ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group

Second Meeting: Sunriver, Oregon, 8-11 September 1997�Document Q15-B-41

Filename: q15b41.doc

Date generated: Sep/02/97��

Question :	Q.15/16

Title :	VLC Design Avoiding Unique Word Emulation

Source :	Japan�

Purpose :	Information

1. Introduction

	Combination of various code words of VLCs may cause unique word emulation and it may results in mis-operation of a decoder. Though various empirical schemes, for example, forbidding the Ò0Ó- only code word and / or inserting Ò1Ó as a marker bit, have been employed, they do not guarantee the perfect avoidance of the emulation and may reduce the coding efficiency at the same time. In this contribution, general requirements to VLCs to avoid the emulation are given and a systematic designing procedure of them is introduced.

2. Assumptions to the unique word

	It is assumed that the unique word has a bit pattern consisting of only Ò0Ó bits - the word length is denoted as ÒNÓ here in this contribution -, which is widely used in various video coding algorithms including H. 263 for easy detection of the word. In video coding the unique word is often combined with extension words to form several start codes. In this contribution only the consecutive Ò0Ós part is considered because the start codes including the extension words are not emulated whenever the consecutive Ò0Ós are not emulated.

3. Requirements to VLC code words

3.1 Single set of code words -simplest case-

	In a case with only a single set of VLC being involved (see Fig. 1), each code word of the VLC shall satisfy the following conditions at the same time to guarantee the above mentioned unique word.

� EMBED Word.Picture.6 ���

(1) There is no code word consisting of only Ò0Ó bits.

(2) The maximum length of consecutive Ò0Ó bits in the �	prefix shall be equal to or less than s.

(3) The maximum length of consecutive Ò0Ó bits in the �	suffix shall be equal to or less than t.

(4) s + t < N

(5) The maximum length of consecutive Ò0Ó bits in the �	middle of the word shall be less than N.

When one or more requirements above are not satisfied, the VLC needs to be converted to satisfy them based on the procedure introduced in the section 4.

3.2 Multiple sets of code words -extension to general cases-

� EMBED Word.Picture.6 ���

	In general video coding processes, various code words of many sets of VLCs and FLCs occur continuously according to the ÒsyntaxÓ rule. Compared with the simplest case with five requirements, there are additional requirements specific to the syntax rule, and Ò0Ó- length parameters s and t should be decided for each code. For example, in a case with j sets of codes - VLCs and FLCs - (see Fig. 2), two new requirements (6) and (7) shall be satisfied in addition to the five requirements (1) - (5) in which s and t are replaced by si and ti (1 < i < j) respectively.

(6) ti + si+1 < N

(7) tj + s1 < N

where 1 < i < j-1

4. Outline of designing procedure

	Emulation-less VLCs are created by a prefix process and a suffix process with using parameters N, s (si), and t (ti). In the prefix process a dummy word with only Ò0Ó bits is introduced to satisfy some of the requirements, while in the suffix process equivalent transform of the binary tree and additional bit Ò1Ó is attached in the suffix, if necessary, to satisfy the rest of the requirements (see the annex for detailed description). It is noted that the parameter N is usually decided from a system operation aspect - as large N as the hardware allows for a detection process is preferable -. On the other hand, parameters s and t may need optimization while t=2 or 3 gives best performance in many cases.

5. Conclusion

	The designing procedure shown in this contribution has following advantages.

1) The created VLC does not require a verification test because it does not generate emulation from its designing principle.

2) The VLC is created systematically from the syntax rule and occurrence probabilities of all the relevant symbols.

It should be also noted that code efficiency loss due to introduction of the dummy word and additional Ò1Ó bits are almost negligible - less than 1% - when the unique word is fairly long compared with the longest VLC code word involved.

End.

�Annex to Q15-B-41

Variable Length Code with No Unique-word Emulation

Yasuhiro TAKISHIMA, Shigeyuki SAKAZAWA and Masahiro WADA

KDD R&D Laboratories

(This is an English-translated version of a technical paper [7] written in Japanese.)

Abstract: A systematic design method for a variable length code (VLC) which makes using a unique word possible is proposed. A unique word is an effective and practical technique for synchronization recovery from continuous erroneous states in binary signal transmission, especially with VLC's that can damage reconstructed signals severely. Use of it, however, restricts the selection of VLC codewords so that no combination of them in a bit stream emulates the unique word in order to guarantee its uniqueness. Due to the need of special care about the bit pattern of the VLC's for a unique word, such VLC's have been constructed only heuristically. This paper proposes a systematic technique to construct an emulation-less VLC with little efficiency loss, and analyzes the efficiency quantitatively based on the occurrence probabilities and unique word length. This paper also suggests application of the new method to multiple VLC's.

1. Introduction

	This paper proposes a systematic method to design a variable length code (VLC) which enables use of a unique word.

	A unique word is an effective and practical technique to recover synchronization quickly in binary signal transmission especially with VLC's. For example in video coding, a unique word is inserted in a coded bit stream (Fig. 1 (a)). It provides the start of each segment of the coded bit stream which physically corresponds to the left end of a slice in an image frame [1], [2] (Fig. 1 (b)). The coded bit stream consists of many VLC's for compressed video data. Therefore, when a receiver loses the VLC synchronization due to some propagation errors and cannot decode codewords in the bit stream, incorrectly reconstructed signals degrade the picture quality severely and continuously. The damage is, however, held to a minimum in the space by regaining codeword synchronization by virtue of a unique word inserted periodically in the sequence (Fig. 1 (b)).

	A unique word owns a unique pattern of bits among all the codewords involved and any combinations of them to be recognized in any situation. Use of a unique word, therefore, restricts selection of VLC codewords so that no combination of them emulates it. However, since there has been no systematic method to create VLC's guaranteeing use of a unique word, much effort has been made to establish sets of VLC's heuristically by forbidding several codewords, and inserting marker bits to avoid specific bit patterns and verify the uniqueness of the unique word among the constructed VLC's [1].

	This paper proposes a systematic procedure to obtain VLC's ensuring use of a unique word denoted as Òemulation-less VLC'sÓ. Section 2 describes conditions of the unique word for analysis, and describes requirements for VLC's not to emulate the unique word based on the conditions. A construction technique for a set of VLC satisfying these requirements is proposed in section 3, and efficiency of the emulation-less VLC is analyzed in section 4. Section 5 proposes application of this approach to multiple sets of VLC's.

�

2 Conditions of unique word and requirements for VLC structure

	Conditions to define a unique word are described for analysis and construction of an emulation-less VLC. Based on the conditions, some requirements regarding the structure of the emulation-less VLC are also described.

2. 1 Conditions of unique word

	To make the analysis simple, it is assumed in this paper that the unique word shall have the following features. It should be noted that they are not restrictions on use of the unique word, but they are reasonable assumptions considering realistic operations.

(1) Only one unique word is used.

(2) The unique word is composed of only Ò0Ó bits.

(3) The bit length of the unique word is denoted as N.

	Condition (1) is significant to simplify the analysis, and at the same time it does not limit the usage of the unique word because when two synchronization words or more are necessary, the single unique word can be used as an escape codeword and extension words corresponding to the synchronization words can follow it. Condition (2) is valid considering it is easy for practical hardware to detect continuous Ò0Ó bits in bit streams, and it is also significant for simplifying the analysis. Condition (3) is an assumption for the analysis below.

2. 2 Requirements for VLC

	Requirements for a VLC to avoid emulating the unique word depend on the transmission system of the code and attributes of the unique word. The most basic transmission system is single-code transmission with an infinite loop shown in Fig. 2. In this system, a set of codewords with one code book is transmitted continuously. The use of each codeword is governed only by its occurrence probability.

	In this system, requirements for the codewords are as follows:

(1) Codewords consisting of only Ò0Ó bits shall be prohibited.	 -------- (Req. 1)

(2) The maximum length of continuous Ò0Ó bits in the prefix of each

	codeword shall be equal to s or less.				 -------- (Req. 2)

(3) The maximum length of continuous Ò0Ó bits in the suffix of each

	codeword shall be equal to t or less.				 -------- (Req. 3)

(4) s + t < N.								 -------- (Req. 4)

(5) The maximum length of continuous Ò0Ó bits in the middle of

	each codeword shall be less than N.				 -------- (Req. 5)

�

Req. 1 is essential to prevent continuous codewords of Ò0Ó bits from emulating the unique word. Req. 2, 3 and 4 are required to prevent combinations of codewords from emulating the unique word. Req. 5 is necessary for a long codeword not to include the unique word in it. This set of requirements provides the necessary and sufficient condition to obtain an emulation-less VLC.

3 Construction of VLC

	In this section, a method to construct a VLC observing Req. 1 through Req. 5 is proposed. Designing an emulation-less VLC consists of two processes. The first process produces a VLC from the occurrence probability of each symbol, which satisfies Req. 1 and Req. 2 by prefix-processing. The other process modifies the VLC obtained through the first process to satisfy the rest of the requirements by suffix-processing.

3. 1 Prefix-processing

	Req. 1 and 2 are satisfied at the same time by prefix-processing. Introduction of a dummy word consisting of continuous s+1 Ò0Ó bits is the solution. When a dummy word with that feature is included in a set of codewords, all the other codewords can satisfy the two conditions at the cost of some efficiency loss due to the dummy word. The dummy word is used only for creation of the other words with appropriate bit patterns, and is never used for signal transmission.

	Assuming a virtual probability corresponding to the dummy word shall be pd, the probability of each word is modified to � EMBED "Equation" * mergeformat ��� from its original probability pi by the conversion:

		� EMBED "Equation" * mergeformat ��� = pi ´ (1-pd)							 --------- (Eq. 1)

where 1 < i < n and n denotes the number of symbols except for the dummy symbol. Codewords are assigned to all the symbols including the dummy symbol according to the modified probabilities by an ordinary procedure to construct a VLC such as the Huffman algorithm [3]. For example, codewords satisfying Req. 1 and Req. 2 are assigned to symbols with occurrence probabilities to make a VLC C11 as shown in Table 1. In the table, a code C10 is a Huffman code for reference which is obtained from the original occurrence probabilities. The probability of the dummy word pd is set to 0.125 in this example, which makes the length of the dummy word 3 (s=2, t=0, N=3).

Table 1 Example of emulation-less VLC

symbol�occurrence probability�modified probability�Huffman code

 (C10)�Prefix-processed

VLC (C11)�Emulation-less

VLC (C12)��A�0.400�0.3500� 1� 01� 01��B�0.264�0.2310� 01� 10� 11��dummy�-------�0.1250�-------� 000� 000��C�0.056�0.0490�00000� 1100� 1011��D�0.052�0.0455�00001� 1101� 0011��E�0.048�0.0420�00010� 1110� 1010A��F�0.044�0.0385�00011� 1111� 0010A��G�0.040�0.0350�00100�00100� 100A01��H�0.036�0.0315�00101�00101� 100A11��I�0.032�0.0280�00110�00110�100A00A��J�0.028�0.0245�00111�00111�100A10A��average code length���2.608�2.808�3.096��

			s=2, t=0, N=3

			A: additional bit Ò1Ó

	The value of pd which provides a desired value of s can be approximately given by

		pd @ 1/2s+1								 --------- (Eq. 2)

considering that the entropy of a symbol with probability P is expressed as -log2 P. When the obtained length of the dummy word is longer than s+1, a pd larger than 1/2s+1 should be selected and codewords will be assigned correctly. On the other hand, a shorter length than s+1 needs modification by a pd smaller than 1/2s+1.

	The optimization of the value s is discussed in section 4. The range of s is limited as

		1£ s+1 £ Lmax +1							 --------- (Eq. 3)

where Lmax is the maximum length of codewords of a VLC constructed without the dummy word denoted as a reference code such as a Huffman code, and

		� EMBED "Equation" * mergeformat ���, 							 --------- (Eq. 4)

		� EMBED "Equation" * mergeformat ��� .						 --------- (Eq. 5)

3. 2 Suffix-processing

	The VLC produced in the previous process is modified by investigating the suffix of each codeword and inserting an additional bit Ò1Ó when necessary to satisfy Req. 3, 4 and 5. This process can be performed by making use of a binary tree expression for a code. For example, the codes C10 and C11 have the expressions shown in Fig. 3 (a) and (b) respectively. In the figure, a leaf corresponds to an end of a word, while a node corresponds to a middle position of words.

�

In this structure, the suffixes of all the leaves and nodes are checked as to whether they need additional bits. It is necessary to investigate the situation of suffixes at t levels above the level to which bits are added, considering up to as many as t consecutive Ò0Ó bits are allowed as a leaf suffix. The check-up and bit addition procedure is performed by a top-down process as follows:

(1) Before suffix processing, make as many codewords as possible that are shorter than or equal �	to t terminated by Ò0Ó. This can be carried out by making use of the equivalent transform [4, 5] �	which exchanges nodes or leaves at the same level without changing average code length �	(Fig. 4). This pre-processing is effective so that a longer Ò0Ó continuity would not remain.

�

(2) Parameters of the tree structure shown below are measured at all the levels:

		ni: number of leaves at level i

		ri: number of leaves and nodes at level i

	where 0 < i < � EMBED "Equation" * mergeformat ���, � EMBED "Equation" * mergeformat ��� is the length of the longest codeword, and

		� EMBED "Equation" * mergeformat ��� .						 --------- (Eq. 6)

(3) Parameters providing a suffix status at level i (i > t) shown below are measured:

		mk: number of leaves with a bit Ò0Ó at the bottom at level k

		ui-t-1, j: number of leaves and nodes with continuous j Ò0Ó bits from level i-t-1

	where ui-t-1, 1 = � EMBED "Equation" * mergeformat ���							 --------- (Eq. 7)

	and ui-t-1, j+1 = ui-t-1, j - mi-t-1+j (0 < j < t).				 --------- (Eq. 8)

(4) If mi-t-1+j > ui-t-1, j $j: 0 < j < t, no additional bit is necessary at level i. There is no node or �	leaf which has more than t consecutive Ò0Ó bits at level i. Codewords at this level are �	reassigned to symbols so that nodes with long consecutive Ò0Ó bits are terminated at this level �	as leaves. Conversion of the tree structure is performed by the equivalent transform.

		If ni < � EMBED "Equation" * mergeformat ���, mi = ni. 							 --------- (Eq. 9)

		Otherwise mi = � EMBED "Equation" * mergeformat ���.							 -------- (Eq. 10)

(5) If mi-t-1+j < ui-t-1, j "j: 0 < j < t and ni < ri - ui-t-1, t+1, no additional bit is necessary at �	level i. There are nodes or leaves which have more than t consecutive Ò0Ó bits at level i. �	Codewords at level i are reassigned to symbols so that nodes with long consecutive Ò0Ó bits �	other than those with more than t consecutive Ò0Ó bits are terminated at this level as leaves. �	Conversion of the tree structure is performed by the equivalent transform.

		If ni < � EMBED "Equation" * mergeformat ��� - ui-t-1, t+1, mi = ni. 					 -------- (Eq. 11)

		Otherwise mi = � EMBED "Equation" * mergeformat ��� - ui-t-1, t+1 .					 -------- (Eq. 12)

(6) If there are some nodes among the remaining ri - ni nodes whose suffixes have continuous �	Ò0Ós as long as N-1, Ò1Ós are inserted at this level. To maintain completeness of a code which �	is essential for the processing of lower levels, imaginary leaves that are at conjugate positions �	to the additional bits are produced (Fig. 3 (c)). Each of them has a bit Ò0Ó at the bottom, and �	is fixed. In this process, the equivalent transform for efficiency improvement is performed so �	that nodes with a smaller probability amount of the lower levels are selected for insertion of �	Ò1Ós. In the example, additional bits are inserted to prevent three consecutive Ò0Ó bits at level �	four and seven.

	This process satisfies Req. 5.

(7) If mi-t-1+j < ui,-t-1 j "j: 0 < j < t and ni > ri - ui-t-1, t+1, as many as ni + ui-t-1, t+1- ri �	leaves require additional bits Ò1Ós. Additional bits are attached to the bottom of leaves from �	those with the longest continuous Ò0Ó bits in the suffix to those with the shortest Ò0Ó �	continuities. To maintain completeness of a code which is essential for the processing of �	lower levels, imaginary leaves that are at conjugate positions to the additional bits are �	produced (Fig. 3 (c)). Each of them has a bit Ò0Ó at the bottom, and is fixed. The parameter �	ni is modified as follows:

		ni+1 = ni+1 + 2 ´ (ni + ui-t-1, t+1- ri).			 -------- (Eq. 13)

	In this step, the equivalent transform for efficiency improvement is performed so that nodes �	with long Ò0Ó continuity at the bottom are selected for addition of Ò1Ós. In the example, �	additional bits are attached to prevent Ó0Ó suffixes at level five.

	This process satisfies Req. 3 and Req. 4.

(8) Suffixes at the next level are investigated.

		i = i + 1 and repeat (2) - (8).

(9) After investigation of all levels, symbols are sorted according to the occurrence probabilities �	and reassigned to codewords according to their lengths. The example code C11 is converted �	to an emulation-less code C12 shown in Table 1 and Fig. 3 (c).

It should be noted that the equivalent transform does not handle the dummy word or reassigned and fixed words.

4 Analysis of code efficiency

	The code efficiency of the emulation-less code represented by an average code length is first described theoretically, and is then analyzed by means of an example to seek an optimum efficiency when the parameters change.

4. 1 Average code length

	In the proposed scheme, an emulation-less code has efficiency loss when compared to a reference code with the minimum average code length, which is caused by introduction of the dummy word and additional bits in suffixes and in the middle of words. The efficiency loss can be formulated by parameters representing the code structure such as occurrence probabilities and number of codewords with Ò0Ó in their suffixes, as well as by parameters of the unique word such as s, t, and N.

	The efficiency loss caused by the dummy word is given as follows. Since the length of each codeword is given by a rule for a compact code based on the modified probability, it is provided:

		� EMBED "Equation" * mergeformat ���

		 � EMBED "Equation" * mergeformat ���						 -------- (Eq. 14)

where � EMBED "Equation" * mergeformat ��� denotes the length of codeword i and 1< i < n.

		� EMBED "Equation" * mergeformat ���

			� EMBED "Equation" * mergeformat ���

			� EMBED "Equation" * mergeformat ���				 -------- (Eq. 15)

where � EMBED "Equation" * mergeformat ��� denotes the average length of the prefix-processed code. When discrepancies between the average length of the compact codes and their entropies are denoted as d and � EMBED "Equation" * mergeformat ��� for the reference compact code and the prefix-processed code respectively, � EMBED "Equation" * mergeformat ��� can be denoted as:

		� EMBED "Equation" * mergeformat ��� .					 -------- (Eq. 16)

From Eq. 2 above, which gives pd in terms of s, the average length of the prefix-processed code can be expressed as a function of the parameter s i. e. :

		� EMBED "Equation" * mergeformat ��� .					 -------- (Eq. 17)

and

		� EMBED "Equation" * mergeformat ���

			 � EMBED "Equation" * mergeformat ��� .					 -------- (Eq. 18)

Considering � EMBED "Equation" * mergeformat ��� is independent of the parameter s, the efficiency loss due to the dummy word � EMBED "Equation" * mergeformat ��� is a monotonic decreasing function of s.

	On the other hand, the efficiency loss due to suffix processing can be expressed by the parameter t. The efficiency loss due to additional bits � EMBED "Equation" * mergeformat ��� is given by:

		� EMBED "Equation" * mergeformat ���.				 -------- (Eq. 19)

From process (7) in the suffix processing, � EMBED "Equation" * mergeformat ��� is given by:

		� EMBED "Equation" * mergeformat ���

				 � EMBED "Equation" * mergeformat ���		 -------- (Eq. 20)

where � EMBED "Equation" * mergeformat ��� is the maximum length of a suffix-processed code, � EMBED "Equation" * mergeformat ��� is the codeword number at level i+1 which has the lowest occurrence probability at this level, � EMBED "Equation" * mergeformat ��� , and � EMBED "Equation" * mergeformat ��� is the h-th highest occurrence probability for a code word at level i+1. Since the number of nodes at level i-t-1 is given by ri-t-1 - ni-t-1, ui-t-1, t+1 is expressed as:

		� EMBED "Equation" * mergeformat ��� .			 -------- (Eq. 21)

As � EMBED "Equation" * mergeformat ��� and � EMBED "Equation" * mergeformat ��� have no correlation with t, � EMBED "Equation" * mergeformat ��� is a monotonic decreasing function of t from Eq. 21. This leads to the result that � EMBED "Equation" * mergeformat ��� is also a monotonic decreasing function of t.

	From process (4) through (7) in the suffix processing, � EMBED "Equation" * mergeformat ��� is derived as:

		� EMBED "Equation" * mergeformat ���

											 -------- (Eq. 22)

where � EMBED "Equation" * mergeformat ��� is the number of additional bits in the middle of words:

		� EMBED "Equation" * mergeformat ���

											 -------- (Eq. 23)

and v(i) is number of nodes which have a suffix of continuous Ò0Ós from level i, Numterm_leaf(i, j) is number of nodes which have a suffix of continuous Ò0Ós from level i and are terminated as leaves without additional bits at level j, Numadd_leaf(i, j) is number of nodes which have a suffix of continuous Ò0Ós from level i and are terminated as leaves with additional bits at level j, and p(i, j) is the occurrence probability summation of the node in which an additional bit is inserted. Since � EMBED "Equation" * mergeformat ��� is a monotonic decreasing function of t and N, � EMBED "Equation" * mergeformat ��� is also a monotonic decreasing function of t and N.

	From Eq. 18, 20, 21 and 22, the average length of the emulation-less code � EMBED "Equation" * mergeformat ��� is expressed as:

		� EMBED "Equation" * mergeformat ��� .	-- (Eq. 24)

Considering Eq. 18, 20, 22, 24, and Req. 4, the following is concluded:

(1) Larger s provides smaller � EMBED "Equation" * mergeformat ���.

(2) Larger t provides smaller � EMBED "Equation" * mergeformat ���.

(3) Larger N provides smaller � EMBED "Equation" * mergeformat ���.

(4) In certain codes, � EMBED "Equation" * mergeformat ��� has a minimum value at the balance of s and t when N is given.

	These conclusions are verified in the next section by using an example to provide actual parameters.

4. 2 Parameter optimization

	To investigate the code efficiency even more specifically an example can suggest practical values of code parameters. The English Alphabet set has 26 symbols and the occurrence probabilities shown in Table 2 [6]. A Huffman code for it is obtained as a code C20 also shown in Table 2. Under a condition s + t = N-1 satisfying Req. 4, the average length of emulation-less codes changes as shown in Fig. 5 (a) when parameter s and N change. Fig. 5 (b) shows the change in the number of additional bits. Two examples of emulation-less codes are also shown in Table 2. The code C21 is an example for short N considering hardware restriction. It is created by N = 5 for Lmax = 10 and by s = 3 which provides the minimum average code length when N = 5. The efficiency loss is 2.91%. Another example code C22 has a long N for better code efficiency. The code C22 with N = 11 and s = 8 includes an efficiency loss as little as 0.04%.

	From Fig. 5 (a) and (b), the following can be verified.

(1) When s is small compared with N, larger s provides a smaller average code length, which �	corresponds to conclusion (1) in the previous section.

(2) When s is near N or t is small compared with N, larger t provides a smaller average code �	length, which corresponds to conclusion (2) in the previous section.

(3) For N > 5, the minimum code length is given by a balance of s and t at each N, which �	corresponds to conclusion (4) in the previous section.

(4) When N is larger, more selections of s provide a short average code length close to that of the �	reference code C20.

(5) For N > 3, additional bits are not required for s < N-3 or t > 2, which corresponds to Eq. 20 �	and Eq. 23.

On the other hand Fig. 6 shows the minimum average length and the value of s which gives it when N changes. From the graph,

(6) Larger N gives a smaller average length, and it approaches the average length of the reference �	code C20 which corresponds also to conclusion (3) in the previous section.

(7) The parameter s providing the minimum average code length is given by:

		N-3 < s < N-1 or 0 < t < 2 .

	Considering the above results, the parameters should be selected to improve the coding efficiency so that:

(1) N to be as long as the hardware will allow is selected

(2) s to be as long as possible without requiring additional bits is selected.

Table 2 VLC for English alphabet

sym-bol�occurrence probability�Huffman code

 (C20)�sym-bol�modified probability�emulation-

less VLC

 (C21)

s=3, t=1, N=5�sym-bol�modified probability�emulation-

less VLC

 (C22)

s=8, t=2, N=11��E�0.1487858�001�E�0.1394867�010�E�0.1484952�100��T�0.0935415�110�T�0.0876951�110�T�0.0933588�110��A�0.0883373�0000�A�0.0828163�0010�A�0.0881648�0011��O�0.0724580�0100�O�0.0679293�0110�O�0.0723164�0001��R�0.0687216�0101�R�0.0644265�1010�R�0.0685874�0100��N�0.0649853�0110�dmy�0.0625000�0000�N�0.0648584�0010��H�0.0583133�1000�N�0.0609237�1110�H�0.0581994�0111��I�0.0564452�1001�H�0.0546687�0001�I�0.0563349�0110��S�0.0553776�1010�I�0.0529173�1011�S�0.0552695�1010��D�0.0437683�00010�S�0.0519165�1111�D�0.0436829�10111��L�0.0412330�00011�D�0.0410328�00111�L�0.0411524�11100��U�0.0276221�10110�L�0.0386559�00110�U�0.0275681�11111��P�0.0257539�10111�U�0.0258957�01110�P�0.0257036�01010��F�0.0245530�11100�P�0.0241443�10010�F�0.0245050�01011��M�0.0236189�11110�F�0.0230184�100011�M�0.0235728�11110��C�0.0208167�11111�M�0.0221427�100111�C�0.0207760�10110��W�0.0186816�011100�C�0.0195156�011110�W�0.0186451�000011��G�0.0152122�011101�W�0.0175140�100110�G�0.0151824�000010��Y�0.0152122�011110�Y�0.0142614�100010�Y�0.0151824�111010��B�0.0126768�011111�G�0.0142614�10000A1�B�0.0126520�000001��V�0.0116093�111011�B�0.0118845�10000A0�V�0.0115866�111011��K�0.0086736�1110100�V�0.0108837�0111110�K�0.0086567�0000001��X�0.0014678�11101011�K�0.0081315�01111110�dmy�0.0019531�000000000��Q�0.0008006�111010101�X�0.0013761�011111110�X�0.0014650�000000010��J�0.0008006�1110101000�Q�0.0007506�0111111110�Q�0.0007991�000000011��Z�0.0005338�1110101001�J�0.0007506�01111111111�J�0.0007991�0000000011��---�-------------�---------------�Z�0.0005004�01111111110�Z�0.0005327�0000000010��average length��4.155725�average length��4.276488�average length��4.157193��

			dmy: dummy

			A: additional bit Ò1Ó

�

 �

5 Extension to multiple VLC's

	The proposed scheme can be easily applied to general cases with multiple code books. Application to a fixed length code is described first for preparation of the extension. Additional requirements for the extension are then introduced and total code efficiency is discussed.

5. 1 Extension to fixed length code

	Fixed length codes denoted as FLCÕs are generally included in the transmission system with multiple codes. Additional bits are not allowed for FLCÕs to maintain the length of each codeword. To prevent FLCÕs from emulating the unique word, some codewords should be prohibited from being used. Referring to the requirements for VLC's Req. 1 through Req. 5, the rules for FLCÕs are as follows:

(1) Codewords consisting of only Ò0Ó bits shall be prohibited.		 ------- (Req. 1Õ)

(2) Codewords with a length of continuous Ò0Ó bits in a prefix longer than s shall be prohibited.												 ------- (Req. 2Õ)

(3) Codewords with a length of continuous Ò0Ó bits in a suffix longer than t shall be prohibited.												 ------- (Req. 3Õ)

(4) s + t < N									 ------- (Req. 4Õ)

(5) Codewords with a length of continuous Ò0Ó bits in the middle longer than N-1 shall be �	prohibited.									 ------- (Req. 5Õ)

FLCÕs without prohibited codewords can be handled similarly to emulation-less VLC's in the multiple code transmission.

5. 2 Extension to multiple VLC's

	The proposed method is applicable to more general transmission systems with multiple VLC's/FLCÕs and multiple loops. In this system, the parameters s, t and N of each code should be determined considering the transmission procedure. For example, in the transmission system shown in Fig. 7, an emulation-less VLC for each code denoted as #i where 1 < i <M is obtained considering the following requirements in addition to Req. 1 through Req. 5 described in III with s and t replaced by si and ti respectively.

(6) ti + si+1 < N								 -------- (Req. 6)

(7) ti + s1 < N									 -------- (Req. 7)

Each VLC can be created by the same processes as those proposed in III with parameters satisfying Req. 1 through Req. 7, while each FLC can be obtained by considering Req. 1Õ through Req. 5Õ, Req. 6 and Req. 7. The parameters are optimized considering total transmission efficiency. The length of the unique word N also depends on the recognition capability of 0-length by hardware.

	The total transmission efficiency � EMBED "Equation" * mergeformat ��� is given by using the average length function of the individual codes:

		� EMBED "Equation" * mergeformat ���					 -------- (Eq. 25)

where qi is the probability of code #i in the sequence of codes.

	The optimization of � EMBED "Equation" * mergeformat ��� is a topic for further study.

�

6 Conclusion

	A systematic method to create a VLC which allows use of a unique word was proposed. In a transmission system with a single code, the efficiency loss due to the processing is approximately 3% by virtue of the effective modification of the code and parameter optimization even when the unique word is half as long as the longest codeword of the reference code. The proposed method was extended to a transmission system with multiple codes. The optimization of total efficiency for multiple codes is a subject for further study.

Acknowledgment

	The authors express their deep appreciation to Dr. H. Murakami, Director of KDD R&D Laboratories, and Dr. Y. Hatori, Senior Group Leader of KDD R&D Laboratories, for their constant kind help and precious advice to conduct this papers research.

References

[1] CCITT SGXV Working Party XV/1 Specialists Group on Coding for Visual Telephony: �	"Video Codec for Audiovisual Services at px64 kbit/s", Draft Revision of Recommendation �	H. 261, Nov. 10, 1989.

[2] ÒTest model 5Ó, ISO-IEC/JTC1/SC29/WG11 MPEG 92/535, 1992.

[3] D. Huffman, "A method for the construction of minimum redundancy codes," in Proc. Inst. �	Radio Eng., vol. 40, pp. 1098-1101, Sept. 1952.

[4] Y. Takishima, M. Wada and H. Murakami, ÒError states and synchronization recovery for �	variable length codes,Ó IEEE Trans. Commun., Vol. COM-42, No. 2/3/4, pp. 783-792, �	Feb./Mar./Apr. 1994.

[5] Y. Takishima, M. Wada and H. Murakami, ÒReversible variable length codes,Ó IEEE Trans. �	Commun. to be published on Feb. 1995.

[6] J. C. Maxted and J. P. Robinson, ÒError recovery for variable length codes,Ó IEEE Trans. �	Inform. Theory, vol. IT-31, no. 6, pp. 794-801, Nov. 1985.

[7] Y. Takishima, S. Sakazawa and M. Wada, ÒVariable Length Code with No Unique-word �	EmulationÓ (Japanese), ITE Technical Report Vol. 20, No. 14, pp. 1 - 6, NIM 96-22, �	Feb. 1996.

� Contact : Yasuhiro TAKISHIMA and Shigeyuki SAKAZAWA, KDD

Phone : +81 492 78 7426	FAX : +81 492 78 7510

e-mail : takisima@lab.kdd.co.jp, sakazawa@lab.kdd.co.jp

�

