlevelÓ.

A ÒprofileÓ is a defined subset of the entire bitstream syntax that is defined by this specification. Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the performance of encoders and decoders depending upon the values taken by parameters in the bitstream.

In order to deal with this problem ÒlevelsÓ are defined within each profile. A level is a defined set of constraints imposed on parameters in the bitstream. These constraints may be simple limits on numbers. Alternatively they may take the form of constraints on arithmetic combinations of the parameters.

Object based coding syntax

A video object in a scene is an entity which a user is allowed to access (seek, browse) and manipulate (cut and paste). The instances of video objects at a given time are called video object planes (vops). The encoding process generates a coded representation of a vop as well as composition information necessary for display. Further, at the decoder, a user may interact with and modify the composition process as needed.

The full syntax allows coding of individual video objects in a scene as well as the traditional picture based coding., which can be thought of as a single rectangular object. Furthermore, the syntax supports both nonscalable coding and scalable coding. Thus it becomes possible to handle normal scalabilities as well as object based scalabilities. The scalability syntax enables the reconstruction of useful video from pieces of a total bitstream. This is achieved by structuring the total bitstream in two or more layers, starting from a standalone base layer and adding a number of enhancement layers. The base layer can use the non-scalable syntax and can be coded using nonscalable syntax , or in the case of picture based coding, even a different video coding standard.

To ensure the ability to access individual objects, it is necessary to somehow achieve a coded representation of its shape. A natural video object consists of a sequence of 2D representations (at different time intervals) referred to here as vops. For efficient coding of vops, both temporal redundancies as well as spatial redundancies are exploited. Thus a coded representation of a vop includes representation of its shape, its motion and its texture.

Overview of the object based nonscalable syntax

The coded representation defined in the non-scalable syntax achieves a high compression ratio while preserving good image quality. Further, when access to individual objects is desired, the shape of objects also needs to be coded, and depending on the bandwidth available the shape information can be coded lossly or losslessly.

The compression algorithm employed for texture data is not lossless as the exact sample values are not preserved during coding. Obtaining good image quality at the bitrates of interest demands very high compression, which is not achievable with intra coding alone. The need for random access, however, is best satisfied with pure intra coding. The choice of the techniques is based on the need to balance a high image quality and compression ratio with the requirement to make random access to the coded bitstream.

A number of techniques are used to achieve high compression. The algorithm first uses block-based motion compensation to reduce the temporal redundancy. Motion compensation is used both for causal prediction of the current vop from a previous vop, and for non-causal, interpolative prediction from past and future vops. Motion vectors are defined for each 16-sample by 16-line region of a vop or 8-sample by 8-line region of a vop as required. The prediction error, is further compressed using the discrete cosine transform (DCT) to remove spatial correlation before it is quantised in an irreversible process that discards the less important information. Finally, the shape information, motion vectors and the quantised DCT information, are encoded using variable length codes.

Temporal processing

Because of the conflicting requirements of random access to and highly efficient compression, three main vop types are defined. Intra coded vops (I-vops) are coded without reference to other pictures. They provide access points to the coded sequence where decoding can begin, but are coded with only moderate compression. Predictive coded vops (P-vops) are coded more efficiently using motion compensated prediction from a past intra or predictive coded vops and are generally used as a reference for further prediction. Bidirectionally-predictive coded vops (B-vops) provide the highest degree of compression but require both past and future reference vops for motion compensation. Bidirectionally-predictive coded vops are never used as references for prediction (except in the case that the resulting vop is used as a reference for scalable enhancement layer). The organisation of the three vop types in a sequence is very flexible. The choice is left to the encoder and will depend on the requirements of the application.

Coding of Shapes

In natural video scenes, vops are generated by segmentation of the scene according to some semantic meaning. For such scenes, the shape information is thus binary (binary shape). On the other hand, in hybrid scenes, based on blue screen representation or for synthetic scenes, shape is represented as an 8-bit component (grey scale shape) and is used for composition. Both of these cases are allowed in this specification. Shape information is also referred to as alpha plane and thus can be either binary alpha plane or grey-scale alpha plane. The binary alpha plane is coded on a macroblock basis by modified MMR method while grey-scale alpha plane is coded by DCT as texture data.

For coding of shape of a vop, a bounding rectangle is first created and is extended to multiples of 16(16 blocks with extended alpha samples set to zero. Shape coding is then initiated on a 16(16 block basis.

Motion representation - macroblocks

The choice of 16(16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-off between the coding gain provided by using motion information and the overhead needed to represent it. Each macroblock can further be subdivided to 8(8 blocks for motion estimation and compensation dependin on the overhead that can be afforded.

Depending on the type of the macroblock, motion vector information and other side information is encoded with the compressed prediction error in each macroblock. The motion vectors are differenced with respect to a prediction value and coded using variable length codes. The maximum length of the motion vectors allowed is decided at the encoder. It is the responsibility of the encoder to calculate appropriate motion vectors. The specification does not specify how this should be done.

Spatial redundancy reduction

Both source vops and prediction errors vops have significant spatial redundancy. This specification uses a block-based DCT method with optional visually weighted quantisation, and run-length coding. After motion compensated prediction or interpolation, the resulting prediction error is split into 8(8 blocks. These are transformed into the DCT domain where they can be weighted before being quantised. After quantisation many of the DCT coefficients are zero in value and so two-dimensional run-length and variable length coding is used to encode the remaining DCT coefficients efficiently.

Chrominance formats

This specification currently supports the 4:2:0 chrominance format.

Generalized scalability

The scalability tools in this specification are designed to support applications beyond that supported by single layer video. The major applications of scalability include internet video, wireless video, multi-quality video services, video database browsing etc. In some of these applications, either normal scalabilities on picture basis such as that in ISO/IEC 13818-2 may be employed or object based scalabilities may be necessary; both categories of scalability are enabled by this specification. .

Although a simple solution to scalable video is the simulcast technique which is based on transmission/storage of multiple independently coded reproductions of video, a more efficient alternative is scalable video coding, in which the bandwidth allocated to a given reproduction of video can be partially re-utilised in coding of the next reproduction of video. In scalable video coding, it is assumed that given a coded bitstream, decoders of various complexities can decode and display appropriate reproductions of coded video. A scalable video encoder is likely to have increased complexity when compared to a single layer encoder. However, this standard provides several different forms of scalabilities that address non-overlapping applications with corresponding complexities.

The basic scalability tools offered are temporal scalability and spatial scalability. Moreover, combinations of these basic scalability tools are also supported and are referred to as hybrid scalability. In the case of basic scalability, two layers of video referred to as the lower layer and the enhancement layer are allowed, whereas in hybrid scalability up to four layers are supported.

Object based Temporal scalability

Temporal scalability is a tool intended for use in a range of diverse video applications from video databases, internet video, wireless video and multiview/stereoscopic coding of video. Furthermore, it may also provide a migration path from current lower temporal resolution video systems to higher tempoal resolution systems of the future.

Temporal scalability involves partitioning of vops into layers, whereas the lower layer is coded by itself to provide the basic temporal rate and the enhancement layer is coded with temporal prediction with respect to the lower layer, these layers when decoded and temporal multiplexed to yield full temporal resolution.. The lower temporal resolution systems may only decode the lower layer to provide basic temporal resolution whereas enhanced systems of future may support both layers. Furthermore, temporal scalability has use in bandwidth constrained networked applications where adaptation to frequent changes in allowed throughput are necessary. An additional advantage of temporal scalability is its ability to provide resilience to transmission errors as the more important data of the lower layer can be sent over channel with better error performance, while the less critical enhancement layer can be sent over a channel with poor error performance. Object based temporal scalability can also be employed to allow graceful control of picture quality by controlling the temporal rate of each video object under the constraint of given bit-budget.

Object based Spatial scalability

Spatial scalability is a tool intended for use in video applications involving multi quality video services, , video database browsing, internet video and wireless video., i.e., video systems with the primary common feature that a minimum of two layers of spatial resolution are necessary. Spatial scalability involves generating two spatial resolution video layers from a single video source such that the lower layer is coded by itself to provide the basic spatial resolution and the enhancement layer employs the spatially interpolated lower layer and carries the full spatial resolution of the input video source.

An additional advantage of spatial scalability is its ability to provide resilience to transmission errors as the more important data of the lower layer can be sent over channel with better error performance, while the less critical enhancement layer data can be sent over a channel with poor error performance. Further, it can also allow interoperability between various standards. Object based spatial scalability can allow better bit budgeting, complexity scalability and ease of decoding.

Hybrid scalability

There a number of applications where neither the temporal scalability nor the spatial scalability may offer the necessary flexibility and control. This may necessitate use of temporal and spatial scalability simultaneously and is referred to here as the hybrid scalability. Among the applications of hybrid scalability are wireless video, internet video, multiviewpoint/stereoscopic coding etc.

�WORKING DRAFT4.0 OF ISO/IEC 14496-2

INFORMATION TECHNOLOGY -

CODING OF AUDIO-VISUAL OBJECTS: VIDEO

Scope

This working 4.0 of International Standard specifies the coded representation of picture information in the form of natural or synthetic visual objects for content based access for digital storage media, digital video communication and other applications, as well as the decoding process of the aforementioned coded representation. The representation supports constant bitrate transmission, variable bitrate transmission, robust transmission, content based random access (including normal random access), object based scalable decoding (including normal scalable decoding), object based bitstream editing, as well as special functions such as fast forward playback, fast reverse playback, slow motion, pause and still pictures. This working 4.0 of International Standard is intended to allow some level of interoperability with ISO/IEC 11172-2, ISO/IEC 13818-2 and ITU-T H.263.

Normative references

The following ITU-T Recommendations and International Standards contain provisions which through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardisation Bureau maintains a list of currently valid ITU-T Recommendations.

¥	Recommendations and reports of the CCIR, 1990 XVIIth Plenary Assembly, Dusseldorf, 1990 Volume XI - Part 1 Broadcasting Service (Television) Recommendation ITU�RÊBT.601�3 ÒEncoding parameters of digital television for studiosÓ.	

¥	CCIR Volume X and XI Part 3 Recommendation ITU�RÊBR.648 ÒRecording of audio signalsÓ.

¥	CCIR Volume X and XI Part 3 Report ITU�RÊ955�2 ÒSatellite sound broadcasting to vehicular, portable and fixed receivers in the range 500 - 3000MhzÓ.

¥	ISO/IEC 11172-1 1993, Information technology Ñ Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s Ñ Part 1: Systems.

¥	ISO/IEC 11172-2 1993, Information technology Ñ Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s Ñ Part 2: Video.

¥	ISO/IEC 11172-3 1993, Information technology Ñ Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s Ñ Part 3: Audio.

¥	ISO/IEC 13818-1 1995, Information technology Ñ Generic Coding of moving pictures and associated audio Ñ Part 1: Systems.

¥	ISO/IEC 13818-2 1995, Information technology Ñ Generic Coding of moving pictures and associated audioÑ Part 2: Video.

¥	ISO/IEC 13818-3 1995, Information technology Ñ Generic Coding of moving pictures and associated audio Ñ Part 3: Audio.

¥	IEEE Standard Specifications for the Implementations of 8 by 8 Inverse Discrete Cosine Transform, IEEE Std 1180-1990, December 6, 1990.

¥	IEC Publication 908:1987, CD Digital Audio System.

¥	IEC Publication 461:1986,	Time and control code for video tape recorder.

¥	ITU-T Recommendation H.261 (Formerly CCITT Recommendation H.261) Codec for audiovisual services at px64 kbit/s Geneva, 1990.

¥	ITU-T Recommendation H.263 Video Coding for Low Bitrate Communication Geneva, 1996.

¥	ISO/IEC 10918-1:1994 | Recommendation ITU�TÊT.81 (JPEG) Information Technology ÑDigital compression and coding of continuous-tone still images: Requirements and guidelines.

�Definitions

For the purposes of this WD 3.0 of International Standard, the following definitions apply.

AC coefficient: Any DCT coefficient for which the frequency in one or both dimensions is non-zero.

B-vop; bidirectionally predictive-coded video object plane (vop): A vop that is coded using motion compensated prediction from past and/or future reference vops

backward compatibility: A newer coding standard is backward compatible with an older coding standard if decoders designed to operate with the older coding standard are able to continue to operate by decoding all or part of a bitstream produced according to the newer coding standard.

backward motion vector: A motion vector that is used for motion compensation from a reference vop at a later time in display order.

backward prediction: Prediction from the future reference vop.

binary shape: A bit map that indicates the shape of VOP.

base layer: An independently decodable layer of a scalable hierarchy

bitstream; stream: A ordered series of bits that forms the coded representation of the data.

bitrate: The rate at which the coded bitstream is delivered from the storage medium or network to the input of a decoder.

block: An 8-row by 8-column matrix of samples, or 64 DCT coefficients (source, quantised or dequantised).

byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8-bits from the first bit in the stream.

byte: Sequence of 8-bits.

changing pixel: In shape coding, first pixel with color change from the previous pixel (opaque to transparent or vice versa).

channel: A digital medium or a network that stores or transports a bitstream constructed according to this specification.

chrominance format: Defines the number of chrominance blocks in a macroblock.

chrominance component: A matrix, block or single sample representing one of the two colour difference signals related to the primary colours in the manner defined in the bitstream. The symbols used for the chrominance signals are Cr and Cb.

coded B-vop: A B-vop that is coded.

coded vop: A coded vop is a coded I-vop, a coded P-vop or a coded B-vop.

coded I-vop: An I-vop that is coded.

coded P-vop: A P-vop that is coded.

coded video bitstream: A coded representation of a series of one or more vops as defined in this specification.

coded order: The order in which the vops are transmitted and decoded. This order is not necessarily the same as the display order.

coded representation: A data element as represented in its encoded form.

coding parameters: The set of user-definable parameters that characterise a coded video bitstream. Bitstreams are characterised by coding parameters. Decoders are characterised by the bitstreams that they are capable of decoding.

component: A matrix, block or single sample from one of the three matrices (luminance and two chrominance) that make up a picture.

composition process: The (non-normative) process by which reconstructed vops are composed into a scene and displayed.

compression: Reduction in the number of bits used to represent an item of data.

constant alpha: A gray scale alpha plane that consists of a constant non-zero value.

constant bitrate coded video: A coded video bitstream with a constant bitrate.

constant bitrate: Operation where the bitrate is constant from start to finish of the coded bitstream.

conversion ratio: The size conversion ratio for the purpose of rate control of shape.

data element: An item of data as represented before encoding and after decoding.

DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

DCT coefficient: The amplitude of a specific cosine basis function.

decoder input buffer: The first-in first-out (FIFO) buffer specified in the video buffering verifier.

decoder: An embodiment of a decoding process.

decoding (process): The process defined in this specification that reads an input coded bitstream and produces decoded vops or audio samples.

dequantisation: The process of rescaling the quantised DCT coefficients after their representation in the bitstream has been decoded and before they are presented to the inverse DCT.

digital storage media; DSM: A digital storage or transmission device or system.

discrete cosine transform; DCT: Either the forward discrete cosine transform or the inverse discrete cosine transform. The DCT is an invertible, discrete orthogonal transformation. The inverse DCT is defined in Annex A of this specification.

display order: The order in which the decoded pictures are displayed. Normally this is the same order in which they were presented at the input of the encoder.

editing: The process by which one or more coded bitstreams are manipulated to produce a new coded bitstream. Conforming edited bitstreams must meet the requirements defined in this specification.

encoder: An embodiment of an encoding process.

encoding (process): A process, not specified in this specification, that reads a stream of input pictures or audio samples and produces a valid coded bitstream as defined in this specification.

enhancement layer: A relative reference to a layer (above the base layer) in a scalable hierarchy. For all forms of scalability, its decoding process can be described by reference to the lower layer decoding process and the appropriate additional decoding process for the enhancement layer itself.

feathering: A tool that tapers the values around edges of binary alpha mask for composition with the background.

flag: A one bit integer variable which may take one of only two values (zero and one).

forbidden: The term ÒforbiddenÓ when used in the clauses defining the coded bitstream indicates that the value shall never be used. This is usually to avoid emulation of start codes.

forced updating: The process by which macroblocks are intra-coded from time-to-time to ensure that mismatch errors between the inverse DCT processes in encoders and decoders cannot build up excessively.

forward compatibility: A newer coding standard is forward compatible with an older coding standard if decoders designed to operate with the newer coding standard are able to decode bitstreams of the older coding standard.

forward motion vector: A motion vector that is used for motion compensation from a reference frame vop at an earlier time in display order.

forward prediction: Prediction from the past reference vop.

frame: A frame contains lines of spatial information of a video signal. For progressive video, these lines contain samples starting from one time instant and continuing through successive lines to the bottom of the frame.

frame period: The reciprocal of the frame rate.

frame rate: The rate at which frames are be output from the composition process.

future reference vop: A future reference vop is a reference vop that occurs at a later time than the current vop in display order.

gray scale shape; gray level alpha plane:

vop reordering: The process of reordering the reconstructed vops when the coded order is different from the composition order for display. Vop reordering occurs when B-vops are present in a bitstream. There is no vop reordering when decoding low delay bitstreams.

hybrid scalability: Hybrid scalability is the combination of two (or more) types of scalability.

interlace: The property of conventional television frames where alternating lines of the frame represent different instances in time. In an interlaced frame, one of the field is meant to be displayed first. This field is called the first field. The first field can be the top field or the bottom field of the frame.

I-vop; intra-coded vop: A vop coded using information only from itself.

intra coding: Coding of a macroblock or vop that uses information only from that macroblock or vop.

intra shape coding: Shape coding that does not use any temporal prediction.

inter shape coding: Shape coding that uses temporal prediction.

level: A defined set of constraints on the values which may be taken by the parameters of this specification within a particular profile. A profile may contain one or more levels. In a different context, level is the absolute value of a non-zero coefficient (see ÒrunÓ).

layer: In a scalable hierarchy denotes one out of the ordered set of bitstreams and (the result of) its associated decoding process.

layered bitstream: A single bitstream associated to a specific layer (always used in conjunction with layer qualifiers, e.Êg. Òenhancement layer bitstreamÓ)

lower layer: A relative reference to the layer immediately below a given enhancement layer (implicitly including decoding of all layers below this enhancement layer)

luminance component: A matrix, block or single sample representing a monochrome representation of the signal and related to the primary colours in the manner defined in the bitstream. The symbol used for luminance is Y.

Mbit: 1 000 000 bits

macroblock: The four 8(8 blocks of luminance data and the two (for 4:2:0 chrominance format) corresponding 8(8 blocks of chrominance data coming from a 16(16 section of the luminance component of the picture. Macroblock is sometimes used to refer to the sample data and sometimes to the coded representation of the sample values and other data elements defined in the macroblock header of the syntax defined in this part of this specification. The usage is clear from the context.

motion compensation: The use of motion vectors to improve the efficiency of the prediction of sample values. The prediction uses motion vectors to provide offsets into the past and/or future reference vops containing previously decoded sample values that are used to form the prediction error.

motion estimation: The process of estimating motion vectors during the encoding process.

motion vector: A two-dimensional vector used for motion compensation that provides an offset from the coordinate position in the current picture or field to the coordinates in a reference vop.

motion vector for shape: A motion vector used for motion compensation of shape.

non-intra coding: Coding of a macroblock or a vop that uses information both from itself and from macroblocks and vops occurring at other times.

opaque macroblock: A macroblock with shape mask of all 255’s.

P-vop; predictive-coded vop: A picture that is coded using motion compensated prediction from the past vop..

parameter: A variable within the syntax of this specification which may take one of a range of values. A variable which can take one of only two values is called a flag.

past reference picture: A pas.t reference vop is a reference vop that occurs at an earlier time than the current vop in composition order.

picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of three rectangular matrices of 8-bit numbers representing the luminance and two chrominance signals. A Òcoded vopÓ was defined earlier. For progressive video, a picture is identical to a frame.

prediction: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

prediction error: The difference between the actual value of a sample or data element and its predictor.

predictor: A linear combination of previously decoded sample values or data elements.

profile: A defined subset of the syntax of this specification.

progressive: The property of film frames where all the samples of the frame represent the same instances in time.

quantisation matrix: A set of sixty-four 8-bit values used by the dequantiser.

quantised DCT coefficients: DCT coefficients before dequantisation. A variable length coded representation of quantised DCT coefficients is transmitted as part of the coded video bitstream.

quantiser scale: A scale factor coded in the bitstream and used by the decoding process to scale the dequantisation.

random access: The process of beginning to read and decode the coded bitstream at an arbitrary point.

reconstructed vop: A reconstructed frame consists of three matrices of 8-bit numbers representing the luminance and two chrominance signals. A reconstructed vop is obtained by decoding a coded vop

reconstructed vop: A reconstructed vop is obtained by decoding a coded vop.

reference vop: A reference frame is a reconstructed vop that was coded in the form of a coded I-vop or a coded P-vop. Reference vops are used for forward and backward prediction when P-vops and B-vops are decoded.

reordering delay: A delay in the decoding process that is caused by vop reordering.

reserved: The term ÒreservedÓ when used in the clauses defining the coded bitstream indicates that the value may be used in the future for ISO/IEC defined extensions.

scalable hierarchy: coded video data consisting of an ordered set of more than one video bitstream.

scalability: Scalability is the ability of a decoder to decode an ordered set of bitstreams to produce a reconstructed sequence. Moreover, useful video is output when subsets are decoded. The minimum subset that can thus be decoded is the first bitstream in the set which is called the base layer. Each of the other bitstreams in the set is called an enhancement layer. When addressing a specific enhancement layer, Òlower layerÓ refer to the bitstream which precedes the enhancement layer.

side information: Information in the bitstream necessary for controlling the decoder.

run: The number of zero coefficients preceding a non-zero coefficient, in the scan order. The absolute value of the non-zero coefficient is called ÒlevelÓ.

saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or minimum of the range as appropriate.

source; input: Term used to describe the video material or some of its attributes before encoding.

spatial prediction: prediction derived from a decoded frame of the lower layer decoder used in spatial scalability

spatial scalability: A type of scalability where an enhancement layer also uses predictions from sample data derived from a lower layer without using motion vectors. The layers can have different vop sizes or vop rates.

start codes [msdl and video]: 32-bit codes embedded in that coded bitstream that are unique. They are used for several purposes including identifying some of the structures in the coding syntax.

stuffing (bits); stuffing (bytes): Code-words that may be inserted into the coded bitstream that are discarded in the decoding process. Their purpose is to increase the bitrate of the stream which would otherwise be lower than the desired bitrate.

temporal prediction: prediction derived from reference vops other than those defined as spatial prediction

temporal scalability: A type of scalability where an enhancement layer also uses predictions from sample data derived from a lower layer using motion vectors. The layers have identical frame size, and but can have different vop rates.

top layer: the topmost layer (with the highest layer_id) of a scalable hierarchy.

transparent macroblock: A macroblock with shape mask of all zeros.

variable bitrate: Operation where the bitrate varies with time during the decoding of a coded bitstream.

variable length coding; VLC: A reversible procedure for coding that assigns shorter code-words to frequent events and longer code-words to less frequent events.

video buffering verifier; VBV: A hypothetical decoder that is conceptually connected to the output of the encoder. Its purpose is to provide a constraint on the variability of the data rate that an encoder or editing process may produce.

video session: The highest syntactic structure of coded video bitstreams. It contains a series of one or more coded video objects.

xxx profile decoder: decoder able to decode one or a scalable hierarchy of bitstreams of which the top layer conforms to the specifications of the xxx profile (with xxx being any of the defined Profile names).

xxx profile scalable hierarchy: set of bitstreams of which the top layer conforms to the specifications of the xxx profile.

xxx profile bitstream: a bitstream of a scalable hierarchy with a profile indication corresponding to xxx. Note that this bitstream is only decodable together with all its lower layer bitstreams (unless it is a base layer bitstream).

zigzag scanning order: A specific sequential ordering of the DCT coefficients from (approximately) the lowest spatial frequency to the highest.

�Abbreviations and symbols

The mathematical operators used to describe this specification are similar to those used in the C programming language. However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loops generally begin from zero.

Arithmetic operators

+	Addition.

-	Subtraction (as a binary operator) or negation (as a unary operator).

++	Increment. i.e. x++ is equivalent to x = x + 1

- -	Decrement. i.e. x-- is equivalent to x = x - 1

�	Multiplication.

^	Power.

/	Integer division with truncation of the result toward zero. For example, 7/4 and -7/-4 are truncated to 1 and -7/4 and 7/-4 are truncated to -1.

//	Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero unless rwise specified. For example 3//2 is rounded to 2, and -3//2 is rounded to -2.

///	Integer division with sign dependent rounding to integer. Half-integer values when positive are rounded away from zero, and when negativeare rounded towards zero. For example 3///2 is rounded to 2, and -3//2 is rounded to -1.

DIV	Integer division with truncation of the result toward minus infinity. For example 3ÊDIVÊ2 is rounded to 1, and -3ÊDIVÊ2 is rounded to -2.

Ö	Used to denote division in mathematical equations where no truncation or rounding is intended.

%	Modulus operator. Defined only for positive numbers.

Sign()	� EMBED Word.Picture.6 ���

Abs()	�

�	The summation of the f(i) with i taking integral values from a up to, but not including b.

Logical operators

||	Logical OR.

&&	Logical AND.

!	Logical NOT.

Relational operators

>	Greater than.

>=	Greater than or equal to.

<	Less than.

<=	Less than or equal to.

==	Equal to.

!=	Not equal to.

max [, ¼ ,] 	the maximum value in the argument list.

min [, ¼ ,] 	the minimum value in the argument list.

Bitwise operators

&	AND

|	OR

>>	Shift right with sign extension.

<<	Shift left with zero fill.

Assignment

=	Assignment operator.

Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

bslbf	Bit string, left bit first, where ÒleftÓ is the order in which bit strings are written in this specification. Bit strings are generally written as a string of 1s and 0s within single quote marks, e.g. Ô1000 0001Õ. Blanks within a bit string are for ease of reading and have no significance. For convenience large strings are occasionally written in hexadecimal, in this case conversion to a binary in the conventional manner will yield the value of the bit string. Thus the left most hexadecimal digit is first and in each hexadecimal digit the most significant of the four bits is first.

uimsbf	Unsigned integer, most significant bit first.

simsbf	Signed integer, in twos complement format, most significant (sign) bit first.

vlclbf	Variable length code, left bit first, where ÒleftÓ refers to the order in which the VLC codes are written. The byte order of multibyte words is most significant byte first.

Constants

(3,141Ê592Ê653Ê58¼

e	2,718Ê281Ê828Ê45¼

�Conventions

Method of describing bitstream syntax

The bitstream retrieved by the decoder is described in 6.2. Each data item in the bitstream is in bold type. It is described by its name, its length in bits, and a mnemonic for its type and order of transmission.

The action caused by a decoded data element in a bitstream depends on the value of that data element and on data elements previously decoded. The decoding of the data elements and definition of the state variables used in their decoding are described in 6.3. The following constructs are used to express the conditions when data elements are present, and are in normal type:

while (condition) {�If the condition is true, then the group of data elements ��	data_element�occurs next in the data stream. This repeats until the ��	. . .�condition is not true.��}���do {���	data_element�The data element always occurs at least once. ��	. . .���} while (condition)�The data element is repeated until the condition is not true.��if (condition) {�If the condition is true, then the first group of data ��	data_element�elements occurs next in the data stream.��	. . .���} else {�If the condition is not true, then the second group of data ��	data_element�elements occurs next in the data stream.��	. . .���}���for (i = m; i < n; i++) {�The group of data elements occurs (m-n) times. Conditional ��	data_element�constructs within the group of data elements may depend ��	. . .�on the value of the loop control variable i, which is set to��}�m for the first occurrence, incremented by one for���the second occurrence, and so forth.��/* comment ¼ */�Explanatory comment that may be deleted entirely without���in any way altering the syntax.��

This syntax uses the ÔC-codeÕ convention that a variable or expression evaluating to a non-zero value is equivalent to a condition that is true and a variable or expression evaluating to a zero value is equivalent to a condition that is false. In many cases a literal string is used in a condition. For example;

if (video_object_layer_shape == ÒrectangularÓ) ¼

In such cases the literal string is that used to describe the value of the bitstream element in 6.3. In this example, we see that ÒrectangularÓ is defined in a Table?? to be represented by the two bit binary number Ô00Õ.

As noted, the group of data elements may contain nested conditional constructs. For compactness, the {} are omitted when only one data element follows.

data_element [n] 	data_element [n] is the n+1th element of an array of data.

data_element [m][n]	data_element [m][n] is the m+1, n+1th element of a two-dimensional array of data.

data_element [l][m][n]	data_element [l][m][n] is the l+1, m+1, n+1th element of a three-dimensional array of data.

While the syntax is expressed in procedural terms, it should not be assumed that 6.2 implements a satisfactory decoding procedure. In particular, it defines a correct and error-free input bitstream. Actual decoders must include means to look for start codes in order to begin decoding correctly, and to identify errors, erasures or insertions while decoding. The methods to identify these situations, and the actions to be taken, are not standardised.

Definition of functions

Several utility functions for picture coding algorithm are defined as follows:

Definition of bytealigned() function

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit in the bitstream is the first bit in a byte. Otherwise it returns 0.

Definition of nextbits() function

The function nextbits () permits comparison of a bit string with the next bits to be decoded in the bitstream.

Definition of next_start_code() function

The next_start_code() function removes any zero bit and a string of Ô1Õ bits used for stuffing and locates the next start code.	

next_start_code() {�No. of bits�Mnemonic��	if (!bytealigned()) ����		zero_bit�1�Ô0Õ��	while (!byte_aligned())����		one_bit�1�Ô1Õ��}����This function checks whether the current position is byte aligned. If it is not, a zero stuffing bit followed by a number of one stuffing bits may be present before the start code.

Definition of next_resync_marker() function

The next_resync_marker() function removes any zero bit and a string of one bits used for stuffing and locates the next resync marker; it thus performs similar operation as next_start_code() but for resync_marker.	

next_resync_marker() {�No. of bits�Mnemonic��	if (!bytealigned()) ����		zero_bit�1�Ô0Õ��	while (!byte_aligned())����		one_bit�1�Ô1Õ��}����

Reserved, forbidden and marker_bit

The terms ÒreservedÓ and ÒforbiddenÓ are used in the description of some values of several fields in the coded bitstream.

The term ÒreservedÓ indicates that the value may be used in the future for ISO/IEC|ITU�T defined extensions.

The term ÒforbiddenÓ indicates a value that shall never be used (usually in order to avoid emulation of start codes).

The term Òmarker_bitÓ indicates a one bit integer in which the value zero is forbidden (and it therefore shall have the value Ô1Õ). These marker bits are introduced at several points in the syntax to avoid start code emulation.

Arithmetic precision

In order to reduce discrepancies between implementations of this specification, the following rules for arithmetic operations are specified.

(a)	Where arithmetic precision is not specified, such as in the calculation of the IDCT, the precision shall be sufficient so that significant errors do not occur in the final integer values

(b)	Where ranges of values are given by a colon, the end points are included if a bracket is present, and excluded if the Ôless thanÕ (<) and Ôgreater thanÕ (>) characters are used. For example, [a : b> means from a to b, including a but excluding b.

�Visual bitstream syntax and semantics

Structure of coded visual data

Coded video data consists of an ordered set of video bitstreams, called layers. If there is only one layer, the coded video data is called non-scalable video bitstream. If there are two layers or more, the coded video data is called a scalable hierarchy.

One of the layers is called base layer, and it can always be decoded independently.

Other layers are called enhancement layers, and can only be decoded together with the lower layers (previous layers in the ordered set), starting with the base layer. The multiplexing of these layers is discussed in ISO/IEC 14496-1.

The base layer of a scalable set of streams can be coded by other standards. The Enhancement layers shall conform to this specification.

In general the video bitstream can be thought of as a syntactic hierarchy in which syntactic structures contain one or more subordinate structures.

Video session

Video session is is the highest syntactic structure of the coded video bitstream.

A video session commences with a video_session_start_code which is followed by a one or more video objects coded concurrently. The video session is terminated by a video_session_end_code.

Progressive and interlaced sequences

This specification deals mainly with coding of progressive sequences although the tools of this specification can be combined with that of tools derived from ISO/IEC 13818-2 to form algorithms to code interlaced sequences.

The sequence, at the output of the decoding process, consists of a series of reconstructed vops separated in time and are readied for display via the compositor.

Frame

A frame consists of three rectangular matrices of integers; a luminance matrix (Y), and two chrominance matrices (Cb and Cr).

Vop

A reconstructed vop is obtained by decoding a coded vop. A coded vop may have been derived from progressive frame.

Vop types

There are three types of vopsthat use different coding methods.

An Intra-coded (I) vop is coded using information only from itself.

A Predictive-coded (P) vop is a vop which is coded using motion compensated prediction from a past reference vop.

A Bidirectionally predictive-coded (B) vop is a vop which is coded using motion compensated prediction from a past and/or future reference vop(s).

I-vops

I-vops are intended to assist random access into the sequence. Applications requiring random access, fast-forward playback, or fast reverse playback may use I-vops relatively frequently.

I-vops may also be used at scene cuts or other cases where motion compensation is ineffective.

4:2:0 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertical dimensions. The Y-matrix shall have an even number of lines and samples.

The luminance and chrominance samples are positioned as shown in � REF _Ref372645514 * MERGEFORMAT �Figure 6-1�.

In order to further specify the organisation, � REF _Ref372645538 * MERGEFORMAT �Figure 6-2� shows the vertical and temporal positioning of the samples in a progressive frame.

�

		�	Represent luminance samples

		�	Represent chrominance samples

Figure � STYLEREF 1 \n �6�-� SEQ Figure * ARABIC \r 1 �1� -- The position of luminance and chrominance samples. 4:2:0 data.

�

Figure � STYLEREF 1 \n �6�-� SEQ Figure * ARABIC �2�Ð Vertical and temporal positions of samples in a progressive frame.

Vop reordering

When a video object layer contains coded B-vops, the number of consecutive coded B-vops is variable and unbounded. The first coded vop shall not be a B-vop.

A video object layer may contain no coded P-vops. A video object layer may also contain no coded I-vops in which case some care is required at the start of the video object layer and within the video object layer to effect both random access and error recovery.

The order of the coded vops in the bitstream, also called coded order, is the order in which a decoder reconstructs them. The order of the reconstructed vops at the output of the decoding process, also called the display order, is not always the same as the coded order and this section defines the rules of vop reordering that shall happen within the decoding process.

When the video object layer contains no coded B-vops, the coded order is the same as the display order. This is true in particular always when low_delay is one.

When B-vops are present in the video object layer re-ordering is performed according to the following rules:

If the current vop in coded order is a B-vop the output vop is the vop reconstructed from that B-vop.

If the current vop in coded order is a I-vop or P-vop the output vop is the vop reconstructed from the previous I-vop or P-vop if one exists. If none exists, at the start of the video object layer, no vop is output.

The following is an example of vops taken from the beginning of a video object layer. In this example there are two coded B-vops between successive coded P-vops and also two coded B-vops between successive coded I- and P-vops. Vop Ô1IÕ is used to form a prediction for vop Ô4PÕ. Vops Ô4PÕ and Ô1IÕ are both used to form predictions for vops Ô2BÕ and Ô3BÕ. Therefore the order of coded vops in the coded sequence shall be Ô1IÕ, Ô4PÕ, Ô2BÕ, Ô3BÕ. However, the decoder shall display them in the order Ô1IÕ, Ô2BÕ, Ô3BÕ, Ô4PÕ.

	At the encoder input,

1

I�2

B�3

B�4

P�5

B�6

B�7

P�8

B�9

B�10

I�11

B�12

B�13

P��	At the encoder output, in the coded bitstream, and at the decoder input,

1

I�4

P�2

B�3

B�7

P �5

B�6

B�10

I�8

B�9

B�13

P�11

B�12

B��	At the decoder output,

1�2�3�4�5�6�7�8�9�10�11�12�13��

Macroblock

A macroblock contains a section of the luminance component and the spatially corresponding chrominance components. The term macroblock can either refer to source and decoded data or to the corresponding coded data elements. A skipped macroblock is one for which no information is transmitted. Presently there is only one chrominance format for a macroblock, namely, 4:2:0 format. The orders of blocks in a macroblock is illustrated below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is depicted in � REF _Ref372653608 * MERGEFORMAT �Figure 6-3�.

�

Figure � STYLEREF 1 \n �6�-� SEQ Figure * ARABIC �3� -- 4:2:0 Macroblock structure

Block

The term block can refer either to source and reconstructed data or to the DCT coefficients or to the corresponding coded data elements.

When the block refers to source and reconstructed data it refers to an orthogonal section of a luminance or chrominance component with the same number of lines and samples. There are 8 lines and 8 samples/line in the block.

�Visual bitstream syntax

Start codes

Start codes are specific bit patterns that do not otherwise occur in the video stream.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a string of twenty three bits with the value zero followed by a single bit with the value one. The start code prefix is thus the bit string Ô0000 0000 0000 0000 0000 0001Õ.

The start code value is an eight bit integer which identifies the type of start code. Many types of start code have just one start code value. However video_object_start_code and video_object_layer_start_code are represented by many start code values.

All start codes shall be byte aligned. This shall be achieved by first inserting a bit with the value one and then, if necessary, inserting bits with the value zero before the start code prefix such that the first bit of the start code prefix is the first (most significant) bit of a byte.

� REF _Ref372275174 * MERGEFORMAT �Table 6-1� defines the start code values for all start codes used in the visual bitstream.

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC \r 1 �1� Ñ Start code values

name�start code value

(hexadecimal)��video_object_start_code�00 through 1F��video_object_layer_start_code�20 through 2F��reserved�30 through AF��video_session_start_code�B0��video_session_end_code�B1��user_data_start_code�B2��group_of_vop_start_code�B3��video_session_error_code�B4��reserved�B5��vop_start_code�B6��reserved�B7-B9��face_object_start_code�BA��face_object_plane_start_code�BB��mesh_object_start_code�BC��mesh_object_plane_start_code�BD��texture_object_start_code�BE��view_dep_object_start_code�BF��reserved�C0-C5��System start codes (see note)�C6 through FF��NOTE - System start codes are defined in Part 1 of this specification���The use of the start codes is defined in the following syntax description with the exception of the video_session_error_code. The video_session_error_code has been allocated for use by a media interface to indicate where uncorrectable errors have been detected.

Video Session

VideoSession() {�No. of bits�Mnemonic��	video_session_start_code�32�bslbf��	do* {����		VideoObject()����	} while (nextbits_bytealigned()==video_object_start_code)����	next_start_code()����	video_session_end_code�32�bslbf��}����* concurrent loop solution to be provided by MPEG-4 systems

Video Object

VideoObject() {�No. of bits�Mnemonic��	video_object_start_code

	/* 5 least significant bits specify video_object_id value*/�32 �bslbf��	do{����		VideoObjectLayer()����	} while (nextbits_bytealigned() == video_object_layer_start_code)����	next_start_code()����}����

Video Object Layer

VideoObjectLayer() {�No. of bits�Mnemonic��	video_object_layer_start_code

	/* 4 least significant bits specify video_object_layer_id value*/�32 �bslbf��	video_object_layer_shape�1�uimsbf��	if (video_object_layer_shape == “rectangular”){����		video_object_layer_width�10�uimsbf��		video_object_layer_height�10�uimsbf��	}���� sprite_enable�1��� if(sprite_enable) {���� sprite_width�13��� sprite_height�13��� sprite_left_coordinate�13��� sprite_top_coordinate�13��� no_of_sprite_warping_points�6��� sprite_warping_accuracy�2��� sprite_brightness_change�1��� }���� quant_type�1�uimsbf�� if (quant_type) {����		load_intra_quant_mat�1�uimsbf��		if (load_intra_quant_mat)����			intra_quant_mat�8*64�uimsbf��		load_nonintra_quant_mat�1�uimsbf��		if (load_nonintra_quant_mat)����			nonintra_quant_mat�8*64�uimsbf��	}����	error_reslient_disable�1�uimsbf��	intra_acdc_pred_disable�1�uimsbf�� if(sprite_enable)���� sprite_piece()����	scalability�1�uimsbf��	if (scalability) {����		ref_layer_id�4�uimsbf��		ref_layer_sampling_direc�1�uimsbf��		hor_sampling_factor_n�5�uimsbf��		hor_sampling_factor_m�5�uimsbf��		vert_sampling_factor_n�5�uimsbf��		vert_sampling_factor_m�5�uimsbf��		enhancement_type�1�uimsbf��	}����	do {/* editors note: group_of_vop needs to be made optional!!!! */���� Group_of_VideoObjectPlane()���� do {����		 VideoObjectPlane()���� } while (nextbits_bytealigned() == vop_start_code)����	} while (nextbits_bytealigned() == group_of_vop_start_code)����	next_start_code()����}����Group of Video Object Plane

Group_of_VideoObjectPlane() {�No. of bits�Mnemonic��	group_vop_start_code�32��� vop_time_increment_resolution�15��� marker_bit�1���	time_code�18���	closed_gov�1���	broken_link�1���	next_start_code()����}����

Video Object Plane

VideoObjectPlane() {�No. of bits�Mnemonic��	vop_start_code�32�bslbf��	do {����		modulo_time_base�1�bslbf��	} while (modulo_base != ‘0’)����	vop_time_increment�1-15�bslbf�� vop_coded���� if (vop_coded==’0’) ���� next_start_code()����	vop_coding_type�2�uimsbf��	if(vop_coding_type == “P”)����		vop_rounding_type�1�bslbf�� if (sprite_enable) {���� if (no_of_sprite_warping_points > 0)���� sprite_trajectory()���� }���� if (sprite_brightness_change) {���� brightness_change_factor()���� }���� do {���� sprite_transmit_mode�2��� if ((sprite_transmit_mode == “piece”) ||���� (sprite_transmit_mode == “update”))���� sprite_piece()���� }while ((sprite_transmit_mode != “stop”) &&���� (sprite_transmit_mode != “pause”)) ����	if (video_object_layer_shape != “rectangular”) {����		vop_width�13�uimsbf��		vop_height�13�uimsbf��		vop_horizontal_mc_spatial_ref�13�uimsbf��		marker_bit�1�bslbf��		vop_vertical_mc_spatial_ref�13�uimsbf�� if (sprite_enable)���� return()���� }����		if (scalability &&enhancement_type)����			background_composition�1�uimsbf��	}���� intra_dc_vlc_thr�3�uimsbf�� interlaced�1�uimsbf�� if (interlaced)���� top_field_first�1���	if (vop_prediction_type == “10”)����		vop_dbquant�2�uimsbf��	else����		vop_quant�5�uimsbf��	vop_fcode_forward�3�uimsbf��	vop_fcode_backward�3�uimsbf��	if (!scalability) {����	 if (error_resilience_disable) {����		 motion_shape_texture_coding()���� while (nextbits_bytealigned() == resync_marker) {���� video_packet_header()���� motion_shape_texture_coding()���� }����	 }����	 else{����		 do {����			do {����			 motion_shape_texture_coding()����		 } while (nextbits_bytealigned() != ‘000 0000 00����							00 0000 0000 0000’)����		 if (nextbits_bytealigned() != ‘000 0000 0000 00����						 00 0000 0000’) {����			 next_resync_marker()����			 resync_marker�17�uimsbf��			 macroblock_number�1-12�vlclbf��			 quant_scale�5�uimsbf��			}����		 }while (nextbits_bytealigned() != ‘000 0000 0000 00����						00 0000 0000’)����	 }����	}����	else { /* if scalability */����		if (enhancement_type) {����			load_backward_shape�1�uimsbf��			if (load_backward_shape) {����				backward_shape_coding()����				load_forward_shape�1�uimsbf��				if (load_forward_shape)����					forward_shape_coding()����			}����		}����		ref_select_code�2�uimsbf��		if (vop_prediction_type== “p vop” || vop_prediction_type����			== “b vop”) {����			forward_temporal_ref�1-15�uimsbf��			if (vop_prediction_type== “b vop”) {����				marker_bit�1�bslbf��				backward_temporal_ref�1-15�uimsbf��			}����		}����		motion_shape_texture_coding()����	}����	next_start_code()����}����

video_packet_header() {�No. of bits�Mnemonic��	resync_marker�17�uimsbf��	macroblock_number�1-14�vlclbf��	quant_scale�5�uimsbf��	header_extension_code�1�uimsbf�� if (header_extension_code) {����	 module_time_base�1�bslbf��	 vop_time_increment�1-15�bslbf��	 vop_coding_type�2�uimsbf��	}����}����

Motion Shape Texture Coding

motion_shape_texture_coding() {�No. of bits�Mnemonic��	if (data_partitioning)����		 data_partitioning_motion _shape_texture()����	else���� 		combined_motion_shape_texture()����}����

combined_motion_shape_texture_coding() {�No. of bits�Mnemonic��	do{����		macroblock()����	} while (nextbits_bytealigned() != ‘0000 0000 0000 0000’)����}����

data_partitioning_motion_shape_texture() {�No. of bits�Mnemonic��						/* Shape Coding Goes Here */����	 do{����		if (vop_coding_type==“P”) {���� 			not_cod�1�bslbf�� 		}���� 		else if (vop_coding_type==“B”){���� 	 	 /* Need Syntax */����		}����		mcbpc�1-9�vlclbf��		if (mb_type >= 3)����			for (I = 0; I < 4; I++) {����				dc_size_luminance(I)�2 - 11�vlclbf��				dc_diff(I)�0 - 12�vlclbf��			}����			dc_size_chrominance(5)�2 - 12�vlclbf��			dc_diff(5)�0 - 12�vlclbf��			dc_size_chrominance(6)�2 - 12 �vlclbf��			dc_diff(6)�0 - 12�vlclbf��		}����		else����			motion_coding()����	} while (nextbits() != motion_marker)����	motion_marker�17�bslbf��	for (I = 0; I < MB_in_video_packet; I++) {����		if (mb_type >= 3)����			ac_pred_flag�1�bslbf��		if (mb_type == 1 || mb_type == 4)����			dquant�2�bslbf��		cbpy�2-6�vlclbf��	}����	for (I = 0; I < MB_in_video_packet; I++) {����		for (i = 0; i < block_count; i++)����			block(i)����	} while (nextbits_bytealigned() != resync_marker)����}����It is assumed that block() does not read the intra DC DCT coefficients

�

Macroblock

macroblock() {�No. of bits�Mnemonic�� if (vop_coding_type !== “B”) {����	 if (video_object_layer_shape != “rectangular”) {����		 mb_binary_shape_coding()���� if (video_object_layer_shape != “binary shape only”) {����	 if ((opaque_pixel_count > 0) && (vop_coding_type != “I”)) ����			not_cod�1�bslbf��	 if (!not_cod || vop_coding_type == “I”) {����		 mcbpc�1-9�vlclbf��		 if (derived_mb_type == 3 || derived_mb_type == 4)����			 ac_pred_flag�1�bslbf��		 if (derived_mb_type != ÒstuffingÓ)����			 cbpy�2-6�vlclbf��		 if (derived_mb_type == 1 || derived_mb_type == 4)����				dquant�2�uimsbf�� if (interlaced)���� interlaced_information()����			if (derived_mb_type == 0 || derived_mb_type == 1 || derived_mb_type == 2)����				motion_vector()����			if (derived_mb_type == 2 || interlaced) {����				motion_vector()���� 		if (derived_mb_type == 2) {����				motion_vector()����				motion_vector()����			}����			for (i = 0; i < block_count; i++)����				block(i)����		}����	}����	else if (co_located_not_cod != 1 || (ref_select_code == ’00’

 && scalability){����		if (video_object_layer_shape != “rectangular”)����		 mb_binary_shape_coding()���� if (video_object_layer_shape != “binary shape only”) {����		modb�1-2�vlclbf��		if (modb > 0)����			mb_type�1-4�vlclbf��		if (modb == 2)����			cbpb�6�bslbf��		if (ref_select_code != Ô00Õ || salability == Ô0Õ) {����			if (mb_type != Ò1Ó)����				dquant�2�uimsbf�� if (interlaced)���� interlaced_information()����			if (mb_type == ‘01’ || mb_type == ‘0001’) {����				motion_vector(ÒforwardÓ)���� if (interlaced)���� motion_vector(“forward”)���� }����			if (mb_type == ‘01’ || mb_type == ‘001’) {����				motion_vector(ÒbackwardÓ)���� if (interlaced)���� motion_vector(“backward”)���� }����			if (mb_type == Ò1Ó)����				motion_vector(ÒdirectÓ)����		}����		if (ref_select_code == Ô00Õ && scalability != Ô0Õ) {����			dquant�2�uimsbf��			if (mb_type == ‘01’ || mb_type == ‘1’)����				motion_vector(ÒforwardÓ)����			if (mb_type == ‘01’ || mb_type == ‘001’)����				motion_vector(ÒbackwardÓ)����		}����		for (i = 0; i < block_count; i++)����			block(i)���� }���� }����}����

{Note: break-out after mb_type == ÒstuffingÓ needs to be incorporated.}

MB Binary Shape Coding

mb_binary_shape_coding() {�No. of bits�Mnemonic�� bab_type�1-6�vlclbf�� if ((vop_coding_type == ‘P’) || (vop_coding_type == ‘B’)) {���� if ((bab_type==1) || (bab_type == 6)) {���� mvds_x�1-18�vlclbf�� mvds_y�1-18�vlclbf�� }���� }���� if (bab_type >=4) {���� conv_ratio�1-2�vlcbf�� scan_type�1�bslbf�� binary_arithmetic_code�1-16x256�baclbf�� }���� }����

Motion vector

motion_vector (s) {�No. of bits�Mnemonic��	horizontal_motion_vector_data�1-13�vlclbf��	vertical_motion_vector_data�1-13�vlclbf��}����

Interlaced Information

interlaced_information () {�No. of bits�Mnemonic��	if ((derived_mbtype== 3 || derived_mbtype==4) || (cbp != 0)) {����		dct_type�1�uimsbf��		if ((vop_coding_type==“P” &&

 ((derived_mbtype==0)||(derived_mbtype==1))) ||

 (vop_coding_type==“B” && (mb_type != “1”)))����		 field_prediction�1�uimsbf�� if (field_prediction) {����	 if (vop_coding_type==“P” ||

 (vop_coding_type==“B” && (mb_type != “001”))) {����	 forward_top_field_reference�1�uimsbf��		 forward_bottom_field_reference�1�uimsbf��		 }���� if (vop_coding_type==“B” && (mb_type != “0001”)) {���� backward_top_field_reference�1�uimsbf�� backward_bottom_field_reference�1�uimsbf�� }���� }���� }����}����

�Block

The detailed syntax for the terms ÒFirst DCT coefficientÓ, ÒSubsequent DCT coefficientÓ and ÒEnd of BlockÓ is fully described in the clause 7.

block(i) {�No. of bits�Mnemonic��	if (pattern_code[i]) {����		if (mb_intra && intra_acdc_pred_disable ==0) {����			if (i<4) {����				dct_dc_size_luminance�2-11�vlclbf ��				if(dct_dc_size_luminance != 0)����					dct_dc_differential�1-11�uimsbf��			} else {����				dct_dc_size_chrominance�2-12�vlclbf��				if(dct_dc_size_chrominance !=0)����					dct_dc_differential�1-11�uimsbf��			}����		} else {����			First DCT coefficient�2-24�vlclbf��		}����		while (nextbits() != lastcoef)����			Subsequent DCT coefficients�3-24�vlclbf��	}����}����

Still Texture Object

StillTextureObjectLayer() {�No. of bits�Mnemonic��still_texture_object_start_code

/* 4 least significant bits specify texture_object_layer_id value*/�32�bslbf��texture_object_layer_shape�2�uimsbf��	if(texture_object_layer_shape == “00”){����		texture_object_layer_width�16�uimsbf ��		texture_object_layer_height�16�uimsbf��	}����	wavelet_decomposition_levels �8�uimsbf��	Y_mean �8�uimsbf��	U_mean �8�uimsbf��	V_mean�8�uimsbf��	Quant_DC_Y�8�uimsbf��	Quant_DC_UV�8�uimsbf��	for (color = “Y”, “U”, “V”){����		lowest_subband_bitstream_length�16�uimsbf��		band_offset�>=8 �vlclbf��		band_max_value�>=8 �vlclbf��		lowest_subband_texture_decoding()����	}����	spatial_scalability_levels�5�uimsbf��	quantization_type�1-2�vlclbf��	SNR_length_enable�1�bslbf��	 for (i=0; i <spatial_scalability_levels; i++){����spatial_bitstream_length�24�uimsbf��		if(quantization_type == 0){����for (color = “Y”, “U”, “V”){����			if (color != “V”)����quant�8�uimsbf��wavelet_zero_tree_decoding()����}����	}����		else if (quantization_type == 2){����			SNR_scalability_levels�5�uimsbf��			for(i=0;i<SNR_scalability_levels; i++){����for (color = “Y”, “U”, “V”){����				if (color != “V”)����quant�8�uimsbf��			SNR_all_zero�1�bslbf��				if(all_zero_flg == 0){����					if(SNR_length_enable == 1)����				SNR_bitstream_length�>=16 �vlclbf��					wavelet_zero_tree_decoding()����			}����}����			}����}����		else {����for (color = “Y”, “U”, “V”){����			if (color != “V”)����quant�16�uimsbf��			if (SNR_length_enable == 1)����				SNR_bitstream_length�>=16 �vlclbf��wavelet_zero_tree_coding()����		}����	}����	next_start_code()����}����

{Editors Note: The syntax and semantics for wavelet_zero_tree_coding() and lowest_subband_texture_decoding() is missing. }

View Dependent Object

ViewDependentObject () {�No. of bits�Mnemonic��start_code�32���Field_of_view�16�uimsbf��Marker�1���Xsize_of_rendering_window�16�uimsbf��Marker�1���Ysize_of_rendering_window�16�uimsbf��Marker�1���while not (end_code) {����	ViewDependentObjectLayer()���� }����}����

View Dependent Object Layer

ViewDependentObjectLayer() {�No. of bits�Mnemonic��	start_code�32 �bslbf��/* X Component of Viewpoint */���� xpos1�16�uimsbf�� marker�1��� xpos2�16�uimsbf�� marker�1���/* Y Component of Viewpoint */���� ypos1�16�uimsbf�� marker�1��� ypos2�16�uimsbf�� marker�1���/* Z Component of Viewpoint */���� zpos1�16�uimsbf�� marker�1��� zpos2�16�uimsbf�� marker�1���/* X Component of Aimpoint */���� xaim1�16�uimsbf�� marker�1��� xaim2�16�uimsbf�� marker�1���/* Y Component of Aimpoint */���� yaim1�16�uimsbf�� marker�1��� yaim2�16�uimsbf�� marker�1���/* Z Component of Aimpoint */���� zaim1�16�uimsbf�� marker�1��� zaim2�16�uimsbf�� marker�1���}����

TextureData() {�No. of bits�Mnemonic��	Wavelet_encoder()����}����

Mesh Object

MeshObject() {�No. of bits�Mnemonic��	mesh_object_start_code �32 �bslbf��	do{����		Mesh2dObjectPlane()����	} while (nextbits_bytealigned() == mesh_object_plane_start_code)����	next_start_code()����	mesh_object_end_code �32�bslbf��}����

Mesh Object Plane

MeshObjectPlane() {�No. of bits�Mnemonic��	mesh_object_plane_start_code �32 �bslbf��	new_mesh_flag�1���	if (new_mesh_flag == 1)����		Mesh2dGeometry()����	} ����	else {����		Mesh2dMotion()����	} ����} ����

MeshGeometry() {�No. of bits�Mnemonic��	mesh_type _code �2���	if (mesh_type_code == ‘00’)����		nr_of_mesh_nodes_hor�10���		nr_of_mesh_nodes_vert�10���		mesh_rect_size_hor�8���		mesh_rect_size_vert�8���		triangle_split_code�2���	} ����	else if (mesh_type_code == ‘01’) {����		nr_of_mesh_nodes�16���		nr_of_boundary_nodes�10���		x0�10���		y0�10���		do (nr_of_mesh_nodes - 1) {����			delta_x_len_vlc�2-9�vlc��			delta_x�0-11���			delta_y_len_vlc�2-9�vlc��			delta_y�0-11���		}����	} ����} ����

MeshMotion() {�No. of bits�Mnemonic��	motion_range_code �2 ���	do (nr_of_mesh_nodes) {����		node_motion_vector_flag�1���		if (node_motion_vector_flag == 1) {����			delta_mv_x_vlc�1-13���			delta_mv_x_res�0-2���			delta_mv_y_vlc�1-13���			delta_mv_y_res�0-2���		}����	}����}����

Face Object

face_object() {�No. of bits�Mnemonic��face_object_start_code�sc+8=32���do {����face_object_plane()����} while (nextbits_bytealigned()!= face_object_end_code)����next_start_code()����face_object_end_code�sc+8=32���}����Face Object Plane

face_object_plane() {�No. of bits�Mnemonic��face_paramset_mask�2���is_intra�1���if(is_intra) {����face_object_plane_start_code�32���is_frame_rate�1���if(is_frame_rate)����code_frame_rate()����is_time_code�1���if(is_time_code)���� code_time_code()����}����skip_frames�1���if(skip_frames)����code_skip_frames()����if(face_paramset_mask & 1) { //if fapset����if(is_intra){����for (group_number = 1 to 10) {����fap_mask_type of group group_number�2���if(fap_mask_type == ‘01’|| fap_mask_type == ‘10’)����			code_fap_group_mask(group_number)����fap_quant�3���is_I_new_max�1���is_I_new_min�1���is_p_new_max�1���is_p_new_min�1���if (is_i_new_max || is_p_new_max || � ���is_i_new_min || is_p_new_min) {����code_new_minmax()����code_ifap()����}����else����			code_pfap()����		}����	}����}����

fba_paramset_mask�No. of bits�Mnemonic��unused�2�00��FAP�2�01��reserved�2�10��reserved�2�11��

code_frame_rate(){�No. of bits�Mnemonic��frame_rate�8���seconds�4���frequency_offset�1���}����

code_skip_frames(){�No. of bits�Mnemonic��do{����number_of_frames_to_skip�4 (8, 12, 16, …)��� } while number_of_frames_to_skip = “1111”����}����

code_time_code(){�No. of bits�Mnemonic��time_code_hours�5���time_code_minutes�6���marker_bit�1���time_code_seconds�6���}����

fap_mask_type�No. of bits�Mnemonic��Neither FAPs or FAP group masks are sent for group_number�2�00��Send group mask for group_number�2�01��Send group mask for group number where 0 bit in group mask indicates interpolate FAP �2�10��Send all FAPs for group_number but don’t send FAP group mask�2�11��

code_fap_group_mask() {�No. of bits�Mnemonic��switch(group_number) {����case 1: fap_group_mask_1�2���case 2: fap_group_mask_2�16���case 3: fap_group_mask_3�12���case 4: fap_group_mask_4�8���case 5: fap_group_mask_5�4���case 6: fap_group_mask_6�5���case 7: fap_group_mask_7�3���case 8: fap_group_mask_8�10���case 9: fap_group_mask_9�4���case 10: fap_group_mask_10�4���}����

code_new_minmax() {�No. of bits�Mnemonic��	if (is_i_new_max)����		for each i in 0…NFAP����			if (fab_mask[i])����				i_new_max[i]		�5���	if (is_i_new_min)����		for each i in 0…NFAP����			if (fab_mask[i])����				i_new_min[i]		�5���	if (is_i_new_max)����		for each i in 0…NFAP����			if (fab_mask[i])����				p_new_max[i]		�5���	if (is_i_new_min)����		for each i in 0…NFAP����			if (fab_mask[i])����				p_new_min[i]		�5���}����

code_viseme() {�No. of bits�Mnemonic��viseme_1Q = quantize(viseme_select1, 1])����AR_Encode(viseme_1Q, viseme1_cum_freq)����update(viseme_1Q)����viseme1_pred = dequantize(viseme_1Q, 1)��������viseme_2Q = quantize(viseme_select2, 1)����AR_Encode(viseme_2Q, viseme2_cum_freq)����update(viseme_2Q)����viseme2_pred = dequantize(viseme_2Q, 1)��������viseme_blend_Q = quantize(viseme_blend, QP[1])����AR_Encode(viseme_blend_Q, viseme_blend_cum_freq)����update(viseme_blend)����viseme_blend_pred = dequantize(viseme_blend_Q, QP[1])����viseme_def�1���}����

code_expression() {�No. of bits�Mnemonic��expression_1Q = quantize(expression_select1, 1])����AR_Encode(expression_1Q, expression1_cum_freq)����update(expression_1Q)����expression1_pred = dequantize(expression_1Q, 1)��������expression_1_intensity_Q = quantize(expression_1_intensity, QP[1])����AR_Encode(expression_1_intensity _Q, expression_1_intensity _cum_freq)����update(expression_1_intensity)����expression_1_intensity _pred = dequantize(expression_1_intensity _Q, QP[1])��������expression_2Q = quantize(expression_select2, 1)����AR_Encode(expression_2Q, expression2_cum_freq)����update(expression_2Q)����expression2_pred = dequantize(expression_2Q, 1)��������expression_2_intensity _Q = quantize(expression_2_intensity, QP[2])����AR_Encode(expression_2_intensity _Q, expression_2_intensity _cum_freq)����update(expression_2_intensity)����expression_2_intensity _pred = dequantize(expression_2_intensity _Q, QP[2])����expression_def�1���}����

�Visual bitstream semantics

Semantic rules for higher syntactic structures

This clause details the rules that govern the way in which the higher level syntactic elements may be combined together to produce a legal bitstream. Subsequent clauses detail the semantic meaning of all fields in the video bitstream.

Video Session

video_session_start_code -- The video_session_start_code is the bit string Ô000001B0Õ in hexadecimal. It initiates a video session.

video_session_end_code -- The video_session_end_code is the bit string Ô000001B1Õ in hexadecimal. It terminates a video session.

Video Object

video_object_start_code -- The video_object_start_code is a string of 32 bits. The first 27 bits are ‘0000 0000 0000 0000 0000 0001 000‘ in binary and the last 5-bits represent one of the values in the range of ‘00000’ to ‘11111’ in binary. The video_object_start_code marks a new video object.

video_object_id -- This is given by the last 5-bits of the video_object_start_code. The video_object_id uniquely identifies a video object.

Video Object Layer

video_object_layer_start_code -- The video_object_layer_start_code is a string of 32 bits. The first 28 bits are ‘0000 0000 0000 0000 0000 0001 0010‘ in binary and the last 4-bits represent one of the values in the range of ‘0000’ to ‘1111’ in binary. The video_object_layer_start_code marks a new video object layer.

video_object_layer_id -- This is given by the last 4-bits of the video_object_layer_start_code. The video_object_layer_id uniquely identifies a video object. layer

video_object_layer_shape -- This is a 2-bit integer defined in � REF _Ref372600353 * MERGEFORMAT �Table 6-2�. It identifies the shape type of a video object layer.

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �2� Video Object Layer shape type

shape format�Meaning��00�rectangular��01�binary��10�binary only��

video_object_layer_width -- The video_object_layer_width is a 10-bit unsigned integer representing the width of the displayable part of the luminance component in pixel units.

video_object_layer_height -- The video_object_layer_width is a 10-bit unsigned integer representing the height of the displayable part of the luminance component in pixel units.

quant_type -- This is a one-bit flag which when set to ‘1’ indicates MPEG-style quantization. If it is set to ‘0’ then H.263-style quantization is selected.

In MPEG-style quantization, with 4:2:0 data, only two matrices are used, one for intra blocks the other for non-intra blocks.

The default matrix for intra blocks is:

8�16�19�22�26�27�29�34��16�16�22�24�27�29�34�37��19�22�26�27�29�34�34�38��22�22�26�27�29�34�37�40��22�26�27�29�32�35�40�48��26�27�29�32�35�40�48�58��26�27�29�34�38�46�56�69��27�29�35�38�46�56�69�83��

The default matrix for non-intra blocks is:

16�17�18�19�20�21�22�23��17�18�19�20�21�22�23�24��18�19�20�21�22�23�24�25��19�20�21�22�23�24�26�27��20�21�22�23�25�26�27�28��21�22�23�24�26�27�28�30��22�23�24�26�27�28�30�31��23�24�25�27�28�30�31�33��

load_intra_quant_mat -- This is a one-bit flag which is set to ‘1’ when intra_quant_mat follows. If it is set to ‘0’ then there is no change in the values that shall be used.

intra_quant_mat -- This is a list of 64 unsigned integers. The new values are in ziagzag scan order and replace the previous values. The first value shall always be 8.

load_nonintra_quant_mat -- This is a one-bit flag which is set to ‘1’ when nonintra_quant_mat follows. If it is set to ‘0’ then there is no change in the values that shall be used.

error_resilient_disable -- This is a one-bit flag which when set to ‘1’ indicates that the error resilient mode is disabled. If it is set to ‘0’ then error resilient mode is enabled.

separate_motion_shape_texture -- This is a one-bit flag which when set to ‘1’ indicates that all the coding data is grouped together. If it is set to ‘0’ then the coding data is grouped macroblock by macroblock.

scalability -- This is a one-bit flag which when set to ‘1’ indicates if the current layer uses scalable coding. If the current layer is used as base-layer this flag is set to ‘0’.

ref_layer_id -- This is a 4-bit unsigned integer with value between 0 and 15. It indicates the layer to be used as reference for prediction(s) in the case of scalability.

ref_layer_sampling_direc -- This is a one-bit flag which when set to ‘1’ indicates that the resolution of the reference layer (specified by reference_layer_id) is higher than the resolution of the layer being coded. If it is set to ‘0’ then the reference layer has the same or lower resolution then the resolution of the layer being coded.

hor_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio used in horizontal spatial resampling in scalability. The value of zero is forbidden.

hor_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio used in horizontal spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_n -- This is a 5-bit unsigned integer which forms the numerator of the ratio used in vertical spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_m -- This is a 5-bit unsigned integer which forms the denominator of the ratio used in vertical spatial resampling in scalability. The value of zero is forbidden.

enhancement_type -- This is a 1-bit flag which is set to ‘1’ when the current layer enhances the partial region of the reference layer. If it is set to ‘0’ then the enhancement layer enhances the entire region of the reference layer. The default value of this flag is ‘0’.

Editors Note: The following 7 syntax elements need to be discussed

**aspect_ratio_info -- TBD

** vop_rate_code -- TBD

** bit_rate -- TBD

** vbv_buffer_size -- TBD

** progressive_video_object_layer -- This is a one-bit flag which when set to Ô1Õ implies that the video object layer contains only progressive vops. Currently, the value ‘0’ is disallowed

** chroma_format -- This is a one-bit flag indicating the chrominance format as defined in � REF _Ref372615597 * MERGEFORMAT �Table 6-3�

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �3� Meaning of chroma_format

chroma_format�Meaning��0�reserved��1�4:2:0��** low_delay -- This flag, when set to Ô1Õ, indicates that the video_object does not contain any B-vops that cause vop reordering delay.

When set to Ô0Õ, it indicates that the video object layer may contain B-vops that cause reordering delay .

This flag is not used during the decoding process and therefore can be ignored by decoders, but it is necessary to define and verify the compliance of low-delay bitstreams.

Group of Video Object Plane

group_start_code -- The group_start_code is the unique code of length of 32bit. It identifies the beginning of a GOV header.

time_code -- This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and time_code_seconds as shown in Table1. The parameters correspond to those defined in the IEC standard publication 461 for “time and control codes for video tape recorders”. The time code refers to the first plane (in display order) after the GOV header.

Table � SEQ Table * ARABIC �4� time_code

time_code�range of value�No. of bits�Mnemonic��time_code_hours�0 - 23�5�uimsbf��time_code_minutes�0 - 59�6�uimsbf��marker_bit�1�1�bslbf��time_code_seconds�0 - 59�6�uimsbf��closed_gov -- This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-VOPs (if any) immediately following the first coded I-vop after the GOV header .The closed_gov is set to ‘1’ to indicate that these B-vops have been encoded using only backward prediction or intra coding. This bit is provided for use during any editing which occurs after encoding. If the previous pictures have been removed by editing, broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following the first I-vop following the group of plane header. However if the closed_gov bit is set to ‘1’, then the editor may choose not to set the broken_link bit as these B-vops can be correctly decoded.

broken_link -- This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to indicate that the first consecutive B-vops (if any) immediately following the first coded I-vop following the group of plane header may not be correctly decoded because the reference frame which is used for prediction is not available (because of the action of editing). A decoder may use this flag to avoid displaying frames that cannot be correctly decoded.

Video Object Plane

vop_start_code -- This is the bit string Ô000001B6Õ in hexadecimal. It marks the start of a video object plane.

modulo_time_base -- This represents the local time base in one second resolution units (1000 milliseconds). This is thus a time marker and consist of a number of consecutive ‘1’ followed by a ‘0’. It indicates the number of seconds elapsed since the synchronization point marked by last encoded/decoded modulo_time_base.

vop_time_increment_resolution -- This is a 15-bit unsigned integer that indicates the resolution in terms of ticks in terms within one modulo time (one second in this case). The zero value is forbidden.

vop_time_increment – This value represents the absolute vop_time_increment from the synchronization point marked by the modulo_time_base measured in the number of clock ticks. It can take a value in the range of [0,vop_time_increment_resolution). The number of bits representing the value is calculated as the minimum number of bits required to represent the above range. The local time base in the units of seconds is recovered by dividin this value by the vop_time_increment_resolution.

vop_coding_type -- The vop_coding_type identifies whether a vop is an intra-coded vop (I), predictive-coded vop (P) or bidirectionally predictive-coded vop (B). The meaning of picture_coding_type is defined in � REF _Ref372620657 * MERGEFORMAT �Table 6-5�.

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �5� -- vop_coding_type

vop_coding_type�coding method��00�intra-coded (I)��01�predictive-coded (P)��10�bidirectionally-predictive-coded (B)��11�sprite��vop_rounding_type -- This one bit flag signals the value of the parameter rounding_control used for pixel value interpolation in motion compensation for P-VOPs. When this flag is set to ‘0’, the value of rounding_control is 0, and when this flag is set to ‘1’, the value of rounding_control is 1. When vop_rounding_type is not present in the VOP header, the value of rounding_control is 0.

The encoder should control vop_rounding_type so that each P-vop have a different value for this flag from its reference vop for motion compensation. vop_rounding_type can have an arbitrary value if the reference picture is an I-vop.

intra_dc_vlc_thr -- This is a 3-bit code allows a mechanism to switch between two VLC’s for coding of Intra DC coefficients as per the following table.

Table � SEQ Table * ARABIC �6� Meaning of intra_dc_vlc_thr

index�meaning of intra_dc_vlc_thr�code��0�Use Intra DC VLC for entire VOP�000��1�Switch to Intra AC VLC at running Qp >=13�001��2�Switch to Intra AC VLC at running Qp >=15�010��3�Switch to Intra AC VLC at running Qp >=17�011��4�Switch to Intra AC VLC at running Qp >=19�100��5�Switch to Intra AC VLC at running Qp >=21�101��6�Switch to Intra AC VLC at running Qp >=23�110��7�Use Intra AC VLC for entire VOP�111��Where running Qp is defined as Qp value used for immediately previous coded macroblock.

vop_fcode_forward -- This is a 2-bit unsigned integer taking values from 1 to 3; the value of zero is forbidden. It is used in decoding of motion vectors

vop_fcode_backward -- This is a 2-bit unsigned integer taking values from 1 to 3; the value of zero is forbidden. It is used in decoding of motion vectors

vop_width -- This is a 13-bit unsigned integer which specifies the horizontal size of the tightest rectangle that includes the vop. The value of zero is forbidden.

vop_height -- This is a 13-bit unsigned integer which specifies the vertical size of the tightest rectangle that includes the vop. The value of zero is forbidden.

vop_horizontal_mc_spatial_ref -- This is a 13-bit unsigned integer which specifies, in pixel units, the horizontal position of the top left of the rectangle defined by horizontal size of vop_width. This is used for decoding and for picture composition.

marker_bit -- This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

vop_vertical_mc_spatial_ref -- This is a 13-bit unsigned integer which specifies, in pixel units, the vertical position of the top left of the rectangle defined by vertical size of vop_width. This is used for decoding and for picture composition.

background_composition -- This flag only occurs when scalability flag has a value of “1”. The default value of this flag is “1”. This flag is used in conjunction with enhancement_type flag. If enhancement_type is “1” and this flag is “1”, background composition specified in 5.4.2 is performed. If enhancement type is “1” and this flag is “0”, any method can be used to make a background for the enhancement layer. Further, if enhancement type is “0” no action needs to be taken as a consequence of any value of this flag.

load_backward_shape -- This is a one-bit flag which when set to ‘1’ implies that the backward shape of the previous vop is copied to the forward shape for the current vop and the backward shape of the current vop is decoded from the bitstream. When ths flag is set to ‘1’, the forward shape of the previous vop is copied to the forward_shape of the current vop and the backward shape of the previous vop is copied to the backward shape of the current vop.

load_forward_shape -- This is a one-bit flag which when set to ‘1’ implies that the forward shape is decoded from the bitstream.

ref_select_code -- This is a 2-bit unsigned integer which specifies prediction reference choices for P- and B-vops in enhancement layer with respect to decoded reference layer identified by ref_layer_id. The meaning of allowed values is specified in Table 7-?? and Table 7-??.

forward_temporal_ref -- This is a 10-bit unsigned integer which indicates temporal reference of the layer used as reference for forward prediction in scalability.

backward_temporal_ref -- This is a 10-bit unsigned integer which indicates temporal reference of the layer used as reference for backward prediction in scalability.

vop_dbquant -- This is a 2-bit unsigned integer which is present only when vop_coding_type==‘10’. It specifies the relationship between quant and bquant. Depending on the value of vop_dbquant, bquant is calculated according to � REF _Ref372629901 * MERGEFORMAT �Table 6-7�.

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �7� -- vop_dbquant codes and relationship between quant and bquant

dbquant�bquant��00�(5(quant)/4��01�(6(quant)/4��10�(7(quant)/4��11�(8(quant)/4��

vop_quant -- This is a 5-bit unsigned integer which indicates the quant to be used for a vop until updated by a subsequent dquant. The vop_quant carries the binary representation of quantizer values from 1 to 31 in steps of 1.

resync_marker -- This is a 17-bit binary string ‘0 0000 0000 0000 0001’ and is only present when error_resilient_disable flag is set to ‘0’. When separate_motion_shape_texture flag is set to ‘1’, a resync marker shall only occur at immediately before the first macroblock of every row except the first row immediately after a vop_start_code.

If error_resilience_disable is set to ‘0’ and separate_motion_shape_texture is set to ‘0’, the function combined_motion_shape_texture() returns to VideoObjectPlane() after every macroblock. If error_resilience_disable is set to ‘0’ and separate_motion_shape_texture is set to ‘1’, the functions motion_coding(), shape_coding() and texture_coding() return to VideoObjectPlane() after every row of macroblocks.

macroblock_number -- This is a variable length code with length between 1 and 12 bits and is only present when error_resilient_disable flag is set to ‘0’. It identifies the macroblock number within a vop. The number of the top-left macroblock in a vop shall be zero. The macroblock number increases from left to right and from top to bottom. The actual length of the code depends on the total number of macroblocks in the VOP calculated according to � REF _Ref372636386 * MERGEFORMAT �Table 6-8�, the code itself is simply a binary representation of the macroblock number.

Editors Note: This table needs to be extended to correspond to 13-bit vop_width and vop_height!!!

 Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �8�-- Length of macroblock_number code

length of macroblock_number code�(vop_width//16) (vop_height//16)��1�1-2��2�3-4 ��3�5-8 ��4�9-16��5�17-32��6�33-64��7�65-128��8�129-256��9�257-512��10�513-1024��11�1025-2048��12�2049-4096��

quant_scale -- This is a 5-bit unsigned integer which specifies the absolute value of quant to be used for dequantizing the next macroblock.

Shape Coding

bab_type – This is a variable length code between 1 and 6 bits. It indicates the coding mode used for the bab. There are seven bab_types as depicted in . The VLC tables used depend on the decoding context i.e. the bab_types of blocks already received. For I-vops, the context-switched VLC table of Table 6.1 is used. For P-VOPs and B-VOPs, the context switched table of � REF _Ref394202600 * MERGEFORMAT �Error! Reference source not found.� is used.

Table � STYLEREF 1 \n �6�-� SEQ Table * ARABIC �9�: List of bab_types and usage

bab_type�Semantic�Used in��0�MVDs==0 && No Update�P,B VOPs��1�MVDs!=0 && No Update�P,B VOPs��2�transparent�All VOP types��3�opaque�All VOP types��4�intraCAE�All VOP types��5�MVDs==0 && interCAE�P,B VOPs��6�MVDs!=0 && interCAE�P,B VOPs��The bab_type determines what other information fields will be present for the bab shape. No further shape information is present if the bab_type = 0, 2 or 3. opaque means that all pixels of the bab are part of the object. transparent means that none of the bab pixels belong to the object. IntraCAE means the intra-mode CAE decoding will be required to reconstruct the pixels of the bab. No_update means that motion compensation is used to copy the bab from the previous VOP’s binary alpha map. InterCAE means the motion compensation and inter_mode CAE decoding are used to reconstruct the bab. MVDs refers to the motion vector difference for shape.

mvds_x – This is a VLC code between 1 and 18 bits. It represents the horizontal element of the motion vector difference for the bab. The motion vector difference is in full integer precision. The VLC table is shown is � REF _Ref385428777 * MERGEFORMAT �Error! Reference source not found.�.

mvds_y -- This is a VLC code between 1 and 18 bits. It represents the vertical element of the motion vector difference for the bab. The motion vector difference is in full integer precision. If mvds_x is ‘1’, then the VLC table of � REF _Ref385428790 * MERGEFORMAT �Error! Reference source not found.�, otherwise the VLC table of � REF _Ref385428777 * MERGEFORMAT �Error! Reference source not found.� is used.

cr – This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the 16x16 pixel BAB. The decoder must up-sample the decoded bab by this factor. The possible values for this factor are 1, 2 and 4 and the VLC table used is given in � REF _Ref392507369 * MERGEFORMAT �Error! Reference source not found.�.

st– This is a one-bit flag where a value of ‘0’ implies that the BAB is in transposed form i.e. the BAB has been transposed prior to coding. The decoder must then transpose the BAB back to its original form following decoding. If this flag is ‘1’, then no transposition is performed.

bac – This is a binary arithmetic code representing the pixel values of the bab. This code may be generated by intra CAE or inter CAE depending on the bab_type. CAE decoding relies upon a knowledge of the probability tables given in � REF _Ref394203323 * MERGEFORMAT �Error! Reference source not found.�.

Macroblock related

not_coded -- This is a 1-bit flag which signals if a macroblock is coded or not. When set toÕ1Õ it indicates that a macroblock is not coded and no further data is included in the bitstream for this macroblock; decoder shall treat this macroblock as ‘inter’ with motion vector equal to zero and no DCT coefficient data. When set to ‘1’ it indicates that the macroblock is coded and its data is included in the bitstream.

mcbpc -- This is a variable length code that is used to derive the macroblock type and the coded block pattern for chrominance . It is always included for coded macroblocks. � REF _Ref393696173 * MERGEFORMAT �Table 11-6� and � REF _Ref393696211 * MERGEFORMAT �Table 11-7� list all allowed codes for mcbpc in I- and P-vops respectively.

modb -- This is a variable length code present only in coded macroblocks of B-vops. It indicates whether mb_type and/or cbpb information is present for a macroblock. The codes for modb are listed in � REF _Ref393770348 * MERGEFORMAT �Table 11-2�.

mb_type -- This variable length code is present only in coded macroblocks of B-vops. Further, it is present only in those macroblocks for which one motion vector is included. The codes for mb_type are shown in � REF _Ref393783715 * MERGEFORMAT �Table 11-3� for B-vops for no scalability and in � REF _Ref393783744 * MERGEFORMAT �Table 11-4� for B-vops with scalability.

cbpy -- This variable length code represents a pattern of non-transparent luminance blocks with at least one nonintra DC transform coefficient, in a macroblock. � REF _Ref393784818 * MERGEFORMAT �Table 11-8� indicates the codes and the corresponding patterns they indicate for the respective cases of I- and P-vops.

cbpb -- This is a 3 to 6 bit code representing coded block pattern in B-vops, if indicated by modb. Each bit in the code represents a coded/no coded status of a block; the leftmost bit corresponds to the top left block in the macroblock. For each non-transparent blocks with coefficients, the corresponding bit in the code is set to ‘1’.

dquant -- This is a 2-bit code which specifies the change in the quantizer, quant, for I- and P-vops. Table ??? lists the codes and the differential values they represent. The value of quant lies in range of 1 to 31; if the value of quant after adding dquant value is less than 1 or exceeds 31, it shall be correspondingly clipped to 1 and 31.

dbquant -- This is a variable length code which specifies the change in quantizer for B-vops. Table ??? lists the codes and the differential values they represent. If the value of quant after adding dbquant value is less than 1 or exceeds 31, it shall be correspondingly clipped to 1 and 31.

mvd -- This consists of a pair of variable length codes, the first representing differential horizontal component of motion vector and the second representing differential vertical component of motion vector. The mvd is included for all inter macroblocks. � REF _Ref393783444 * MERGEFORMAT �Table 11-9� lists the codes and the values they represent.

mvd2, mvd3, mvd4 – These are three pairs of variable length codes the presence of which is indicated by vop_prediction_type and by mcbpc. Each pair consists of a code for the differential horizontal component of motion and the second for the differential vertical component of motion. The code table employed is the same as that used for mvd. The mvd2-4 are only present when 8(8 block motion compensation is used.

mvdf – This is a pair of variable length codes representing the respective differential horizontal and differential vertical components of the forward motion vector of a macroblock in a B-VOP. The code table employed is the same as that used for mvd.

mvdb -- This is a pair of variable length codes representing the respective differential horizontal and differential vertical components of the backward motion vector of a macroblock in a B-VOP. The code table employed is the same as that used for mvd.

mvdd -- This is a pair of variable length codes representing the respective horizontal and vertical components of the delta motion vector of a macroblock in a B-VOP. It is used for correction of scaled motion vector of P-vop for application to a macroblock in B-vop. The code table employed is the same as that used for mvd.

Motion vector

The semantics of block() are described in clauseÊ 7.

Still texture object related

View Dependent Object related

Mesh related

Face Animation related

�The visual decoding process

Higher syntactic structures

	�

 Fig. 7-1 A High level view of Visual decoding

�

Variable length decoding

�

Video Texture decoding

Inverse scan

Inverse quantisation

Inverse Quantization of Intra and Non Intra Macroblocks

The two-dimensional array of coefficients, QF[v][u], is inverse quantised to produce the reconstructed DCT coefficients. This process is essentially a multiplication by the quantiser step size. The quantiser step size is modified by two mechanisms; a weighting matrix is used to modify the step size within a block and a scale factor is used in order that the step size can be modified at the cost of only a few bits (as compared to encoding an entire new weighting matrix).

�

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC \r 1 �1� Inverse quantisation process

 Figure 7-1 illustrates the overall inverse quantisation process. After the appropriate inverse quantisation arithmetic the resulting coefficients, F''[v][u], are saturated to yield F'[v][u] and then a mismatch control operation is performed to give the final reconstructed DCT coefficients, F[v][u].

NOTE -	Attention is drawn to the fact that the method of achieving mismatch control in this specification is identical to that employed by ISO/IEC 13818-2.

Intra DC coefficient

The DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other coefficients.

In intra blocks F’’[0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier,

The reconstructed DC values are computed as follows.

F’’[0][0] = dc_scaler* QF[0][0]

Other coefficients

All coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified in this clause.

Weighting matrices

Two weighting matrices are used. One shall be used for intra macroblocks and the other for non-intra macroblocks. Each matrix has a default set of values which may be overwritten by down-loading a user defined matrix.

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 1 indicating which of the matrices is being used. W[0][v][u] is for intra macroblocks, and W[1][v][u] is for non-intra macroblocks.

Reconstruction formulae

The following equation specifies the arithmetic to reconstruct F''[v][u] from QF[v][u] (for all coefficients except intra DC coefficients).

�

NOTE -	The above equation uses the “/” operator as defined in 4.1.

Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range �. Thus:

�

Mismatch control

Mismatch control shall be performed by any process equivalent to the following. Firstly all of the reconstructed, saturated coefficients, F'[v][u] in the block shall be summed. This value is then tested to determine whether it is odd or even. If the sum is even then a correction shall be made to just one coefficient; F[7][7]. Thus:

�

NOTES -

1	It may be useful to note that the above correction for F[7][7] may simply be implemented by toggling the least significant bit of the twos complement representation of the coefficient. Also since only the “oddness” or “evenness” of the sum is of interest an exclusive OR (of just the least significant bit) may be used to calculate “sum”.

2	Warning. Small non-zero inputs to the IDCT may result in zero output for compliant IDCTs. If this occurs in an encoder, mismatch may occur in some pictures in a decoder that uses a different compliant IDCT. An encoder should avoid this problem and may do so by checking the output of its own IDCT. It should ensure that it never inserts any non-zero coefficients into the bitstream when the block in question reconstructs to zero through its own IDCT function. If this action is not taken by the encoder, situations can arise where large and very visible mismatches between the state of the encoder and decoder occur.

Summary

In summary the inverse quantisation process is any process numerically equivalent to:

for (v=0; v<8;v++) {

	for (u=0; u<8;u++) {

		if ((u==0) && (v==0) && (macroblock_intra)) {

			F''[v][u] = dc_scaler * QF[v][u];

		} else {

			if (macroblock_intra) {

				F''[v][u] = (QF[v][u] * W[0][v][u] * quantiser_scale * 2) / 32;

			} else {

				F''[v][u] = (((QF[v][u] * 2) + Sign(QF[v][u])) * W[1][v][u]

													* quantiser_scale) / 32;

			}

		}

	}

}

sum = 0;

for (v=0; v<8;v++) {

	for (u=0; u<8;u++) {

		if (F’'[v][u] > 2047) {

			F’[v][u] = 2047;

		} else {

			if (F’'[v][u] < -2048) {

				F’[v][u] = -2048;

			} else {

				F’[v][u] = F'‘[v][u];

			}

		}

	sum = sum + F’[v][u];

	F[v][u] = F’[v][u];

	}

}

if ((sum & 1) == 0) {

	if ((F[7][7] & 1) != 0) {

		F[7][7] = F'[7][7] - 1;

	} else {

		F[7][7] = F'[7][7] + 1;

	}

}

Inverse DCT

�

Shape decoding

This clause specifies the additional decoding process required for shape decoding.

�

Motion compensation decoding

Pixel value interpolation for block matching when rounding is used is as follows.

�EMBED Unknown���

	a = A, �	b = (A + B + 1 - rounding_control) / 2�	c = (A + C + 1 - rounding_control) / 2, �	d = (A + B + C + D + 2 - rounding_control) / 4

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �2� Interpolation scheme for half sample search.

�Generalized video scalability

This clause specifies the additional decoding process required for scalability.

�Temporal scalability

Temporal scalability involves two layers, a lower layer and an enhancement layer. Both the lower and the enhancement layers process the same spatial resolution. The enhancement layer enhances the temporal resolution of the lower layer and if temporally remultiplexed with the lower layer provides full temporal rate.

�Spatial scalability

�Hybrid scalability

Hybrid scalability is the combination of two different types of scalability. The types of scalability that can be combined are spatial scalability and temporal scalability. When two types of scalability are combined, there are three bitstreams that have to be decoded. The layers to which these bitstreams belong are named in TableÊ7-31.

TableÊ7-31 Names of layers

layer_id�name��0�base layer��1�enhancement layer 1��2�enhancement layer 2��¼�¼��

�

Texture object decoding

A texture object is a single temporal instance of a visual object, for example, such as that used in texture mapping. Currently, the (de) coding method proposed is based on wavelet transform.

�

FAP decoding

This clause specifies the additional decoding process required for FAP decoding.

�

MITG Decoding

This clause points to the Systems part of this specification.

�

2D Mesh geometry decoding

This clause specifies the additional decoding process required for 2D mesh geometry decoding.

�Output of the decoding process

This section describes the output of the theoretical model of the decoding process that decodes bitstreams conforming to this specification.

The decoding process input is one or more coded video bitstreams (one for each of the layers). The video layers are generally multiplexed by the means of a system stream that also contains timing information.

The output of the decoding process is a series vops that are normally the input of a display process. The order in which fields or vops are output by the decoding process is called the display order, and may be different from the coded order (when B-vops are used).

�Visual - Systems Composition Interfaces

{Editors Note:This refers to the Systems part of this specification}

Temporal Scalability Composition

Background composition is used in forming the background region for objects at the enhancement layer when the value of both enhancement_type and background_composition is one. In this process, the background a current enhancement VOP is performed using the previous and the next pictures in the base layer.

� REF _Ref394382202 * MERGEFORMAT �Figure 8-1�shows the background composition for the current frame at the enhancement layer. The dotted line represents the shape of the selected object at the previous frame in the base layer (called “forward shape”). As the object moves, its shape at the next frame in the base layer is represented by a broken line (called “backward shape”).

For the region outside these shapes, the pixel value from the nearest frame at the base layer is used for the composed frame. These areas are shown as white in � REF _Ref364784482 * MERGEFORMAT �Error! Reference source not found.�. For the region occupied by only the selected object of the previous frame at the base layer, the pixel value from the next frame at the base layer is used for the composed frame. This area is shown as lightly shaded in � REF _Ref394382202 * MERGEFORMAT �Figure 8-1�. On the other hand, for the region occupied by only the selected object of the next frame at the base layer, pixel values from the previous frame are used. This area is darkly shaded in � REF _Ref394382202 * MERGEFORMAT �Figure 8-1�. For the region where the areas enclosed by these shapes overlap, the pixel value is given by padding from the surrounding area. The pixel value which is outside of the overlapped area should be filled before the padding operation.

�EMBED Word.Picture.6���

Figure � STYLEREF 1 \n �8�-� SEQ Figure * ARABIC \r 1 �1�Ð Background composition

The following process is a mathematical description of the background composition method.

If s(x,y,ta)=0 and s(x,y,td)=0

	fc(x,y,t) = f(x,y,td)	(|t-ta|>|t-td|)

	fc(x,y,t) = f(x,y,ta)	(otherwise),

if s(x,y,ta)=1 and s(x,y,td)=0

	fc(x,y,t) = f(x,y,td)

if s(x,y,ta)=0 and s(x,y,td)=1

	fc(x,y,t) = f(x,y,ta)

if s(x,y,ta)=1 and s(x,y,td)=1

	The pixel value of fc(x,y,t) is given by padding from the 	surrounding area.

where

	fc	composed image

	f	decoded image at the base layer

	s	shape information (alpha plane)

	(x,y)	the spatial coordinate

	t	time of the current frame

	ta	time of the previous frame

	td	time of the next frame

Two types of shape information, s(x, y, ta) and s(x, y, td), are necessary for the background composition. s(x, y, ta) is called a “forward shape” and s(x, y, td) is called a “backward shape”. If f(x, y, td) is the last frame in the bitstream of the base layer, it should be made by copying f(x, y, ta). In this case, two shapes s(x, y, ta) and s(x, y, td) should be identical to the previous backward shape.

When a gray scale alpha plane is used, positive value is regarded as the value “1” of the binary alpha plane. Note that the above technique is based on the assumption that the background is not moving.

�TTS Assisted Facial Animation

{Editors Note: This refers to the Systems part of this specification}

�

Visual APIs

{Editors Note: This section refers to the systems part of this specification}

�Profiles, levels and flex

NOTE -	In this Specification the word ÒprofileÓ is used as defined below. It should not be confused with other definitions of ÒprofileÓ and in particular it does not have the meaning that is defined by JTC1/SGFS.

Profiles and levels provide a means of defining subsets of the syntax and semantics of this Specification and thereby the decoder capabilities required to decode a particular bitstream. A profile is a defined sub-set of the entire bitstream syntax that is defined by this Specification. A level is a defined set of constraints imposed on parameters in the bitstream. Conformance tests will be carried out against defined profiles at defined levels.

The purpose of defining conformance points in the form of profiles and levels is to facilitate bitstream interchange among different applications. Implementers of this Specification are encouraged to produce decoders and bitstreams which correspond to those defined conformance regions. The discretely defined profiles and levels are the means of bitstream interchange between applications of this Specification.

In this clause the constrained parts of the defined profiles and levels are described. All syntactic elements and parameter values which are not explicitly constrained may take any of the possible values that are allowed by this Specification. In general, a decoder shall be deemed to be conformant to a given profile at a given level if it is able to properly decode all allowed values of all syntactic elements as specified by that profile at that level. One exception to this rule exists in the case of a Simple profile Main level decoder, which must also be able to decode Main profile, Low level bitstreams. A bitstream shall be deemed to be conformant if it does not exceed the allowed range of allowed values and does not include disallowed syntactic elements.

Interoperability

Relationship between defined profiles

Relationship between defined levels

Scalable layers

�Annex A

Discrete cosine transform

(This annex forms an integral part of the working draft of this International Standard)

The NxN two dimensional DCT is defined as:

	�

	with 	u, v, x, y = 0, 1, 2, ¼ N-1

	where	x, y are spatial coordinates in the sample domain

		u, v are coordinates in the transform domain

	�

The inverse DCT (IDCT) is defined as:

	�

The input to the forward transform and output from the inverse transform is represented with 9 bits. The coefficients are represented in 12 bits. The dynamic range of the DCT coefficients is [-2048:+2047].

The N by N inverse discrete transform shall conform to IEEE Standard Specification for the Implementations of 8 by 8 Inverse Discrete Cosine Transform, Std 1180-1990, DecemberÊ6, 1990.

NOTES -

1	ClauseÊ 2.3 Std 1180-1990 ÒConsiderations of Specifying IDCT Mismatch ErrorsÓ requires the specification of periodic intra-picture coding in order to control the accumulation of mismatch errors. Every macroblock is required to be refreshed before it is coded 132 times as predictive macroblocks. Macroblocks in B-pictures (and skipped macroblocks in P-pictures) are excluded from the counting because they do not lead to the accumulation of mismatch errors. This requirement is the same as indicated in 1180-1990 for visual telephony according to ITU-T Recommendation H.261.

2	Whilst the IEEE IDCT standard mentioned above is a necessary condition for the satisfactory implementation of the IDCT function it should be understood that this is not sufficient. In particular attention is drawn to the following sentence from 5.4 of this specification:	 ÒWhere arithmetic precision is not specified, such as the calculation of the IDCT, the precision shall be sufficient so that significant errors do not occur in the final integer values.Ó

�Annex B

Variable length code tables

(This annex forms an integral part of the working draft of this International Standard)

Macroblock type

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC \r 1 �1� --- Macroblock types and included data elements for I- and P-vops in combined motion-shape-texture coding

vop type�mb type�Name�not_cod�mcbc�mcsel�cbpy�dquant�mvd�mvd2-4��P�not coded�-�1��������P�0�inter�1�1��1��1���P�1�inter+q�1�1��1�1�1���P�2�inter4v�1�1��1��1�1��P�3�intra�1�1��1�����P�4�intra+q�1�1��1�1����P�stuffing�-�1�1�������I�3�intra��1��1�����I�4�intra+q��1��1�1����I�stuffing�-��1�������S�not coded�-�1��������S�0�inter�1�1�1�1��1���S�1�intre+q�1�1�1�1�1�1���S�2�inter4v�1�1��1��1�1��S�3�intra�1�1��1�����S�4�intra+q�1�1��1�1����	Note: “1” means that the item is present in the macroblock

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �2� --- VLC table for MODB in combined motion-shape-texture coding

Code�cbpb�mb_type��0����10��1��11�1�1��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �3� --- MBTYPES and included data elements in coded macroblocks in B-vops (ref_select_code != ‘00’||scalability==’0’) for combined motion-shape-texture coding

Code�dquant�mvdf�mvdb�mvdb�MBTYPE��1����1�direct��01�1�1�1��interpolate mc+q��001�1��1��backward mc+q��0001�1�1���forward mc+q��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �4� --- MBTYPES and included data elements in coded macroblocks in B-vops (ref_select_code == ‘00’&&scalability!=’0’) for combined motion-shape-texture coding

Code�dquant�mvdf�mvdb�MBTYPE��01�1�1�1�interpolate mc+q��001�1��1�backward mc+q��1�1�1��forward mc+q��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �5� --- Macroblock types and included elements for B-VOPs.

MBTYPE�dbquant�mvdf�mvdb�mvdb��Direct����1��Interpolate MC+Q�1�1�1���Backward MC+Q�1��1���Forward MC+Q�1�1����

Macroblock pattern

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �6� -- VLC table for MCBPC for I-VOPs in combined-motion-shape-texture coding

Code�mbtype�cbpc

(56)��1�3�00��001�3�01��010�3�10��011�3�11��0001�4�00��0000 01�4�01��0000 10�4�10��0000 11�4�11��0000 0000 1�Stuffing�--��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �7� --- VLC table for MCBPC for P-VOPs in combined-motion-shape-texture

Code�MB type�CBPC

(56)��1�0�00��0011�0�01��0010�0�10��0001 01�0�11��011�1�00��0000 111�1�01��0000 110�1�10��0000 0010 1�1�11��010�2�00��0000 101�2�01��0000 100�2�10��0000 0101�2�11��0001 1�3�00��0000 0100�3�01��0000 0011�3�10��0000 011�3�11��0001 00�4�00��0000 0010 0�4�01��0000 0001 1�4�10��0000 0001 0�4�11��0000 0000 1�Stuffing�--��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �8� --- VLC table for CBPY in combined motion-shape-texture coding

Code�CBPY(I)

(12

 34)�CBPY(P), CBPY(S)

(12

 34)�� 0011

�00

00

0

00�11

11�� 0010 1�00

01�11

10�� 0010 0�00

10�11

01�� 1001�00

11�11

00�� 0001 1�01

00�10

11�� 0111�01

01�10

10�� 0000 10�01

10�10

01�� 1011�01

11�10

00�� 0001 0�10

00�01

11�� 0000 11�10

01�01

10�� 0101�10

10�01

01�� 1010�10

11�01

00�� 0100�11

00�00

11�� 1000�11

01�00

10�� 0110�11

10�00

01�� 11�11

11�00

00��

Motion vector

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �9� --- VLC table for MVD

Codes�Vector differences�� 0000 0000 0010 1� -16�� 0000 0000 0011 1� -15.5�� 0000 0000 0101� -15�� 0000 0000 0111� -14.5�� 0000 0000 1001� -14�� 0000 0000 1011� -13.5�� 0000 0000 1101� -13�� 0000 0000 1111� -12.5�� 0000 0001 001� -12�� 0000 0001 011� -11.5�� 0000 0001 101� -11�� 0000 0001 111� -10.5�� 0000 0010 001� -10�� 0000 0010 011� -9.5�� 0000 0010 101� -9�� 0000 0010 111� -8.5�� 0000 0011 001� -8�� 0000 0011 011� -7.5�� 0000 0011 101� -7�� 0000 0011 111� -6.5�� 0000 0100 001� -6�� 0000 0100 011� -5.5�� 0000 0100 11�	-5�� 0000 0101 01�	-4.5�� 0000 0101 11�	-4�� 0000 0111�	-3.5�� 0000 1001�	-3�� 0000 1011�	-2.5�� 0000 111�	-2�� 0001 1�	-1.5�� 0011�	-1�� 011�	-0.5�� 1�	 0�� 010�	 0.5�� 0010�	 1�� 0001 0�	 1.5�� 0000 110�	2�� 0000 1010�	2.5�� 0000 1000�	3�� 0000 0110�	3.5�� 0000 0101 10�	4�� 0000 0101 00�	4.5�� 0000 0100 10�	5�� 0000 0100 010�	5.5�� 0000 0100 000�	6�� 0000 0011 110�	6.5�� 0000 0011 100�	7�� 0000 0011 010�	7.5�� 0000 0011 000�	8�� 0000 0010 110�	8.5�� 0000 0010 100�	9�� 0000 0010 010�	9.5�� 0000 0010 000�	10�� 0000 0001 110�	10.5�� 0000 0001 100�	11�� 0000 0001 010�	11.5�� 0000 0001 000�	12�� 0000 0000 1110�	12.5�� 0000 0000 1100�	13�� 0000 0000 1010�	13.5�� 0000 0000 1000�	14�� 0000 0000 0110�	14.5�� 0000 0000 0100�	15�� 0000 0000 0011 0�	15.5�� 0000 0000 0010 0�	16��

DCT coefficients

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �10� --- Variable length codes for dct_dc_size_luminance

Variable length code�dct_dc_size_luminance��100�0��00�1��01�2��101�3��110�4��1110�5��1111 0�6��1111 10�7��1111 110�8��

 Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �11� --- Variable length codes for dct_dc_size_chrominance

Variable length code�dct_dc_size_chrominance��00�0��01�1��10�2��110�3��1110�4��1111 0�5��1111 10�6��1111 110�7��1111 1110�8��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �12� --- Differential DC additional codes

ADDITIONAL CODE�DIFFERENTIAL DC�SIZE��00000000 to 01111111�-255 to -128�8��0000000 to 0111111�-127 to -64�7��000000 to 011111�-63 to -32�6��00000 to 01111�-31 to -16�5��0000 to 0111�-15 to -8�4��000 to 011�-7 to -4�3��00 to 01�3 to -2 �2��0�-1�1���0�0��1�1�1��10 to 11�2 to 3�2��100 to 111�4 to 7�3��1000 to 1111�8 to 15�4��10000 to 11111�16 to 31�5��100000 to 111111�32 to 63�6��1000000 to 1111111�64 to 127�7��10000000 to 11111111�128 to 255�8 ��

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �13� --- VLC Table for Intra Luminance and Chrominance TCOEF

VLC CODE�LAST�RUN�LEVEL��VLC CODE�LAST�RUN�LEVEL��10s�0�0�1��0111 s�1�0�1��1111 s�0�0�3��0000 1100 1s�0�11�1��0101 01s�0�0�6��0000 0000 101s�1�0�6��0010 111s�0�0�9��0011 11s�1�1�1��0001 1111 s�0�0�10��0000 0000 100s�1�0�7��0001 0010 1s�0�0�13��0011 10s�1�2�1��0001 0010 0s�0�0�14��0011 01s�0�5�1��0000 1000 01s�0�0�17��0011 00s�1�0�2��0000 1000 00s�0�0�18��0010 011s�1�5�1��0000 0000 111s�0�0�21��0010 010s�0�6�1��0000 0000 110s�0�0�22��0010 001s�1�3�1��0000 0100 000s�0�0�23��0010 000s�1�4�1��110s�0�0�2��0001 1010 s�1�9�1��0101 00s�0�1�2��0001 1001 s�0�8�1��0001 1110 s�0�0�11��0001 1000 s�0�9�1��0000 0011 11s�0�0�19��0001 0111 s�0�10�1��0000 0100 001s�0�0�24��0001 0110 s�1�0�3��0000 0101 0000s�0�0�25��0001 0101 s�1�6�1��1110 s�0�1�1��0001 0100 s�1�7�1��0001 1101 s�0�0�12��0001 0011 s�1�8�1��0000 0011 10s�0�0�20��0000 1100 0s�0�12�1��0000 0101 0001s�0�0�26��0000 1011 1s�1�0�4��0110 1s�0�0�4��0000 1011 0s�1�1�2��0001 0001 1s�0�0�15��0000 1010 1s�1�10�1��0000 0011 01s�0�1�7��0000 1010 0s�1�11�1��0110 0s�0�0�5��0000 1001 1s�1�12�1��0001 0001 0s�0�4�2��0000 1001 0s�1�13�1��0000 0101 0010s�0�0�27��0000 1000 1s�1�14�1��0101 1s�0�2�1��0000 0001 11s�0�13�1��0000 0011 00s�0�2�4��0000 0001 10s�1�0�5��0000 0101 0011s�0�1�9��0000 0001 01s�1�1�3��0100 11s�0�0�7��0000 0001 00s�1�2�2��0000 0010 11s�0�3�4��0000 0100 100s�1�3�2��

VLC CODE�LAST�RUN�LEVEL��VLC CODE�LAST�RUN�LEVEL��0000 0101 0100s�0�6�3��0000 0100 101s�1�4�2��0100 10s�0�0�8��0000 0100 110s�1�15�1��0000 0010 10s�0�4�3��0000 0100 111s�1�16�1��0100 01s�0�3�1��0000 0101 1000s�0�14�1��0000 0010 01s�0�8�2��0000 0101 1001s�1�0�8��0100 00s�0�4�1��0000 0101 1010s�1�5�2��0000 0010 00s�0�5�3��0000 0101 1011s�1�6�2��0010 110s�0�1�3��0000 0101 1100s�1�17�1��0000 0101 0101s�0�1�10��0000 0101 1101s�1�18�1��0010 101s�0�2�2��0000 0101 1110s�1�19�1��0010 100s�0�7�1��0000 0101 1111s�1�20�1��0001 1100 s�0�1�4��0000 011�escape����0001 1011 s�0�3�2�������0001 0000 1s�0�0�16�������0001 0000 0s�0�1�5�������0000 1111 1s�0�1�6�������0000 1111 0s�0�2�3�������0000 1110 1s�0�3�3�������0000 1110 0s�0�5�2�������0000 1101 1s�0�6�2�������0000 1101 0s�0�7�2�������0000 0100 010s�0�1�8�������0000 0100 011s�0�9�2�������0000 0101 0110s�0�2�5�������0000 0101 0111s�0�7�3�������

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �14�--- VLC table for Inter Lumimance and Chrominance TCOEF

VLC CODE�LAST�RUN�LEVEL��VLC CODE�LAST�RUN�LEVEL��10s�0�0�1��0111 s�1�0�1��1111 s�0�0�2��0000 1100 1s�1�0�2��0101 01s�0�0�3��0000 0000 101s�1�0�3��0010 111s�0�0�4��0011 11s�1�1�1��0001 1111 s�0�0�5��0000 0000 100s�1�1�2��0001 0010 1s�0�0�6��0011 10s�1�2�1��0001 0010 0s�0�0�7��0011 01s�1�3�1��0000 1000 01s�0�0�8��0011 00s�1�4�1��0000 1000 00s�0�0�9��0010 011s�1�5�1��0000 0000 111s�0�0�10��0010 010s�1�6�1��0000 0000 110s�0�0�11��0010 001s�1�7�1��0000 0100 000s�0�0�12��0010 000s�1�8�1��110s�0�1�1��0001 1010 s�1�9�1��0101 00s�0�1�2��0001 1001 s�1�10�1��0001 1110 s�0�1�3��0001 1000 s�1�11�1��0000 0011 11s�0�1�4��0001 0111 s�1�12�1��0000 0100 001s�0�1�5��0001 0110 s�1�13�1��0000 0101 0000s�0�1�6��0001 0101 s�1�14�1��1110 s�0�2�1��0001 0100 s�1�15�1��0001 1101 s�0�2�2��0001 0011 s�1�16�1��0000 0011 10s�0�2�3��0000 1100 0s�1�17�1��0000 0101 0001s�0�2�4��0000 1011 1s�1�18�1��0110 1s�0�3�1��0000 1011 0s�1�19�1��0001 0001 1s�0�3�2��0000 1010 1s�1�20�1��0000 0011 01s�0�3�3��0000 1010 0s�1�21�1��0110 0s�0�4�1��0000 1001 1s�1�22�1��0001 0001 0s�0�4�2��0000 1001 0s�1�23�1��0000 0101 0010s�0�4�3��0000 1000 1s�1�24�1��0101 1s�0�5�1��0000 0001 11s�1�25�1��0000 0011 00s�0�5�2��0000 0001 10s�1�26�1��0000 0101 0011s�0�5�3��0000 0001 01s�1�27�1��0100 11s�0�6�1��0000 0001 00s�1�28�1��0000 0010 11s�0�6�2��0000 0100 100s�1�29�1��0000 0101 0100s�0�6�3��0000 0100 101s�1�30�1��0100 10s�0�7�1��0000 0100 110s�1�31�1��0000 0010 10s�0�7�2��0000 0100 111s�1�32�1��0100 01s�0�8�1��0000 0101 1000s�1�33�1��0000 0010 01s�0�8�2��0000 0101 1001s�1�34�1��0100 00s�0�9�1��0000 0101 1010s�1�35�1��0000 0010 00s�0�9�2��0000 0101 1011s�1�36�1��0010 110s�0�10�1��0000 0101 1100s�1�37�1��0000 0101 0101s�0�10�2��0000 0101 1101s�1�38�1��0010 101s�0�11�1��0000 0101 1110s�1�39�1��0010 100s�0�12�1��0000 0101 1111s�1�40�1��0001 1100 s�0�13�1��0000 011�escape����0001 1011 s�0�14�1�������0001 0000 1s�0�15�1�������0001 0000 0s�0�16�1�������0000 1111 1s�0�17�1�������0000 1111 0s�0�18�1�������0000 1110 1s�0�19�1�������0000 1110 0s�0�20�1�������0000 1101 1s�0�21�1�������0000 1101 0s�0�22�1�������0000 0100 010s�0�23�1�������0000 0100 011s�0�24�1�������0000 0101 0110s�0�25�1�������0000 0101 0111s�0�26�1�������

Table � STYLEREF 1 \n �11�-� SEQ Table * ARABIC �15� --- FLC table for RUNS and LEVELS

Code�Run��Code�Level��000 000�0��forbidden�-128��000 001�1��1000 0001�-127��000 010�2��.�.��.�.��1111 1110�-2��.�.��1111 1111�-1��111 111�63��forbidden�0�����0000 0001�1�����0000 0010�2�����.�.�����0111 1111�127��

Table ESCL(a) : LMAX values of I-VOP

LAST�RUN�LMAX��LAST�RUN�LMAX��0�0�27��1�0�8��0�1�10��1�1�3��0�2�5��1�2-6�2��0�3�4��1�7-20�1��0�4-7�3��1�others�N/A��0�8-9�2������0�10-14�1������0�others�N/A ������

Table ESCL(b) : LMAX values of P- or B-VOP

LAST�RUN�LMAX��LAST�RUN�LMAX��0�0�12��1�0�3��0�1�6��1�1�2��0�2�4��1�2-40�1��0�3-6�3��1�others�N/A��0�7-10�2������0�11-26�1������0�others�N/A������

Table ESCR(a) : RMAX values of I-VOP

LAST�LEVEL�RMAX��LAST�LEVEL�RMAX��0�1�14��1�1�20��0�2�9��1�2�6��0�3�7��1�3�1��0�4�3��1�4-8�0��0�5�2��1�others�N/A��0�6-10�1������0�11-27�0������0�others�N/A ������

Table ESCR(b) : RMAX values of P- or B-VOP

LAST�LEVEL�RMAX��LAST�LEVEL�RMAX��0�1�26��1�1�40��0�2�10��1�2�1��0�3�6��1�3�0��0�4�2��1�others�N/A��0�5-6�1������0�7-12�0������0�others�N/A ������

Shape Coding

Index�Shape mode���0�= “MVDs==0 && No Update”���1�= “MVDs!=0 && No Update”���2�transparent���3�opaque���4�“intraCAE”���5�“interCAE && MVDs==0”���6�“interCAE && MVDs!=0”���

Table � STYLEREF 1 \n �11�.� SEQ Table * ARABIC \r 1 �1� bab_type for I-VOP

Index�(3)�(4)�(5)�Index�(3)�(4)�(5)�� 0�0�11�10�41�11�10�0�� 1�11�10�0�42�0�10�11�� 2�10�11�0�43�11�0�10�� 3�0�11�10�44�11�10�0�� 4�0�10�11�45�0�10�11�� 5�0�10�11�46�11�10�0�� 6�0�11�10�47�10�11�0�� 7�0�10�11�48�0�10�11�� 8�10�11�0�49�11�10�0�� 9�11�10�0�50�10�11�0��10�0�10�11�51�0�11�10��11�0�10�11�52�11�0�10��12�11�10�0�53�10�11�0��13�0�10�11�54�0�11�10��14�10�0�11�55�10�11�0��15�11�10�0�56�10�11�0��16�0�10�11�57�0�10�11��17�0�10�11�58�0�10�11��18�10�11�0�59�0�10�11��19�0�10�11�60�0�10�11��20�11�10�0�61�0�10�11��21�10�11�0�62�10�11�0��22�0�10�11�63�0�10�11��23�11�10�0�64�11�10�0��24�10�11�0�65�11�10�0��25�11�10�0�66�10�11�0��26�11�10�0�67�11�0�10��27�0�10�11�68�11�0�10��28�0�10�11�69�10�11�0��29�0�10�11�70�11�0�10��30�0�10�11�71�11�10�0��31�0�10�11�72�0�11�10��32�0�10�11�73�11�10�0��33�0�10�11�74�10�11�0��34�0�10�11�75�10�11�0��35�11�10�0�76�11�0�10��36�0�10�11�77�11�10�0��37�11�10�0�78�0�11�10��38�11�10�0�79�11�0�10��39�0�10�11�80�11�10�0��40�11�0�10������

Table � STYLEREF 1 \n �11�.� SEQ Table * ARABIC �2� bab_type for P-VOP

��bab_type in current VOP (n)����0�1�2�3�4�5�6���0�1�01�00010�00011�0000�0010�0011��bab_type�1�01�1�00001�000001�001�000000�0001��in previous�2�0001�001�1�000001�01�000000�00001��VOP(n-1)�3�1�0001�000001�001�01�000000�00001���4�100�101�1110�11110�0�11111�110���5�10�1110�11110�11111�110�00�01���6�110�1110�11110�11111�10�01�00��

Table � STYLEREF 1 \n �11�.� SEQ Table * ARABIC �3� VLC table for MVDs

�MVDs�Codes���0�1���(1�01s���(2�001s���(3�0001s���(4�00001s���(5�000001s���(6�0000001s���(7�00000001s���(8�000000001s���(9�0000000001s���(10�00000000001s���(11�000000000001s���(12�0000000000001s���(13�00000000000001s���(14�000000000000001s���(15�0000000000000001s���(16�00000000000000001s��

Table � STYLEREF 1 \n �11�.� SEQ Table * ARABIC �4� VLC table for MVDs (Horizontal element is 0)

�MVDs�Codes���(1�1s���(2�01s���(3�001s���(4�0001s���(5�00001s���(6�000001s���(7�0000001s���(8�00000001s���(9�000000001s���(10�0000000001s���(11�00000000001s���(12�000000000001s���(13�0000000000001s���(14�00000000000001s���(15�000000000000001s���(16�0000000000000001s��s: sign bit (if MVDs is positive s=”1”, otherwise s=”0”).

Table � STYLEREF 1 \n �11�.� SEQ Table * ARABIC �5� VLC for CR

CR�Code��1�0��2�10��4�11��These tables contain the probabilities for a binary alpha pixel being equal to 0 for intra and inter shape coding using CAE. All probabilities are normalised to the range [1,65535].

As an example, given an INTRA context number C, the probability that the pixel is zero is given by intra_prob[C].

USInt intra_prob[1024] = {

65267,16468,65003,17912,64573,8556,64252,5653,

40174,3932,29789,277,45152,1140,32768,2043,

4499,80,6554,1144,21065,465,32768,799,

5482,183,7282,264,5336,99,6554,563,

54784,30201,58254,9879,54613,3069,32768,58495,

32768,32768,32768,2849,58982,54613,32768,12892,

31006,1332,49152,3287,60075,350,32768,712,

39322,760,32768,354,52659,432,61854,150,

64999,28362,65323,42521,63572,32768,63677,18319,

4910,32768,64238,434,53248,32768,61865,13590,

16384,32768,13107,333,32768,32768,32768,32768,

32768,32768,1074,780,25058,5461,6697,233,

62949,30247,63702,24638,59578,32768,32768,42257,

32768,32768,49152,546,62557,32768,54613,19258,

62405,32569,64600,865,60495,10923,32768,898,

34193,24576,64111,341,47492,5231,55474,591,

65114,60075,64080,5334,65448,61882,64543,13209,

54906,16384,35289,4933,48645,9614,55351,7318,

49807,54613,32768,32768,50972,32768,32768,32768,

15159,1928,2048,171,3093,8,6096,74,

32768,60855,32768,32768,32768,32768,32768,32768,

32768,32768,32768,32768,32768,55454,32768,57672,

32768,16384,32768,21845,32768,32768,32768,32768,

32768,32768,32768,5041,28440,91,32768,45,

65124,10923,64874,5041,65429,57344,63435,48060,

61440,32768,63488,24887,59688,3277,63918,14021,

32768,32768,32768,32768,32768,32768,32768,32768,

690,32768,32768,1456,32768,32768,8192,728,

32768,32768,58982,17944,65237,54613,32768,2242,

32768,32768,32768,42130,49152,57344,58254,16740,

32768,10923,54613,182,32768,32768,32768,7282,

49152,32768,32768,5041,63295,1394,55188,77,

63672,6554,54613,49152,64558,32768,32768,5461,

64142,32768,32768,32768,62415,32768,32768,16384,

1481,438,19661,840,33654,3121,64425,6554,

4178,2048,32768,2260,5226,1680,32768,565,

60075,32768,32768,32768,32768,32768,32768,32768,

32768,32768,32768,32768,32768,32768,32768,32768,

16384,261,32768,412,16384,636,32768,4369,

23406,4328,32768,524,15604,560,32768,676,

49152,32768,49152,32768,32768,32768,64572,32768,

32768,32768,54613,32768,32768,32768,32768,32768,

4681,32768,5617,851,32768,32768,59578,32768,

32768,32768,3121,3121,49152,32768,6554,10923,

32768,32768,54613,14043,32768,32768,32768,3449,

32768,32768,32768,32768,32768,32768,32768,32768,

57344,32768,57344,3449,32768,32768,32768,3855,

58982,10923,32768,239,62259,32768,49152,85,

58778,23831,62888,20922,64311,8192,60075,575,

59714,32768,57344,40960,62107,4096,61943,3921,

39862,15338,32768,1524,45123,5958,32768,58982,

6669,930,1170,1043,7385,44,8813,5011,

59578,29789,54613,32768,32768,32768,32768,32768,

32768,32768,32768,32768,58254,56174,32768,32768,

64080,25891,49152,22528,32768,2731,32768,10923,

10923,3283,32768,1748,17827,77,32768,108,

62805,32768,62013,42612,32768,32768,61681,16384,

58982,60075,62313,58982,65279,58982,62694,62174,

32768,32768,10923,950,32768,32768,32768,32768,

5958,32768,38551,1092,11012,39322,13705,2072,

54613,32768,32768,11398,32768,32768,32768,145,

32768,32768,32768,29789,60855,32768,61681,54792,

32768,32768,32768,17348,32768,32768,32768,8192,

57344,16384,32768,3582,52581,580,24030,303,

62673,37266,65374,6197,62017,32768,49152,299,

54613,32768,32768,32768,35234,119,32768,3855,

31949,32768,32768,49152,16384,32768,32768,32768,

24576,32768,49152,32768,17476,32768,32768,57445,

51200,50864,54613,27949,60075,20480,32768,57344,

32768,32768,32768,32768,32768,45875,32768,32768,

11498,3244,24576,482,16384,1150,32768,16384,

7992,215,32768,1150,23593,927,32768,993,

65353,32768,65465,46741,41870,32768,64596,59578,

62087,32768,12619,23406,11833,32768,47720,17476,

32768,32768,2621,6554,32768,32768,32768,32768,

32768,32768,5041,32768,16384,32768,4096,2731,

63212,43526,65442,47124,65410,35747,60304,55858,

60855,58982,60075,19859,35747,63015,64470,25432,

58689,1118,64717,1339,24576,32768,32768,1257,

53297,1928,32768,33,52067,3511,62861,453,

64613,32768,32768,32768,64558,32768,32768,2731,

49152,32768,32768,32768,61534,32768,32768,35747,

32768,32768,32768,32768,13107,32768,32768,32768,

32768,32768,32768,32768,20480,32768,32768,32768,

32768,32768,32768,54613,40960,5041,32768,32768,

32768,32768,32768,3277,64263,57592,32768,3121,

32768,32768,32768,32768,32768,10923,32768,32768,

32768,8192,32768,32768,5461,6899,32768,1725,

63351,3855,63608,29127,62415,7282,64626,60855,

32768,32768,60075,5958,44961,32768,61866,53718,

32768,32768,32768,32768,32768,32768,6554,32768,

32768,32768,32768,32768,2521,978,32768,1489,

58254,32768,58982,61745,21845,32768,54613,58655,

60075,32768,49152,16274,50412,64344,61643,43987,

32768,32768,32768,1638,32768,32768,32768,24966,

54613,32768,32768,2427,46951,32768,17970,654,

65385,27307,60075,26472,64479,32768,32768,4681,

61895,32768,32768,16384,58254,32768,32768,6554,

37630,3277,54613,6554,4965,5958,4681,32768,

42765,16384,32768,21845,22827,16384,32768,6554,

65297,64769,60855,12743,63195,16384,32768,37942,

32768,32768,32768,32768,60075,32768,62087,54613,

41764,2161,21845,1836,17284,5424,10923,1680,

11019,555,32768,431,39819,907,32768,171,

65480,32768,64435,33803,2595,32768,57041,32768,

61167,32768,32768,32768,32768,32768,32768,1796,

60855,32768,17246,978,32768,32768,8192,32768,

32768,32768,14043,2849,32768,2979,6554,6554,

65507,62415,65384,61891,65273,58982,65461,55097,

32768,32768,32768,55606,32768,2979,3745,16913,

61885,13827,60893,12196,60855,53248,51493,11243,

56656,783,55563,143,63432,7106,52429,445,

65485,1031,65020,1380,65180,57344,65162,36536,

61154,6554,26569,2341,63593,3449,65102,533,

47827,2913,57344,3449,35688,1337,32768,22938,

25012,910,7944,1008,29319,607,64466,4202,

64549,57301,49152,20025,63351,61167,32768,45542,

58982,14564,32768,9362,61895,44840,32768,26385,

59664,17135,60855,13291,40050,12252,32768,7816,

25798,1850,60495,2662,18707,122,52538,231,

65332,32768,65210,21693,65113,6554,65141,39667,

62259,32768,22258,1337,63636,32768,64255,52429,

60362,32768,6780,819,16384,32768,16384,4681,

49152,32768,8985,2521,24410,683,21535,16585,

65416,46091,65292,58328,64626,32768,65016,39897,

62687,47332,62805,28948,64284,53620,52870,49567,

65032,31174,63022,28312,64299,46811,48009,31453,

61207,7077,50299,1514,60047,2634,46488,235

};

USInt inter_prob[512] = {

65532,62970,65148,54613,62470,8192,62577,8937,

65480,64335,65195,53248,65322,62518,62891,38312,

65075,53405,63980,58982,32768,32768,54613,32768,

65238,60009,60075,32768,59294,19661,61203,13107,

63000,9830,62566,58982,11565,32768,25215,3277,

53620,50972,63109,43691,54613,32768,39671,17129,

59788,6068,43336,27913,6554,32768,12178,1771,

56174,49152,60075,43691,58254,16384,49152,9930,

23130,7282,40960,32768,10923,32768,32768,32768,

27307,32768,32768,32768,32768,32768,32768,32768,

36285,12511,10923,32768,45875,16384,32768,32768,

16384,23831,4369,32768,8192,10923,32768,32768,

10175,2979,18978,10923,54613,32768,6242,6554,

1820,10923,32768,32768,32768,32768,32768,5461,

28459,593,11886,2030,3121,4681,1292,112,

42130,23831,49152,29127,32768,6554,5461,2048,

65331,64600,63811,63314,42130,19661,49152,32768,

65417,64609,62415,64617,64276,44256,61068,36713,

64887,57525,53620,61375,32768,8192,57344,6554,

63608,49809,49152,62623,32768,15851,58982,34162,

55454,51739,64406,64047,32768,32768,7282,32768,

49152,58756,62805,64990,32768,14895,16384,19418,

57929,24966,58689,31832,32768,16384,10923,6554,

54613,42882,57344,64238,58982,10082,20165,20339,

62687,15061,32768,10923,32768,10923,32768,16384,

59578,34427,32768,16384,32768,7825,32768,7282,

58052,23400,32768,5041,32768,2849,32768,32768,

47663,15073,57344,4096,32768,1176,32768,1320,

24858,410,24576,923,32768,16384,16384,5461,

16384,1365,32768,5461,32768,5699,8192,13107,

46884,2361,23559,424,19661,712,655,182,

58637,2094,49152,9362,8192,85,32768,1228,

65486,49152,65186,49152,61320,32768,57088,25206,

65352,63047,62623,49152,64641,62165,58986,18304,

64171,16384,60855,54613,42130,32768,61335,32768,

58254,58982,49152,32768,60985,35289,64520,31554,

51067,32768,64074,32768,40330,32768,34526,4096,

60855,32768,63109,58254,57672,16384,31009,2567,

23406,32768,44620,10923,32768,32768,32099,10923,

49152,49152,54613,60075,63422,54613,46388,39719,

58982,32768,54613,32768,14247,32768,22938,5041,

32768,49152,32768,32768,25321,6144,29127,10999,

41263,32768,46811,32768,267,4096,426,16384,

32768,19275,49152,32768,1008,1437,5767,11275,

5595,5461,37493,6554,4681,32768,6147,1560,

38229,10923,32768,40960,35747,2521,5999,312,

17052,2521,18808,3641,213,2427,574,32,

51493,42130,42130,53053,11155,312,2069,106,

64406,45197,58982,32768,32768,16384,40960,36864,

65336,64244,60075,61681,65269,50748,60340,20515,

58982,23406,57344,32768,6554,16384,19661,61564,

60855,47480,32768,54613,46811,21701,54909,37826,

32768,58982,60855,60855,32768,32768,39322,49152,

57344,45875,60855,55706,32768,24576,62313,25038,

54613,8192,49152,10923,32768,32768,32768,32768,

32768,19661,16384,51493,32768,14043,40050,44651,

59578,5174,32768,6554,32768,5461,23593,5461,

63608,51825,32768,23831,58887,24032,57170,3298,

39322,12971,16384,49152,1872,618,13107,2114,

58982,25705,32768,60075,28913,949,18312,1815,

48188,114,51493,1542,5461,3855,11360,1163,

58982,7215,54613,21487,49152,4590,48430,1421,

28944,1319,6868,324,1456,232,820,7,

61681,1864,60855,9922,4369,315,6589,14

};

Sprite Coding

Table � SEQ Table * ARABIC �6� Code table for the first trajectory point

dmv value�SSSS�VLC�dmv code��-2047...-1024, 1024...2047�11�111111110�00000000000...01111111111, 10000000000...11111111111��-1023...-512, 512...1024�10�11111110�0000000000...0111111111, 1000000000...1111111111��-511...-256, 256...511�9�1111110�000000000...011111111, 100000000...111111111��-255...-128, 128...255�8�111110�00000000...01111111, 10000000...11111111��-127...-64, 64...127�7�11110�0000000...0111111, 1000000...1111111��-63...-32, 32...63�6�1110�000000...011111, 100000...111111��-31...-16, 16...31�5�110�00000...01111, 10000...1111��-15...-8, 8...15�4�101�0000...0111, 1000...1111��-7...-4, 4...7�3�100�000...011, 100...111��-3...-2, 2...3�2�011�00...01, 10...11��-1, 1�1�010�0, 1��0�0�00�-��

Table � SEQ Table * ARABIC �7� Code table for scaled brightness change factor

value�VLC�code�total number of bits��-16...-1, 1...16�0�00000...01111, 10000...11111�6��-48...-17, 17...48�10�000000...011111, 100000...111111�8��112...-49, 49...112�110�0000000...0111111, 1000000...1111111�10��113…624�1110�000000000...111111111�13��625...1648�1111�0000000000…1111111111�14��

�Annex C

Video buffering verifier

(This annex forms an integral part of the working draft of this International Standard)

Coded video bitstreams shall meet constraints imposed through a Video Buffering Verifier (VBV) defined in this clause. Each bitstream in a scalable hierarchy shall not violate the VBV constraints defined in this annex.

The VBV is a hypothetical decoder, which is conceptually connected to the output of an encoder. It has an input buffer known as the VBV buffer.

�Annex D

Features supported by the algorithm

(This annex does not form an integral part of the working draft of this International Standard)

Overview

Object based coding

Scalability

Error resilience

�Annex E

Preprocessing and Postprocessing

(This annex does not form an integral part of the working draft of this International Standard)

VOP Generation

Noise Reduction

�Annex F

Profile and level restrictions

(This annex does not form an integral part of the working draft of this International Standard)

�Annex G

Video Bitstream Syntax in MSDL-S

(This annex forms an integral part of the working draft of this International Standard)

Editors Note: This annex needs to be updated to be conformant to bitstream specification in part of this specification.

In this section, we use a bottom-up representation scheme. For simplicity, “unsigned int” is denoted by “unit”. Only some of the map definitions are shown here.

 Block

// Table Variable length codes for dct_dc_size_luminance

map T_dct_dc_size_luminance (uint) {

	0b100,			0,

	0b00,			1,

	0b01,			2,

	0b101,			3,

	0b110,			4,

	0b1110,			5,

	0b1111.0,		6,

	0b1111.10,		7,

	0b1111.110,		8

};

// Table Variable length codes for dct_dc_size_chrominance

map T_dct_dc_size_chrominance (uint) {

	0b00,			0,

	0b01,			1,

	0b10,			2,

	0b110,			3,

	0b1110,			4,

	0b1111.0,		5,

	0b1111.10,		6,

	0b1111.110,		7,

	0b1111.1110,	8

};

class TCOEF {

	int index;

	int LAST;

	int RUN;

	int LEVEL;

};

// FLC table for LEVELS

map T_ESCAPE_LEVEL (int) {

	0b1000.0001,		-127,

	0b1000.0010,		-126,

	…

	0b1111.1111,		-1,

	0b0000.0001,		1,

	…

	0b0111.1111,		127

};

// AC coefficients of intra luminance blocks

map T_tcoef_intra_lum (TCOEF) sign=3{

	0b10s,			{0,	0,	0,	1},

	0b1111s,		{1, 	0,	0,	3},

	0b010101s,		{2,	0,	0,	9},

	…

	0b0000.011, 	{102, int(1), int(6), int(T_ESCAPE_LEVEL)}	// ESCAPE

};

// coefficients of inter blocks and AC coefficients of intra chrominance blocks

map T_tcoef_intra_chrom_inter (TCOEF) sign=3{

	0b10s,			{0,	0,	0,	1},

	0b1111s,		{1,	0,	0,	2},

	0b010101s,		{2,	0,	0,	3},

	…

	0b0000.011,		{102, int(1), int(6), int(T_ESCAPE_LEVEL)}	// ESCAPE

};

// mb_intra should be figured out from mb type

// pattern_code is not defined yet in VM5.1

class Block(int i, uint mb_intra, uint pattern_code[12])

{

	if (pattern_code[i]) {

		if (mb_intra) {

			if (i<4) {

				uint (T_dct_size_luminance) dct_dc_size_luminance;

				if (dct_dc_size_luminance !=0)

					uint(dct_dc_size_luminance) dct_dc_differential;

					TCOEF(T_tcoef_intra_lum) ac_coeff_luminance;

			} else {

				uint (T_dct_dc_size_chrominance) dct_dc_size_chrominance;

				if (dct_dc_size_chrominance !=0)

					uint(dct_dc_size_chrominance) dct_dc_differential;

					TCOEF(T_tcoef_intra_chrom_inter) ac_coeff_chrominance;

			}

		// inter block

		} else {

			TCOEF(T_tcoef_intra_chrom_inter) dct_coeff_inter;

		}

	}

};

Macroblock

class MCPBC {

	int mb_type;

	int cbpc;

};

// VLC table for MCBPC for I-VOPs in combined-motion-shape-texture coding

map T_mcpbc_I (MCPBC)

{

	0b1,					{3,0},

	0b001,				{3,1},

	0b010,				{3,2},

	0b011,				{3,3},

	0b0001,				{4,0},

	0b0000.01,			{4,1},

	0b0000.10,			{4,2},

	0b0000.11,			{4,3},

	0b0000.0000.1,		{-1,-1}		// stuffing

};

// VLC table for MCBPC for P-VOPs in combined-motion-shape-texture coding

map T_mcpbc_P (MCPBC)

{

	0b1,					{0,0},

	0b0011,				{0,1},

	0b0010,				{0,2},

	0b0001.01,			{0,3},

	0b011,				{1,0},

	0b0000.111,			{1,1},

	0b0000.110,			{1,2},

	0b0000.0010.1,		{1,3},

	0b010,				{2,0},

	0b0000.101,			{2,1},

	0b0000.100,			{2,2},

	0b0000.0101,		{2,3},

	0b0001.1,			{3,0},

	0b0000.0100,		{3,1},

	0b0000.0011,		{3,2},

	0b0000.011,			{3,3},

	0b0001.00,			{4,0},

	0b0000.0010.0,		{4,1},

	0b0000.0001.1,		{4,2},

	0b0000.0001.0,		{4,3},

	0b0000.0000.1,		{-1,-1}		// stuffing

};

map T_mcpbc_SPRITE (MCPBC) {

	0b1,					{0, 0},

	0b0011,				{0, 1},

	0b0010,				{0, 2},

	0b0001.01,			{0, 3},

	0b0000.0000.0000,	{1, 0},

	0b0000.0000.0001,	{1, 1},

	0b0000.0000.0010,	{1, 2},

	0b0000.0000.0011,	{1, 3},

	0b010,				{2, 0},

	0b0000.101,			{2, 1},

	0b0000.100,			{2, 2},

	0b0000.0101,		{2, 3},

	0b0001.1,			{3, 0},

	0b0000.0100,		{3, 1},

	0b0000.0011,		{3, 2},

	0b0000.011,			{3, 3},

	0b0001,00,			{4, 0},

	0b0000.0010.0,		{4, 1},

	0b0000.0001.1,		{4, 2},

	0b0000.0001.0,		{4, 3},

	0b0000.0000.1,		{-1,-1},		//stuffing

	0b011,				{5, 0},

	0b0000.111,			{5, 1},

	0b0000.110,			{5, 2},

	0b0000.0010.1,		{5, 3},

	0b0000.0000.0100,	{6, 0},

	0b0000.0000.0101,	{6, 1},

	0b0000.0000.0110,	{6, 2},

	0b0000.0000.0111,	{6, 3}

};

class CBPY

{	

	int I;

	int P_SPRITE;

};

// VLC table for CBPY in combined motion-shape-texture coding

map T_cbpy(CBPY)

{

	0b0011,			{0,15},

	0b00101,		{1,14},

	0b00100,		{2,13},

	0b1001,			{3,12},

	0b00011,		{4,11},

	0b0111,			{5,10},

	0b000010,		{6,9},

	0b1011,			{7,8},

	0b00010,		{8,7},

	0b000011,		{9,6},

	0b0101,			{10,5},

	0b1010,			{11,4},

	0b0100,			{12,3},

	0b1000,			{13,2},

	0b0110,			{14,1},

	0b11,			{15,0}

};

map T_modb(short)

{

	0b0, 0, // use index for mapping

	0b10, 1,

	0b11, 2

};

map T_mb_type(short)

{

	0b1,			0, // use index for mapping

	0b01,		1,

	0b001,		2,

	0b0001,		3

};

class MacroBlock(uint vop_prediction_type, uint video_object_layer_shape,

			 	 uint video_object_layer_sprite_usage)

{

	if (vop_prediction_type==0 || vop_prediction_type==1 ||

	 vop_prediction_type==3)	{				// I or P or sprite

		if (video_object_layer_shape!=0) {				// rectangular

			if (vop_prediction_type==0)

				short(T_first_shape_code_I) first_shape_code;

			else

				short(T_first_shape_code_PB) first_shape_code;

		if (vop_prediction_type==1 || vop_prediction_type==3)

			int(1) COD;

		

		if (!COD || vop_prediction_type ==0) {			// COD or I-vop

			if (vop_prediction_type==0)

				MCBPC(T_mcpbc_I) mcbpc;

			if (vop_prediction_type==1)

				MCBPC(T_mcpbc_P) mcbpc;

			if (vop_prediction_type==3 && video_object_layer_sprite_usage!=1)

			// not STATIC SPRITE

				MCBPC(T_mcpbc_SPRITE) mcbpc;

			if (mcbpc.mb_type==3 || mcbpc.mb_type==4)

				int(1) ac_pred_flag;

			if (mcbpc.mb_type != -1 && video_object_layer_sprite_usage!=1) {

			// not stuffing for I,P, not STATIC_SPRITE for sprites

				CBPY (T_cbpy) cbpy;		

			if (mcbpc.mb_type==1 || mcbpc.mb_type==4) {

				uint(2) dquant;		

			if (mcbpc.mb_type==0 || mcbpc.mb_type==1 || mcbpc.mb_type==2)

				MotionVector motion_vector0;

			if (mcbpc.mb_type==2){

				MotionVector motion_vector1;

				MotionVector motion_vector2;

				MotionVector motion_vector3;

			}

			if (video_object_layer_shape != 0 && first_shape_code==0) // rectangle, multilevel

				MbBinaryShapeCoding mb_binary_shape_coding;

			if (video_object_layer_shape == 2 && first_shape_code==0)

			// greyscale, multilevel

				MbGreyShapeCoding mb_grey_shape_coding;

			for (int i=0; i<block_count; i++)

				Block block(i);

		}

	}

	if (vop_prediction_type==2) {								// B vop

		if (video_object_layer_shape!=0)				// rectangular

			short(T_first_shape_code_I) first_shape_code;

		short(T_modb) modb;					// table 32 in vm 4.0

		if (modb>0)

			short (T_mb_type) mb_type;

		if (modb==2)

			int(6) cbpb;

		if (ref_select_code !=0 || scalability ==0) {

			if (mb_type !=1)

				uint(2) dquant;

			if (mb_type==1 || mb_type==3)			// “01” || “0001”

				MotionVector motion_vector;			// forward

			if (mb_type==1 || mb_type==2)			// “01” || “001”

				MotionVector motion_vector;			// backward

			if (mb_type==0)							// ‘1’

				MotionVector motion_vector;			// direct

		}

		if (ref_select_code ==0 && scalability !=0) {

			uint(2) dquant;

			if (mb_type==1 || mb_type==0)			// “01” || “1”

				MotionVector motion_vector;			// forward

			if (mb_type==1 || mb_type==2)			// “01” || “001”

				MotionVector motion_vector;			// backward

		}

		if (video_object_layer_shape != 0 && first_shape_code==0) // rectangle, multilevel

			MbBinaryShapeCoding mb_binary_shape_coding;

		if (video_object_layer_shape == 2 && first_shape_code==0) // greyscale, multilevel

			MbGreyShapeCoding mb_grey_shape_coding;

		for (int i=0; i<block_count; i++)

			Block block(i);

	}

};

Motion Vector

Video Object Plane

// first_shape_code for I-vop

map T_first_shape_code_I (short) {

	0b01,		0,			// all 0

	0b1,			1,			// all 255

	0b00,		2			// intra M4R

};

// subsequent code type, used for sprite trajectory encoding and light change factor coding

class SubCodeType {

	short index;

	uint code;

};

map T_light_change_factor(SubCodeType) {

	0b0,					{0, int(5)},

	0b10,				{1, int(6)},

	0b110,				{2, int(7)},

	0b1110,				{3, int(9)},

	0b1111,				{4, int(10)}

};

map T_sprite_trajectory(SubCodeType) {

	0b111111110,		{11, int(11)},

	0b11111110,			{10, int(10)},

	0b1111110,			{9, int(9)},

	0b111110,			{8, int(8)},

	0b11110,			{7, int(7)},

	0b1110,				{6, int(6)},

	0b110,				{5, int(5)},

	0b101,				{4, int(4)},

	0b100,				{3, int(3)},

	0b011,				{2, int(2)},

	0b010,				{1, int(1)},

	0b00,				{0, 0}

};

class VideoObjectPlane (uint video_object_layer_shape, uint scalability,

					 uint enhancement_type, uint separate_motion_shape_texture,

 					 uint error_resilience_disable,

					 uint video_object_layer_sprite_usage, uint no_of_sprite_points,					 		 uint lighting_change_in_sprite)

	const bit(32) vop_start_code = 0x000001B6

{

	do {

		bit(1) modulo_time_base;

	} while(modulo_time_base != 0);

	

	bit(10) vop_time_increment;

	uint(2) vop_prediction_type;

	if ((video_object_layer_sprite_usage !=0) && (vop_prediction_type==3)) { 	

	// !SPRITE_NOT_USED && vop_prediction_type == SPRITE

		if (no_of_sprite_points>0) {

			// encode vop_points dmv

			int dmv_x[no_of_sprite_points], dmv_y[no_of_sprite_points];

			for (i=0; i++; i<no_of_sprite_points) {

				SubCodeType(T_sprite_trajectory) x;

				if (x.index==0) 				dmv_x[i]=0;

				else {

					if (x.code<2^(x.index-1) 	dmv_x[i]=x.code-2^(x.index)+1;

					else						dmv_x[i]=x.code;

				}

				SubCodeType(T_sprite_trajectory) y;

				if (y.index==0) 				dmv_y[i]=0;

				else {

					if (y.code<2^(x.index-1) 	dmv_x[i]=y.code-2^(y.index)+1;

					else						dmv_x[i]=y.code;

				}

			}	

		}

		if (lighting_change_in_sprite) {

			// lighting change factor encode

			int light_change_factor

			SubCodeType (T_light_change_factor) x;

			switch(x.index) {

			 case 0:		

				if (x.code<16)		light_change_factor=x.code-16;

				else if(x.code <32)	light_change_factor=x.code-15;

				break;

			 case 1:

				if (x.code<32)		light_change_factor=x.code-48;

				else if(x.code<64)	light_change_factor=x.code-47;

				break;

			 case 2:

				if (x.code<64)		light_change_factor=x.code-112;

				else if(x.code<128) 	light_change_factor=x.code-15;

				break;

			 case 3:		 			light_change_factor=x.code+113; break;

			 case 4:					light_change_factor=x.code+625; break;

			 default:				break; // impossible

			}

		}

		if (video_object_layer_sprte_usage == 3) 		// ON_LINE_SPRITE

			uint(8) blending_factor;

	}

	if (video_object_layer_sprite_usage !=1) {			// STATIC_SPRITE

		if(video_object_layer_shape != 0) { // != “rectangular”

			uint(10) vop_width;

			uint(10) vop_height;

			uint(10) vop_horizontal_mc_spatial_ref;

			bit(1) marker_bit;

			uint(10) vop_vertical_mc_spatial_ref;

			if (scalability && enhancement_type)

				uint(1) background_composition;

		}	

		bit(1) disable_sadct;

		if (vop_prediction_type == 2)

			uint(2) vop_dbquant;

		else

			uint(5) vop_quant;

		if ((video_object_layer_shape_effects==2) ||

		 (video_object_layer_shape_effects==3) ||

		 (video_object_layer_shape_effects==5)) {

			bit(1) vop_constant_alpha;

			if (vop_constant_alpha)

				uint(8) vop_constant_alpha_value;

		}

		// calculation of number of Macroblocks

		int num_mbx, num_mby, num_mb;

		if ((vop_width % 16) != 0)		num_mbx = vop_width/16 + 1;

		else		num_mbx = vop_width/16;

		if ((vop_height % 16) != 0)		num_mby = vop_height/16 + 1;

		else		num_mby = vop_height/16;

		num_mb = num_mbx * num_mby;

		 // calculation of the length of macroblock number representation in bits

		short bitLengthOfMB;

		if (num_mb < 3)			bitLengthOfMB = 1;

		else if(num_mb < 5)			bitLengthOfMB = 2;

		else if(num_mb < 9)			bitLengthOfMB = 3;

		else if(num_mb < 17)		bitLengthOfMB = 4;

		else if(num_mb < 33)		bitLengthOfMB = 5;

		else if(num_mb < 65)		bitLengthOfMB = 6;

		else if(num_mb < 129)		bitLengthOfMB = 7;

		else if(num_mb < 257)		bitLengthOfMB = 8;

		else if(num_mb < 513)		bitLengthOfMB = 9;

		else if(num_mb < 1025)		bitLengthOfMB = 10;

		else if(num_mb < 2049)		bitLengthOfMB = 11;

		else if(num_mb < 4097)		bitLengthOfMB = 12;

					

		if(!scalability) {

			if(!separate_motion_shape_texture)

				if(error_resilient_disable)

					// combined_motion_shape_texture_coding

					Macroblock mb[num_mb] (vop_prediction_type,

						 video_object_layer_shape, video_object_layer_sprite_usage);

				else

					do {

						do {

							// combined_motion_shape_texture_coding

							Macroblock mb[num_mb] (vop_prediction_type,

						video_object_layer_shape, 			

						video_object_layer_sprite_usage);

						} while(![0b0000.0000.0000.0000]) 			// byte_aligned

						if (![0b000.0000.0000.0000.0000.0000]) { 	// byte_aligned

							// next_resync_marker()

							const bit(17) resync_marker = 0b0.0000.0000.0000.0001;

							uint(bitLengthOfMB) macroblock_number;

							uint(5) quant_scale;

						}

					} while (![0b000.0000.0000.0000.0000.0000]) 	// byte_aligned

			// separate motion texture

			else {

				if (video_object_layer_shape != 0) {

					if (vop_prediction_type==0)			// I vop

						short(T_first_shape_code_I) first_shape_code[num_mb];

					else if (vop_prediction_type == 2 || vop_prediction_type == 3) // P, B

						short(T_first_shape_code_PB) first_shape_code[num_mb];

				}

				if(error_resilient_disable) {

					// motion coding

					MotionCoding motion_coding(vop_prediction_type, ref_seclect_code,

												scalability);

					if (video_object_layer_shape!=0)

						ShapeCoding shape_coding(video_object_layer_shape,

												first_shape_code[num_mb], num_mb);

					TextureCoding texture_coding(video_coding_type, num_mb);

				} else {

					do {

						// motion coding

						do {

							MotionCoding motion_coding(vop_prediction_type,

													ref_seclect_code, scalability);

						} while (![0b1010.0000.0000.0000.1])

						uint(17) motion_marker;

						if(video_object_layer_shape == 2) 		// binary shape coding

							BinaryShapeCoding binary_shape_coding

								(video_object_layer_shape,

								first_shape_code[num_mb], num_mb);

						if(video_object_layer_shape == 3)		// grey-scale shape coding

							GreyscaleShapeCoding

								greyscale_shape_coding(video_object_layer_shape,																vop_prediction_type, num_mb);							do {

							TextureCoding texture_coding(video_coding_type, num_mb);	

						} while (![0b0000.0000.0000.0000])

						if(![0b000.0000.0000.0000.0000.0000]) {

							// next_resync_marker

							const bit(17) resync_marker = 0b0.0000.0000.0000.0001;

							uint(bitLengthOfMB) macroblock_number;

							uint(5) quant_scale;

						}

					} while(![0b000.0000.0000.0000.0000.0000]);

				}

			}

		} else {		// if scalability

			if(background_composition) {

				uint(1) load_backward_shape;

				if (load_backward_shape) {

					// backward_shape_coding

					ShapeCoding shape_coding;

					uint(1) load_forward_shape;

					if(load_forward_shape)

						// forward_shape_coding

						ShapeCoding shape_coding;

				}

 	}

		

			uint(2) ref_select_code;

			if((vop_prediction_type == 1) || (vop_prediction_type == 2)) {

				uint(10) forward_temporal_ref;

				if(VOP_prediction_type == 2) {

					bit(1) marker_bit;

					uint(10) backward_temporal_ref;

				}

			}

		

			// combined_motion_shape_texture_coding

			Macroblock mb[num_mb] (vop_prediction_type,

						 video_object_layer_shape, video_object_layer_sprite_usage);

		}

	}

};

Combined Motion Shape Texture Coding

Motion Coding

map T_number_of_vectors (short)

{

	0b11,	0,

	0b0,		1,

	0b10,	4

};

class MotionCoding (uint vop_prediction_type, uint ref_select_code, uint scalability)

{

	if (vop_prediction_type == 1) {					// P VOP

		short(T_number_of_vectors) number_of_vectors;

		repeat(num_mb) {

			MotionVector motion_vector;

		}

	}

	if (vop_prediction_type == 2) {					// B-VOP

		short(T_modb) modb;					// table 32 in vm 4.0

		if (modb>0)

			short (T_mb_type) mb_type;

		if (ref_select_code !=0 || scalability ==0) {

			if (mb_type ==1 || mb_type==3)			// ‘01’ || ‘0001’

				MotionVector motion_vector;			// forward

			if (mb_type ==1 || mb_type==2)			// ‘01’ || ‘001’

				MotionVector motion_vector;			// backward

};

Shape Coding

Binary Shape

class BinaryShapeCoding(uint video_object_layer_shape, short first_shape_code[] , int num_mb)

{

	if (video_object_layer_shape != 0) {		// “rectangular”

		for (int i=0; i++; i<num_mb) {

			if (first_shape_code[i] == 0) {			// “multilevel”

				MbBinaryShapeCoding mb_binary_shape_coding;

		}

	}

};

map T_conversion_ratio (uint) {

	0b0,		0,		// 1

	0b01,	1,		// 1/2

	0b10,	2		// 1/4

];

map T_modified_mmr (uint) {

	0b1,					0, // V(0)

	0b01,				1, // V(1)

	0b0001,				2, // V(2)

	0b0000.1,			3, // V(3)

	0b0000.01,			4, // V(4)

	0b0000.001,			5, // V(5)

	0b001,				6, // Horizontal

	0b0001,				7, // End of Macroblock

};

class MbBinaryShapeCoding

{

	uint(T_conversion_ratio) conversion_ratio;

	uint(1) a0_color;

	do {

		uint (T_modified_mmr) vlc_binary;

		if (vlc_binary ==6) {			// mode = horizontal

			uint(1) vertical_pass_mode;		//added here

			if (vertical_pass_mode)

				// Use 4 bits if CR = 1 (0),3 bits if CR = 1/2 (1), 2 bits if CR = 1/4 (2)	

				int(4-conversion_ratio) residual_length_binary_shape;

			else

				int(4- conversion_ratio) unchanged_length_binary_shape;

		}

	}while(vlc_binary != 7);				// Mode != EOMB

};

Grey Scale Shape

class GreyShapeCoding (uint video_object_layer_shape, uint vop_prediction_type, int num_mb)

{

	if(video_ object_layer_shape == 2) {		// “grey-scale”

		for (int i=0; i++; i<num_mb) {

			if (first_shape_code[i] == 0) {			// “multilevel”

				MbGreyShapeCoding mb_grey_shape_coding(vop_prediction_type);

		}

	}

};

class MbGreyShapeCoding (uint vop_prediction_type)

{

	if (vop_prediction_type==0 || vop_prediction_type==1) {		// I or P

		uint(vlc_table…undefined) cod_alpha;

		if (cod_alpha==0) {

			uint(vlc….) cbp_alpha;

			for(int i=0; i<4; i++)

				Block block(i);

		}

	}

	if (vop_prediction_type==2) {							// B vop

		uint(1) cod_alpha;

		if (cod_alpha==0) {

			uint(vlc…) modb_alpha;

			if (modb_alpha==2)

				bit(4) cbpb_alpha;

			for(int i=0; i<4; i++)

				Block block(i);

		}

	}

};

Texture Coding

class TextureCoding (uint vop_prediction_type)

{

	if (vop_prediction_type==0) {				// I vop

		repeat (num_mb) {

			MCPBC(T_11_7_mcpbc_I) mcpbc;

			if (mcpbc.mb_type==3 || mcpbc.mb_type==4)

				int(1) ac_pred_flag;

			if (mcpbc.mb_type != -1)			// != stuffing

				CPBY(T_11_9_cbpy) cbpy;

			if (mcpbc.mb_type==1 ||mcpbc.mb_type==4)

				uint(2) dquant;

			for (i=0; i<block_count; i++)

				Block block(i);

		}

	}

	if (vop_prediction_type==1) {				// P vop

		repeat (num_mb) {

			int(1) no_dct_flag;

			MCPBC(T_…) mcpbc;

			if(mcpbc.mb_type != -1)

				CBPY(T_11_9_cbpy) cbpy;

			if (mcpbc.mb_type==1 ||mcpbc.mb_type==4)

				uint(2) dquant;

for (i=0; i<block_count; i++)

				Block block(i);

		}

	}

	if (vop_prediction_type==2) {				// B vop

		repeat (num_mb) {

			int(6) cbpb;

			uint(Table…) dbquant;

			for (i=0; i<block_count; i++)

				Block block(i);

		}

	}

};

Video Object Layer

class EncodeSpritePiece

{

	uint(8) piece_width;

	uint(8) piece_height;

	uint(8) piece_xoffset;

	uint(8) piece_yoffset;

	SpriteShapeTexture sprite_shape_texture;

}

class VideoObjectLayer:

	const bit(28) video_object_layer_start_code = 0x0000012

{

	bit(4) video_object_layer_id;

	uint(2) video_object_layer_shape;	// "01"-binary, "10"-grayscale

	if(video_object_layer_shape == 0)	 {	// 00-rectangular

		uint(10) video_object_layer_width;

		uint(10) video_object_layer_height;

	}

	uint(4) video_object_layer_shape_effects;

	if ((video_object_layer_shape_effects==1 || video_object_layer_shape_effects==3 ||

	 video_object_layer_shape_effects==4 || video_object_layer_shape_effects==5))

		uint(3) video_object_layer_feather_dist;

	if (video_object_layer_shape_effects==4 || video_object_layer_shape_effects==5) {

		for(int i = 0; i <video_object_layer_feather_dist; i++)

			uint(8) feathering_filter[15];

	uint(2) video_object_layer_sprite_usage;

	if (video_object_layer_sprite_usage!=0) {			// SPRITE_NOT_USED

		if (video_object_layer_sprite_usage==1 ||		// STATIC_SPRITE

		 video_object_layer_sprite_usage==2) {		// ON_LINE_SPRITE

			uint(13) sprite_hdim;

			uint(13) sprite_vdim;

		}

		if (video_object_layer_sprite_usage==1) {		// STATIC_SPRITE

			uint(13) sprite_left_edge;

			uint(13) sprite_top_edge;

		}

		uint(6) no_of_sprite_points;

		if (video_object_layer_sprite_usage !=3) {		// GMC

			if (no_of_sprite_points > 0) {

				uint(13) sprite_point_x_coordinate[no_of_sprite_points];

				uint(13) sprite_point_y_coordinate[no_of_sprite_points];

			}

		}

		bit(1) lighting_change_in_sprite;

	}

	uint(1) video_object_layer_quant_type;

	if (video_layer_quant_type) {

		uint(1) load_intra_quant_mat;

		if(load_intra_quant_mat)

			uint(8)	intra_quant_mat[64];

		uint(1)	load_nonintra_quant_mat;

		if(load_nonintra_quant_mat)

			uint(8) nonintra_quant_mat[64];

		if (video_object_layer_shape==2) {

			bit(1) disable_gray_quant_update;

			bit(1) load_gray_intra_quant_mat;

			if (load_gray_intra_quant_mat)

				uint(8) gray_intra_quant_mat[64];

			bit(1) load_gray_nonintra_quant_mat;

			if (load_gray_nonintra_quant_mat)

				uint(8) gray_nonintra_quant_mat[64];

		}

	}

	uint(1) error_resilient_disable;

	if (!error_resilient_disable)

		bit(1) reversible_VLC;

	uint(1) intra_acdc_pred_disable;

	uint(2) video_object_layer_fcode_forward;

	uint(2) video_object_layer_fcode_backward;

	uint(1) separate_motion_shape_texture;

	if (video_object_layer_sprite_usage==1)			// STATIC_SPRITE

		EncodeSpritePiece encode_sprite_piece;

	uint(1) scalability;

	if(scalability) {

		uint(4) ref_layer_id;

		uint(1) ref_layer_sampling_direc;

		uint(5) hor_sampling_factor_n;

		uint(5) hor_sampling_factor_m;

		uint(5) vert_sampling_factor_n;

		uint(5) vert_sampling_factor_m;

		uint(1) enhancement_type;

	}

	do {

		VideoObjectPlane video_object_plane(video_object_layer_shape,

						scalability, enhancement_type, separate_motion_shape_texture,

						error_resilience_disable, video_object_layer_sprite_usage,

						no_of_sprite_points, lighting_change_in_sprite);

	} while([VideoObjectPlane.video_object_plane_start_code]);

}

Texture Object (TBD)

Video Object

class VideoObject :

	const bit(27) video_object_start_code = 0b0000.0000.0000.0000.0000.0001.000

{	

	bit(5) video_object_id;

	do {

		VideoObjectLayer video_object_layer;

	} while([VideoObjectLayer.video_object_layer_start_code]);

	do {

		StillimageObjectLayer stillimage_object_layer;

	} while([StillimageObjectLayer.stillimage_object_layer_start_code]);

}

Video Session

class VideoSession: const bit(32) session_start_code = 0x000001B0;

{

	do {

		VideoObject video_object;

	} while ([VideoObject.video_object_start_code]);

	const bit(32) session_end_code = 0x000001B1;

}

�

Annex H

Patent statements

(This annex does not form an integral part of this International Standard)

�Annex I

Bibliography

(This annex does not form an integral part of this International Standard)

1	Arun N. Netravali and Barry G. Haskell ÒDigital Pictures, representation and compressionÓ Plenum Press, 1988

2	See the Normative Reference for Recommendation ITU�RÊBT.601

3	See the Normative Reference for IEC Standard Publication 461

4	See the Normative Reference for Recommendation ITU�TÊH.263

5	See the Normative reference for IEEE Standard Specification P1180-1990

6	ISO/IEC 10918-1 | ITU-T T.81 (JPEG)

WD4.0 of ISO/IEC 14496-2

 ISO/IEC WD4.0 of ISO/IEC 14496-2 ITU-T Q.15/16 Sunriver (8-11 Sept, 1997) Q15-B-50

�PAGE �vi�

	WD4.0

�PAGE �i�

		

WD4.0 of ISO/IEC 14496-2

 ISO/IEC		WD 4.0 of ISO/IEC 14496-2

�	WD4.0

	WD4.0	�

