

Lossless Audio Coding in the ETRI ACoM CfP Response Overview and Comparative Performance Analysis

Byeongho Jo Inseon Jang Wootaek Lim Yongju Lee Seungkwon Beack

ETRI

ISO/IEC JTC1/SC29/WG6 (MPEG)
January 2026

Outline

- Background & scope of this input document
- Lossless audio coding overview
- preLPC: motivation, role, and conservative integration
- Comparative performance analysis
- Conclusions and deltas vs. H.BWC TM3.0/TM4.0

Background & Scope

- Focus: lossless audio coding component of ETRI's ACoM CfP response (M75474)
- Common normative constraints
 - Exact reconstruction (strict lossless)
 - Decoder determinism (bitstream-driven tool selection)
 - Fixed-point processing for exact inverse operations
- Two complementary profiles share the same constraints but target different operating points
 - Dual-Mode Huffman-based profile: low complexity / predictable behavior
 - Rate-Optimized CABAC-based profile: richer tool combinations to minimize rate

Implementation Overview: What Was Actually Implemented

Baseline & Constraints

- Implemented on top of **H.BWC TM3.0** reference software
- A minor change on block split-related parameter

Integrated Toolset

- Tools in TM4.0 selectively adopted
 - Inter-channel LPC, Inter-/intra-channel LMS, ZLSB detection
- Dual-profile structure preserved
- **preLPC** newly implemented (CABAC-only)

Category	TM3.0 Baseline	TM4.0 Baseline	Proposed System (ETRI)
Coding structure	Two profiles	Rate-optimized profile	Two profiles
Inter-channel LPC	X	O	O
LMS for rate-optimized profile	X	O	O
ZLSB detection	X	O	O
preLPC availability	X	X	Enabled within CABAC-based profile
entropy coding	Huffman or CABAC	CABAC	Huffman or CABAC

Overall Codec Structure

- Block processing
 - Non-overlapping power-of-two blocks
 - Fixed decoding order: time progression first, then channel order within a block

- Guarantees all prediction references are available (no circular dependencies)
- Encoder selects per-block configuration; decoder follows explicit signaling

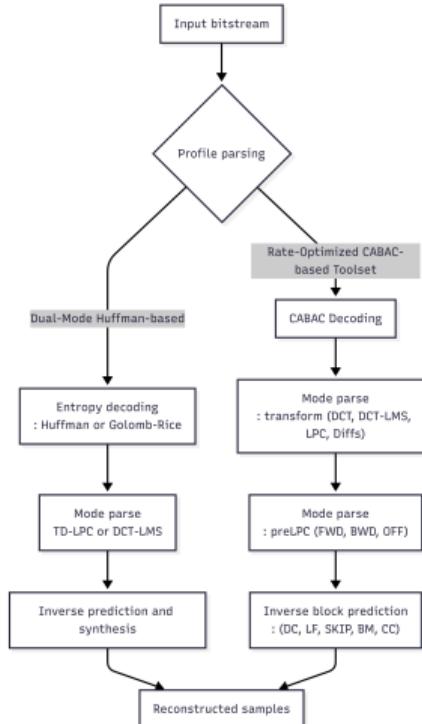
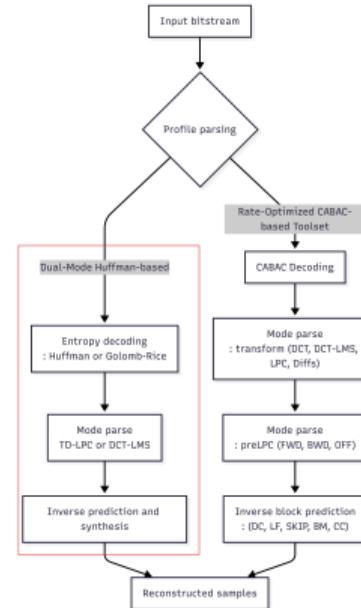
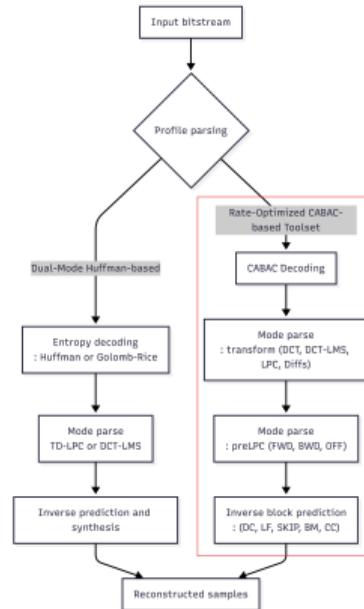
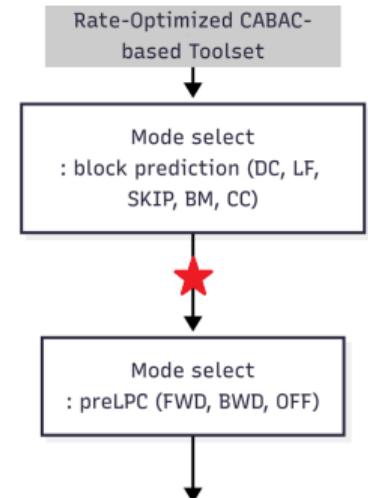



Figure: decoder pipeline


Profile 1: Dual-Mode Huffman-based

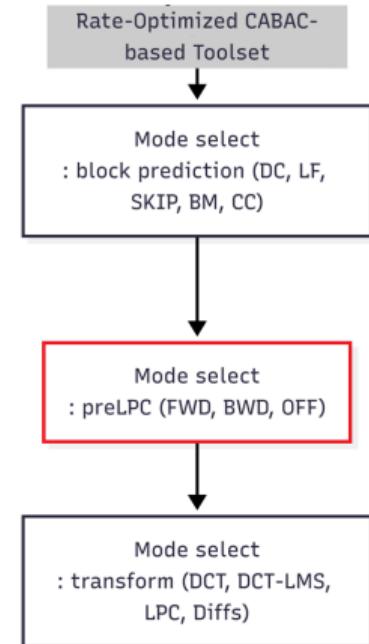
- Goal: low complexity, modest signaling overhead
- Per-block selection between:
 - **DCT-LMS**: transform-domain prediction
 - **TD-LPC**: time-domain linear prediction
- Residuals are coded using lightweight entropy coding
 - Huffman / Rice-family codes with limited local adaptation
- Intended to handle diverse signals while keeping implementation simple


Profile 2: Rate-Optimized CABAC-based

- Goal: minimize coded rate under strict lossless constraints
- Per-block encoder search may select:
 - Block prediction modes (DC / line-fitting / skip / cross-channel / block matching, etc.)
 - Optional **preLPC** (only in selected residual paths)
 - Residual representation: transform-domain (DCT / DCT-LMS) or sample-domain (diff / LPC)
- Entropy coder: CABAC
- Decoder executes exactly the signaled configuration (deterministic reconstruction)

preLPC (1/2): Historical Motivation

- Observation: after block-level prediction, **residuals** may still contain **short-term correlation**
 - Limits transform coding and entropy coding efficiency
- Heritage: perceptual audio coding has long benefited from joint TD/FD prediction
 - Examples: LPC, TNS, FDNS in MPEG-D USAC and MPEG-H 3D Audio
 - Pre-whitening stages improve coding even when a primary prediction loop already exists
- Design intent in this proposal
 - Add an *optional* residual pre-whitening stage for the CABAC-based profile


preLPC (2/2): Role & Conservative Integration

- Role

- Apply per-block pre-whitening *before* transform-domain LMS processing
- Improves regularity of DCT coefficients & helps CABAC entropy coding
- Adaptive direction (forward/backward) selected per block

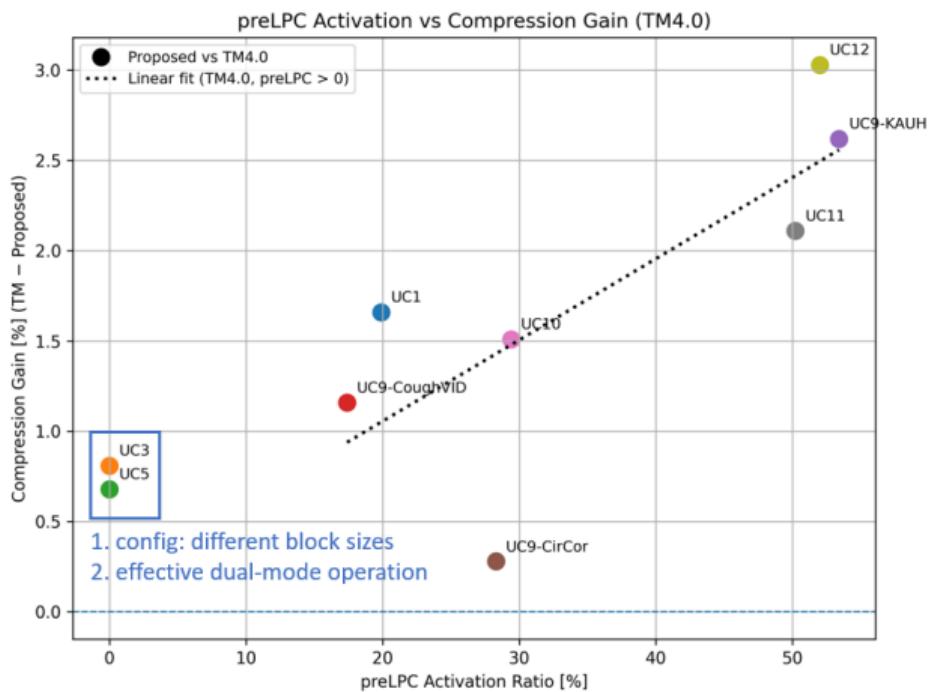
- Scope

- Enabled **only** in the Rate-Optimized (CABAC-based) profile
- Disabled for incompatible sample-wise residual loops by design
- Fully encoder-driven and explicitly signaled (single unambiguous decode path)

Performance Setup

- Test condition: EMG lossless configuration
- Compared systems
 - H.BWC TM3.0
 - H.BWC TM4.0
 - Proposed system
 - MPEG-4 SLS
- Metric: compression ratio (%) = (compressed bitstream size) / (original WAV size)
 - Lower is better
- Interpretation aids reported per use case
 - preLPC activation ratio (% blocks using preLPC)

Results: Compression Ratio and Key Observations


- Proposed system consistently achieves lower compression ratios than other systems across tested UCs
- Larger gains over TM4.0 are observed in use cases with higher preLPC activation
 - UC12, UC9-KAUH, UC11
- Performance improvements persist even when preLPC is not selected
 - Indicates contributions from the integrated toolset (e.g., ZLSB, inter-channel LPC, inter-/intra-channel LMS)

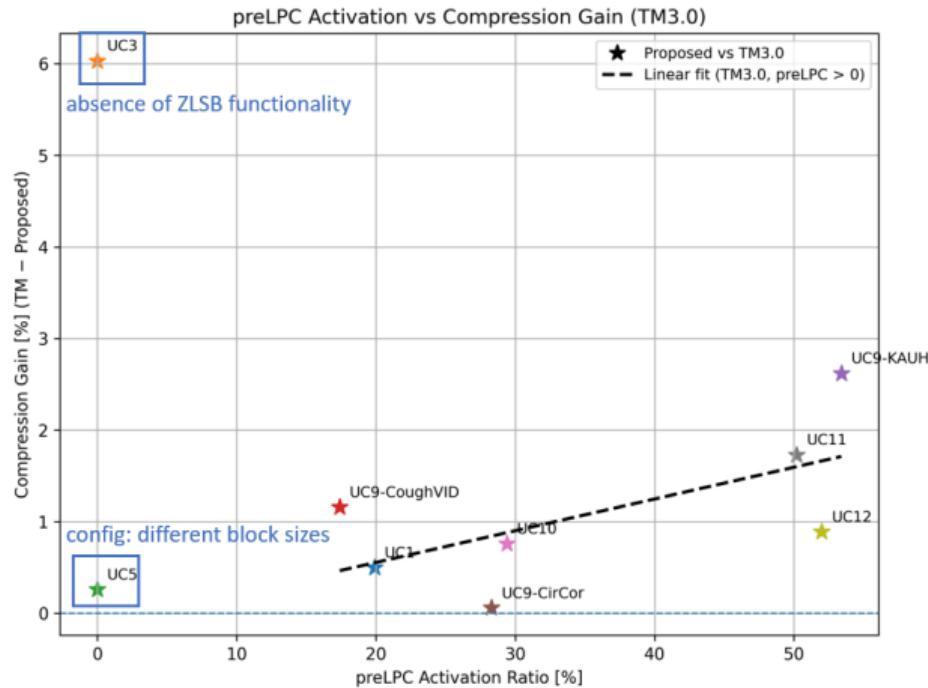
Use Case	Compression Ratio [%]				preLPC Activation Ratio [%]
	MPEG-4 SLS	H.BWC TM3.0	H.BWC TM4.0	Proposed system	
UC1	74.51	69.72	70.88	69.22	19.9
UC3	68.94	63.32	58.10	57.29	0.0
UC5	66.32	62.53	62.95	62.27	0.0
UC9-CoughVID	19.94	17.08	17.08	15.92	17.4
UC9-KAUH	34.30	31.79	31.79	29.17	53.4
UC9-CirCor	62.90	57.10	57.32	57.04	28.3
UC10	53.50	52.34	53.09	51.58	29.4
UC11	39.43	38.35	38.73	36.62	50.2
UC12	52.65	52.25	54.39	51.36	52.0

Table 1: Lossless compression ratios and preLPC activation ratio

Performance Analysis (2/2): preLPC Activation vs. Gain

- Observed Trend
 - Use cases with higher preLPC activation ratios tend to exhibit **larger compression gains over TM4.0**.
- Interpretation
 - preLPC operates in an **opportunistic manner**, being activated only when rate reduction is expected.
- Important Observation
 - Several use cases with **0% preLPC activation** still show performance improvements over TM4.0.
 - This confirms that gains arise from the **combined effect** of the unified toolset and the use of **larger block sizes**.

Conclusion


- The proposed system achieves lower compression ratios than H.BWC TM3.0/TM4.0
- Gains reflect tool complementarity
 - preLPC provides additional reductions when residual correlation persists
 - Other integrated tools improve performance even when preLPC is not activated

Thank You for your attention

Questions or Comments?

Backup slide - Reference Results: preLPC Behavior against TM3.0

- The proposed system **consistently outperforms H.BWC TM3.0** across all evaluated use cases.
- A **positive correlation** is observed between preLPC activation ratio and compression gain for most UCs.
- Large gains for some UCs with low or zero preLPC activation indicate that overall improvements are **not solely attributable to preLPC**.
- Additional gains originate from the **integrated toolset** inherited from the TM4.0 unified path.
- These results are provided as **supplementary reference**, while the main analysis focuses on comparison against TM4.0.

