
ITU - Telecommunications Standardization Sector	Document: LBC-96-084

STUDY GROUP 15

LBC Experts Group

Dallas, USA, April 22-25, 1996

Title:	A Modulated Lapped Transform Enhancement of H.263

Source:	PictureTel Corporation

Authors:	Gary J. Sullivan, Richard S. Grinnell, 				Henrique S. Malvar, & Wilson C. Chung

Contact: 	Gary J. Sullivan			Voice: +1 508 623 4324

	PictureTel Corp. M/S 635		Fax: 	+1 508 749-2804

	222 Rosewood Dr.			Email:	garys@pictel.com

	Danvers, MA 01923 USA

Abstract—The subjective quality of the present H.263 video standard demonstrates the high performance attainable by systems employing the block discrete cosine transform (DCT) for waveform analysis and synthesis. However, the block DCT is well known to produce block artifacts in coded signals. Since the modulated lapped transform (MLT, a cosine-modulated filter bank; in some forms also referred to by the terms MDCT—modified DCT or oddly-stacked TDAC—time-domain aliasing cancellation) provides an effective alternative to the block DCT and lacks its block artifacts, we propose using the MLT as an option for use in H.263+ video coding.

Introduction

The block DCT has several characteristics which make it particularly useful for coding systems: 1) effective frequency decomposition for decorrelation of sample statistics, 2) local adaptivity provided by the use of a fairly small block size, and 3) fast algorithms for ease of implementation. Unfortunately, the block DCT also has basis functions that are abruptly truncated at the edges of each block. This causes the well-known phenomena known as “block artifacts,” which arise from discontinuities in the signal representation at the edges of the processing blocks. In video, block artifacts can make a scene appear as if it is being viewed through a wire grid, or in severe cases, can make an image appear to be constructed from a mosaic of square tiles (which, in fact, is a precisely accurate perception).

The modulated lapped transform provides essentially the same advantages as the block DCT, and the MLT lacks block artifacts since its basis functions overlap from block to block and taper gradually toward zero at their extremes. For this reason, we propose considering the MLT for use in H.263+ video coding. We propose using the MLT only for the coding of the luma component, maintaining the use of the DCT for the chroma components.

We constructed an MLT-based algorithm around the baseline version of Telenor’s H.263 software [1] (release 1.6) in order to test this idea, and we are glad to report that the results confirm our initial belief that the MLT can provide an effective alternative to the DCT without block artifacts.

We apologize to those who may feel slighted if they developed similar schemes of MLT coding in the past and are not referenced in this proposal. Our schedule prevented us from properly searching and attributing all elements of the algorithm described herein, so we are frankly unaware of their possible prior use.

2. The Modulated Lapped Transform

The block DCT or type-II DCT (in one dimension) for the nth block of a signal, using block size N, is given by

 Dn(u) = sqrt(2/N) cu (i x(nN+i) cos[(2i+1) (2u) (/ (4N)] ,				 for u = 0,..., N(1

in which the summation runs from i=0 to N(1, cu=1/sqrt(2) for u=0, and cu=1 for u>0.

The corresponding MLT [2] for the same block with one-block overlap is given by

 Xn(u) = sqrt(2/N) (i x(nN+i) cos[(2i+1) (2u+1) (/ (4N)] h(N/2+i)				for u = 0,..., N(1

in which the summation runs from i = (N/2 to 3N/2(1. The cosine term in the summation provides frequency selectivity via cosine-modulation of a window h(i), usually a smooth function that decays to zero at its ends. A proper (i.e., energy-preserving) MLT window h(i) must obey two key conditions: it must be symmetric, i.e., it must obey

 h(i) = h(2N(1(i)						for i = 0,..., N(1

and it must also obey

 h2(i) + h2(N(1(i) = 1					for i = 0,..., N/2(1.

These restrictions allow the window coefficients to be expressed in terms of a set of N/2 angles

 { (i }								for i = 0,…, N/2(1

such that

 h(i) = sin((i), h(N(1(i) = cos((i) 				for i = 0,..., N/2(1.

The choice of window controls the amount of blocking artifacts, the spatial extent of the basis functions, and the magnitude of spatial “ringing” artifacts. One particular MLT window, the cosine window, is defined by

 (i = (2i+1) (/ (4N)						for i = 0,..., N/2(1.

This window has the property that DC in the pixel domain produces a nonzero coefficient only for the lowest frequency basis function of the MLT.

The symmetry of the cosine modulation allows the MLT to be decomposed into a cascade of two operations: a single set of windowing butterflies to create a block of N samples, followed by an N-length type-IV DCT. The windowing butterflies operate across the block boundaries as given by

 wn(i) = x(nN+i) h(N/2+i) + x(nN(1 -i) h(N/2(1(i),	for i = 0,..., N/2(1

 wn(i) = x(nN+i) h(N/2+i) (x(nN+2N(1(i) h(i(N/2),	for i = N/2,..., N(1

and the type-IV DCT generates the final transform coefficients by

 Xn(u) = sqrt(2/N) (i wn(i) cos[(2i+1) (2u+1) (/ (4N)]						for i = 0,..., N(1

in which the summation now runs only from i = 0 to N(1. The windowing operation requires only four multiplies and two adds (or three multiplies and three adds) per sample pair, and since fast algorithms exist for implementing the type-IV DCT, substituting an MLT for a conventional DCT does not add greatly to the processing power requirements of a system.

The inverse operations are similar. Once each Xn(u) is represented by some quantized approximate value Yn(u), the approximation zn(i) for each wn(i) is formed by the inverse of the type-IV DCT, which is the same as the forward type-IV DCT.

 zn(i) = sqrt(2/N) (u Yn(u) cos[(2u+1) (2i+1) (/ (4N)]						for i = 0,..., N(1

Finally, the reconstructed spatial approximation y(nN+i) for the original signal x(nN+i) is created by a butterfly operation across the block boundaries

 y(nN+i) = zn(i) h(N/2+i) (zn-1(N(1(i) h(N/2(1(i),	for i = 0,..., N/2(1

 y(nN+i) = zn(i) h(N/2+i) + zn+1(N(1(i) h(i(N/2),		for i = N/2,..., N(1.

3. Incorporating the MLT into H.263

3.1 Macroblock Coding Mode Switching

H.263 uses a switched prediction mechanism to signal the coding of each “macroblock” of data as a static, intraframe coded, or motion-compensated interframe difference coded block. Whenever adjacent blocks have differing prediction modes, this block-based switching can cause block artifacts in the signal to be coded as well. Having such hard-edged switching of the prediction mode for each block would thus be inappropriate for use in an MLT-based system, since the overlapping used in an MLT blurs the distinction between spatial “blocks” of data.

However, we note that if the MLT is implemented using the two-step process described above (first performing windowing butterflies, and then a type-IV DCT), then the signal after the windowing butterflies (either before or after the type-IV DCT) can be viewed as a signal that can be divided into blocks that may be processed separately. Thus, the algorithm we tested performed its switching of the block prediction mode after the windowing butterfly stage. For example, if the prediction mode of a block is sent as “intra,” then it is the post-windowed data that is coded in this manner.

Thus we constructed our encoder so that it would first window the input frame and the previous stored frame, and would make its prediction mode decisions for each macroblock based on the error between these post-windowed blocks of data. In all other ways, we kept this decision-making process unchanged from the Telenor H.263 test-model software.

3.2 Motion Compensated Prediction

Just as the prediction mode can vary from macroblock to macroblock, the motion vector used for predicting a block from the previous frame can also vary for each macroblock. Again we chose a post-windowed solution to this aspect of the algorithm. Thus, a motion vector indicates an offset to a windowed location in the previous reference frame. The window location shifts along with the motion vector.

Motion compensated prediction of a block consists of using the motion vector to index into the prior frame, applying the windowing butterfly stage to that area of the prior frame, and then forming the frame difference by subtracting the windowed prediction from the windowed true frame block. (Now motion compensating a macroblock requires accessing a larger area of the stored reference frame and performing the windowing operation to form a macroblock, instead of just indexing to the location of the data to use in predicting the macroblock.)

We now must consider how to perform the motion estimation search to determine the motion vector for each macroblock. First it is important to recognize that the motion estimation method would be out of the scope of the standard, so no particular method needs to be prescribed. However, we must choose some method for performing our simulation tests. We considered two methods: The first consisted of simply making our estimates based on conventional spatial-domain block estimation, comparing a spatial block of the input image to offset blocks from the stored reference frame. The second approach is identical to that used in the H.263 test model, except that the search was conducted on the post-windowed data in order to try to get the best performance. In this approach, the testing of each motion vector required computing the post-windowed version of the macroblock prior to computing the error measure. This post-windowed-domain motion estimation performed only slightly better than the similar pre-windowed spatial-domain motion estimation and greatly increased the computational complexity of the search. Thus, we advocate the use of the traditional motion estimation approach. We wish to emphasize, however, that the motion estimation procedure lies outside the scope of standardization.

3.3. Edge Handling

The formulation of the MLT given above in Section 2 assumes that adjacent blocks of the image can be overlapped for both the forward and inverse transformations. Unfortunately this is not the case at the edges of the image, since no scene content is defined outside the image borders. There have been several methods proposed for handling these border regions. We decided to use the method described in [2], which consists of not performing the windowing butterfly stage for the half-blocks along all of the edges of the image (taking out the horizontal butterflies for the left and right borders and the vertical butterflies for the top and bottom borders), and of substituting a conventional DCT and inverse-DCT for the type-IV DCT for the horizontal transform of the right border blocks and for the vertical transform of the bottom border blocks. Some other method of edge handling may give better performance, but we chose this one since it is simple to design, simulate, and implement.

3.4. Coefficient Scaling

Since the input of the MLT covers a larger region of support than that of the block DCT, the possible range of values at the output of the transform is larger (due to the larger number of degrees of freedom available for maximizing the range). For example, if we use the H.263 block size N=8 with input pixel values having a range of [0, 255], an intra block “d.c.” coefficient of the MLT now has a maximum range of 8*255*[(0.151, 1.151] instead of the block DCT range of 8*255*[0, 1].

In order to fit this new range of values into the range expected for the quantizers designed for H.263, we add 8*255*0.151 to the d.c. coefficient of each intra block prior to quantization, and we scaled down all coefficients by a factor of 1/1.31 prior to quantization. We then multiplied each coefficient by 1.31 after reconstruction in order to compensate for this gain. (This also requires shrinking the step size of the quantizer during operation by an average of about 1/1.31 in order to obtain similar final squared error performance, since the scaling changes the gain of the transform.)

4. Simulation Results

We tested the MLT-based algorithm as described above by running head-to-head comparisons between an MLT-modified and the original block-DCT version of Telenor’s (release 1.6) baseline H.263 test-model simulation software . The results confirm that the MLT system appears to have similar or better objective performance, and significantly superior subjective performance due to its lack of block artifacts.

We are prepared to demonstrate a D1 tape containing side-by-side comparisons of the MLT coder versus the H.263 coder. A wide variety of sequences and bitrates were tested to show how an H.263 codec can benefit from replacing the DCT with an MLT. For each test pair, equivalent bitrates were imposed for the first frame and for the rest of the sequence.

For a more thorough description of the experimental setup and results, refer to MPEG96/0726 [4].

References

[1] K. O. Lillevold et al / Telenor R&D, H.263 test model simulation software, release 1.6, ftp://bonde/nta.no/pub/tmn/software, December 1995.

[2] H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Boston, 1992.

[3] G. Bjøntegaard and K. O. Lillevold / Telenor R&D, “H.263 Anchors (Technical Description,” Dallas MPEG document 95/0322, November 1995.

[4] G.J. Sullivan, R.S. Grinnell, H.S. Malvar, W.C. Chung, “Core Experiment Description of a Modulated Lapped Transform Enhancement of Texture Coding”, Florence MPEG document MPEG96/0726, March 1996.

�PAGE �

�
