ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group

Second Meeting: Sunriver, Oregon, 8-11 September 1997�Document Q15-B-21

Filename: q15b21.doc

Date generated: 09/03/97��

Question:�Q.15/16��Source:�Torbjörn Einarsson, Ericsson Telecom�S-126 25 Sweden�SCALAR ACTS project

Jiangtao Wen and John Villasenor�Electrical Engineering Department�University of California, Los Angeles, USA�Tel: +46-8-681 3627�Fax: +46-8-719 0460�Email: T.Einarsson@clab.ericsson.se��Title:�Proposal for Longer Motionvectors in H.263+��Purpose:�Proposal��_____________________________

Summary

We propose to make longer motion vectors available in H.263+. Our proposal provides efficient coding of motion vectors of any length. Since the VLCs are reversible, they can be used in a future error-robust data-partitioning mode without any change. The proposed table is more efficient and can replace the standard motion vector table in H.263+, as well as the unrestricted motion vector mode in Annex D. It is also easy to implement.

We propose that the table below is made the standard MVD table in H.263+, that the motion vector range is defined as 15% of the picture dimension in each direction, that the MVD-table shall be one-valued and that the Unrestricted Motion Vector flag is used to signal that the motion vectors are unrestricted

.

The syntax has been verified by bitstream exchanges between Ericsson, Intel and UCLA.

Motivation

H.263+ supports picture sizes up to 2048 x 1152 pixels. Still, the motion vector range is limited to [-16,+15.5] pixels in base line mode and +/- 31.5 pixels in unrestricted motion vector mode. Furthermore, the extended motion vector range of the unrestricted mode is limited to a window around the motion vector predictor, and is therefore painful to implement.

For high-motion video and larger picture formats, longer motion vectors are clearly desirable. Furthermore, the introduction of B-pictures makes it possible to have long temporal distances between P-pictures even for high quality video. This is another area where longer motion vectors are needed.

Another reason for introducing a new VLC table is to increase error resilience. In particular, if one separates the motion vectors from the DCT coefficients and apply horizontal prediction, one can increase error resilience by using backwards decodable VLCs, a.k.a. Reversible VLCs (RVLCs). This data partitioning is not going to happen in H.263+, but is likely to be an option in H.263++. It is therefore desirable to try to construct the new VLC table as a RVLC table.

The very limited motion vector range can almost be considered a bug, and we therefore suggest it for inclusion in H.263+, rather than waiting until H.263++. A prerequisite is of course that the scheme gets implemented and tested and that there is consensus in the group about including the longer motion vectors in H.263+. Tests have been done by Ericsson, Intel and UCLA. They show a very good performance, also in the low-motion range, and bitstream exchanges have verified the implementations.

Signaling

The first thing is how to signal that longer motion vectors are used. Since the systems group does not want any more negotiable options, there are two possibilities.

One could replace extended motion vector part of Annex D with longer motion vectors when MPPTYPE is present. This would remove the cumbersome motion estimation window centered around the predictor, and facilitate motion estimation implementations.

The other possibility would be to use the proposed table by default when PLUSPTYPE is present. One could then forbid the usage of UMV-mode, or use UMV-mode to mean that the motion vectors are really unrestricted (and can take any length).

Implementation

One possible way of providing longer motion vectors is to send a set of more significant bits to extend the motion vector range. This is the case in the MPEG-4 video VM, where one uses a three-bit “fcode” at picture level to say that there are [fcode-1] more significant bits added to all motion vectors. This implies a motion vector range of +/- 16*2[fcode-1] pixels. The motion vectors are then coded by an entry of the ordinary MVD table followed by the [fcode-1]most significant bits. Apparently, this scheme has the drawback that all motion vectors, including the short ones, get longer codes. Also, the code length is no longer an increasing function of the motion vector length. For example, with fcode = 2, the code length for MVD=17 pixels is 4 bits, while MVD=15 results in 13 bits. However, the really big drawback of employing this scheme in H.263 would be start code emulation. This comes about from MVD index 44 ending with 5 zeros and MVD index 0 (and others) starting with 10 zeros. Adding one significant bit between these vectors would thus yield 16 zeros in a row and result in start code emulation. The reason why this works in MPEG4 is that the MPEG4 start code starts with 23 zeros.

Another approach is to search for a VLC table that allows for longer motion vectors without penalizing the short ones. This has been investigated in core experiment P15 on universal VLCs in MPEG-4. In particular, the new motion vector table proposed by TI Japan (which is a special case of the RVLC proposed independently by UCLA and TI Dallas to the MPEG-4) in m1767 (and m2524) seems to be a good candidate for extending the motion vector range without any penalty for the shorter vectors. This table is also a reversible VLC table.

However, again, there is a start code emulation when applied to H.263. This time it is because the zero motion vector is coded as 0. Further start code emulation may occur for longer motion vector where 16 consecutive zeros may appear inside a code word.

To remedy the start code emulation problem for long motion vectors we have inverted the codes (0(1). This also changes the “0” code for MVD=0 into “1”, but instead introduces the “000” code for MVD=1/2. There is then a start code emulation problem when there are consecutive MVD=1 motion vector components. However, this may be resolved in a reversible decodable fashion by adding a “1” (the code for MVD=0) after a pair of MVD=1/2 codes.

For example, one would code the pair (MVD_x,MVD_y)=(1/2,1/2) as “000” “000” “1”, while the pair (MVD_x,MVD_y)=(-1/2,1/2) would be coded as “010” “000”.

This leads to a maximum of 6 heading and 4 trailing zeros for any MVD-pair. Note that any other code word than “000” has a maximum of 2 heading and 2 trailing zeros.

 The frequence of extra “1”’s added is normally low. It is in the range 0-10 per CIF image.

The proposed table is shown below, together with the average VLC lengths of the present table in H.263. The surprising fact is that there is basically no penalty at all for using the proposed table instead of the present H.263 table for the standard range motion vectors. In addition, one has the possibility of being able to code arbitrary long motion vectors, and to decode the VLCs backwards.

MVD RVLC�code length�H.263 length�absolute value of MVD in half-pel units��1�1�1�0��0s0�3�3�1��0x01s0�5�4.5�“x0”+2 (2:3)��0x11x01s0�7�7.75�“x1x0”+4 (4:7)��0x21x11x01s0�9�10.625�“x2x1x0”+8 (8:15)��0x31x21x11x01s0�11�11.5�“x3x2x1x0”+16 (16:31)��0x41x31x21x11x01s0�13�14, N/A�“x4x3x2x1x0”+32 (32:63)��0x51x41x31x21x11x01s0�15�N/A�“x5x4x3x2x1x0”+64 (64:127)��0x61x51x41x31x21x11x01s0�17�N/A�“x6x5x4x3x2x1x0”+128 (128:255)��0x71x61x51x41x31x21x11x01s0�19�N/A�“x7x6x5x4x3x2x1x0”+256 (256:511)��0x81x71x61x51x41x31x21x11x01s0�21�N/A�“x8x7x6x5x4x3x2x1x0”+512 (512:1023)��0x91x81x71x61x51x41x31x21x11x01s0�23�N/A�“x9x8x7x6x5x4x3x2x1x0”+1024 (1024:2047)��0010101010101010101010110�25�N/A�-2048��‘s’ denotes the sign of MVD. ‘0’ for positive and ‘1’ for negative��Table � SEQ Table * ARABIC �1�. Proposed RVLC table for MVD

Simulation Results

Intel has performed simulations for this new table at CCIR-601 sizes compared to the current H.263 MVD table. Their results are reported in Q15B43. At Ericsson, we have looked at results for the standard picture sizes to evaluate whether the proposed table can replace the current one. While at UCLA, we, jointly with TI Dallas DSP R&D Center, have been doing core experiments on the application of a family of structured RVLCs for motion vectors in the MPEG-4, and the results were reported in MPEG-4 document M2382. Via discussions with Ericsson, we have modified the code to match the syntax of H.263+, and performed an independent implementation of the RVLC and the bitstuffing method described above for verification. The different implementations have been verified via bitstream exchange.

Comparison with standard H.263

Here we have coded the same motion vectors both with standard H.263 and with the table above with and without folding. The motion vector range was +/- 15 pixels and QP = 10. The sequences have been coded both as 300 frames at 30 Hz and 100 frames at 10 Hz. The PSNR values are identical.

Sequence�PSNR(Y)�H.263

(2-valued)

Total # bits�RVLC�1-valued

Total # bits�RVLC

2-valued�Total # bits�H.263

(2-valued)�# mvd bits�RVLC�1-valued�#mvd bits�RVLC�2-valued�#mvd bits��akiyo�34.20�230 640�230 728�230 728�12 413�12 484 �12 484 (0.1%)��container�32.31�404 760�404 736�404 736�17 954�17 920 �17 920 (0.0%)��silent�32.12�577 208�577 016�577 016�48 667�48 465 �48 461 (-0.4%)��foreman�32.15�1 246 096�1 244 872�1 244 672�153 339�152 134�151 922 (-0.9%)��stefan�29.61�4 018 720�4 017 016�4 016 344�130 532�128 818�128 138 (-1.8%)��Table � SEQ Table * ARABIC �2�. Comparison of MVD coding with standard H.263. The motion vectors are always the same. QCIF sequences with QP=10 at 30 Hz, 300 frames.

As these results show, the proposed method is often more efficient than the present table. However, it is only when there is much motion and many longer motion vectors are used that the proposed table has a noticeable gain. This means that the proposed table is a good replacement for the present table already for the low-motion case. There is a small gain to used two-valued MVD tables. However, this limits the range to [-16,+15.5] pixels. Changing the MVD range to [-32,31.5] there would be no gain at all.

We have also compared the coding of the UMV motion vectors with the present Annex D, and the proposed RVLC table. Since the motion vectors differences can take any value in the interval [-31.5,+31.5], we cannot use two-valued RVLC codes without using the predictor-dependent window that is used in Annex D. Still, the RVLC codes show better coding performance. For the high-motion sequence Stefan, the gain is 2.8%.

Sequence�PSNR(Y)�H.263 UMV

total # bits�RVLC 1-valued

total # bits�H.263 UMV�# mvd bits�RVLC 1-valued

mvd bits��akiyo�36.63�729 928�731 416�62 418�63 920 (+2.4%)��container�32.98�1 754 240�1 750 984�135 831�132 530 (-2.4%)��silent�32.67�1 693 952�1 687 552�266 310�259 827 (-2.4%)��foreman�33.07�3 870 232�3 864 328 �702 823�695 729 (-1.0%)��stefan�31.37�11 034 656�11 018 912 �573 925�558 137 (-2.8%)��Table � SEQ Table * ARABIC �3�. Comparision between H.263 UMV mode and RVLC coding. The motion vectors are identical. Picture format CIF, 300 frames, 30 Hz, QP=10.

Other issues

Usage of two-valued MVD tables

H.263 currently uses two-valued MVD tables where an MVD entry can be interpreted either as x or x-32 pixels, depending on the predictor. This makes the VLC table smaller, but also adds complexity to the encoder and decoder. The results above, and the results from Intel show only a small gain for two-valued motion vectors. In addition, this can only be used with a fixed motion-vector range that must be pre-specified. Therefore we suggest that the two-valuedness is abandoned.

Motion-vector range limitations

Ideally, the range should be negotiated between the decoder and encoder. Since this leads to extra work in H.245, one can instead correlate the maximum vector length to the picture format. For example, one could restrict the absolute value of each motion vector (not the difference) to 15% of the picture. One could also allow for relatively longer horizontal than vertical motion vectors. The reasons for are that most of the motion is normally in the horizontal direction and that memory is usually consecutive in the horizontal direction. One disadvantage of this rigid limits is that transcoding from the MPEG-standards can be very difficult if the MPEG. There may also be some applications like surveillance cameras with low frame rate that may want longer motion vectors.

We therefore suggest that the normal motion vector range is 15% of the picture dimension, and that the Unrestricted Motion Vector mode is changed to signal that arbitrary long motion vectors can be used (that is corner to corner motion vectors).

Other tables

The other tables that were proposed by T. Einarsson on the email reflector have turned out to be less efficient than the present scheme, and are therefore not considered any longer. However, UCLA has developed a family of reversible variable length codes that grow slower with the motion vector range than the table above. These codes are matched to distributions of MVDs with a higher peak and a longer tail than the distribution matched to the code given in Table 1, and can be parameterized with a single parameter k.

These codes are a generation of the RVLC listed in Table. 1, and each code word can be divided into two parts, a variable prefix, which is the RVLC in Table.1, and a fixed-length, k-bit suffix. To avoid start code emulation, the code words 10 and 100 are not used in the RVLC with k=1 and k=2 respectively. These codes can be used as “traps” which can help the decoder detect errors that is otherwise undetectable by simply checking if the output MVD is within the valid range. The RVLC with a bigger k generally have better error robustness in itself, because there is a larger part of the code that is of fix-length length. The code table for the RVLC with k=1 and k=2 are given in Tables 3 and 4 respectively. Based on the same idea, RVLCs with bigger k is also possible to generate, and they are matched to distributions with a “flatter” mass function.. On the other hand, the code proposed in Table 1 can be seen as a special case of k=0 (no fix-length suffix).

The difference between the RVLCs and the method of coding long motion vectors with the f_code in the MPEG-4 is, for the RVLC proposed, the k-bit suffix is present for all code words, so the resulted bitstream will be reversible. When used with other error resilient tools such as data partitioning, the reversibility and the “traps” left in the code table will significantly improve the error robustness of the bitstream. In the scheme using the f_code, on the other hand, because fix length code is not used when the MVD is zero, the resulted bitstream is not reversible any more.

To avoid start code emulation, for the RVLCs with k=1 and k=2, we do “code word” stuffing after each all-zero code word, i.e. after each all-zero code word, we will add a MVD=0, which takes k+1 bits to code. This method will lower the efficiency for the all-zero code word, however because other 2^k-1 code words with the 000 prefix can be used, the overall efficiency of the RVLC can be improved.

�

MVD RVLC�code length�absolute value of MVD in half-pel units��11�2�0��0x00s�4�x0+1 (1:2)��0x11x00s�6�“x1x0”+3 (3:6)��0x21x11 x00s�8�“x1x0”+7 (7:14)��0x31x21x11x00s�10�“x2x1x0”+15 (15:30)��0x41x31x21x11x00s�12�“x3x2x1x0”+31 (31:62)��0x51x41x31x21x11x00s�14�“x4x3x2x1x0”+63 (63:126)��0x61x51x41x31x21x11x00s�16�“x5x4x3x2x1x0”+127 (127:254)��0x71x61x51x41x31x21x11x00s�18�“x6x5x4x3x2x1x0”+255 (255:510)��0x81x71x61x51x41x31x21x11x00s�20�“x7x6x5x4x3x2x1x0”+511 (511:1022)��0x91x81x71x61x51x41x31x21x11x00s�22�“x8x7x6x5x4x3x2x1x0”+1023 (1023:2046)��001010101010101010101x00s�24�“x9x8x7x6x5x4x3x2x1x0”+2047 (2047:2048)��‘s’ denotes the sign of MVD. ‘0’ for positive and ‘1’ for negative��Table 3. Proposed RVLC for Motion Vector with k=1 (Table 1 + 1 bit suffix)

MVD RVLC�code length�absolute value of MVD in half-pel units��101�3�0��11s�3�1��0x10x0s�5�“x1x0”+2 (2:5)��0x11x10x0s�7�“x2x1x0”+6 (6:13)��0x31x21x10x0s�9�“x3x2x1x0”+14 (14:29)��0x41x31x21x10x0s�11�“x4x3x2x1x0”+30 (30:61)��0x51x41x31x21x10x0s�13�“x5x4x3x2x1x0”+62 (63:125)��0x61x51x41x31x21x10x0s�15�“x6x5x4x3x2x1x0”+126 (127:253)��0x71x61x51x41x31x21x10x0s�17�“x7x6x5x4x3x2x1x0”+254 (255:509)��0x81x71x61x51x41x31x21x10x0s�19�“x8x7x6x5x4x3x2x1x0”+510 (511:1021)��0x91x81x71x61x51x41x31x21x10x0s�21�“x9x8x7x6x5x4x3x2x1x0”+1022 (1023:2045)��0010101010101010101x11x00s�23�“x1x0”+2046 (2046:2048)��‘s’ denotes the sign of MVD. ‘0’ for positive and ‘1’ for negative��Table 4. Proposed RVLC for Motion Vector with k=2 (Table 1 + 2 bit suffix)

Error Resilience and Data Partitioning

To make full use of the reversible VLCs it is advantageous to separate the motion vectors from the DCT data and put a special marker at the border. This marker can serve as an resync word from which one can decode all the motion vectors backward provided that the absolute value of the last motion vector is given and that one uses horizontal prediction. In this case, all the motion vectors will be stored together and one may use a more efficient stuffing system than the one above.

From the structure of the RVLCs, it is clear that there can only be 2 consecutive zeros at the beginning of any code word and k+3 consecutive zeros at the end of any code word. So when all motion vectors are put together, there will only be 2 or k+3 consecutive zeros at the beginning or end of the whole motion part of the bitstream respectively. This is makes it possible for us to worry about start code emulation in the middle of the motion part only, i.e. consecutive zeros produced by concatenation of MVD code words, because there will not be enough consecutive zeros at the two ends of the motion part to produced start code emulation with together other parts of the bitstream. The specific stuffing method used will depend on the design of resync markers and the data partitioning syntax, but the structure of the RVLC proposed will greatly simplify the job.

File:� FILENAME * MERGEFORMAT �q15b21.doc�	Page: � PAGE �1�	Date Printed: � DATE * MERGEFORMAT �97-09-03�

