

	ITU – Telecommunications Standardization Sector
STUDY GROUP 21 Question 6
Video Coding Experts Group (VCEG)
78th Meeting: 13 – 23 January 2026, by teleconference
	Document VCEG-BZ15-v1
Attachment Specification Text

	Question:
	6/21 (VCEG)

	Source:
	[bookmark: _Hlk218786545]Tung Nguyen, Sophie Pientka, Jonathan Pfaff, Heiko Schwarz, Detlev Marpe, Thomas Wiegand
	Email:
	firstname.lastname@hhi.fraunhofer.de

	Title:
	Proposed text for VCEG-BZ15 based on VCEG-BZ02 H.BWC Draft 4 Specification Text

	Purpose:
	Proposed Draft Specification Text

Abstract
This document contains an edited version of the VCEG-BZ02 Draft 4 (v1) specification text for H.BWC, reflecting changes proposed in VCEG-BZ15 (v1).

[bookmark: _Hlk148619620][bookmark: _Hlk148619621]		H.BWC Draft 4 Specification Text	1
2	H.BWC Draft 4 Specification Text
CONTENTS
	Page

	1	Scope	1
2	Normative references	1
2.1	Identical Recommendations | International Standards	1
2.2	Paired Recommendations | International Standards equivalent in technical content	1
2.3	Additional references	1
3	Definitions	1
4	Abbreviations	2
5	Conventions	3
5.1	General	3
5.2	Arithmetic operators	4
5.3	Logical operators	4
5.4	Relational operators	4
5.5	Bit-wise operators	4
5.6	Assignment operators	5
5.7	Range notation	5
5.8	Mathematical functions	5
5.9	Mathematical constants	6
5.10	Order of operation precedence	6
5.11	Mathematical functions, operators, and processes for floating-point representations	7
5.11.1	Floating-point representation	7
5.11.2	Arithmetic operators and functions for floating-point representations	8
5.11.3	Specification of arithmetic operations for floating-point representations	9
5.11.4	Processes for solving linear equation systems using floating-point representations	12
5.12	Variables, syntax elements and tables	14
5.13	Text description of logical operations	15
5.14	Processes	16
6	Bitstream and waveform signal format	18
7	Syntax and semantics	18
7.1	Method of specifying syntax in tabular form	18
7.2	Specification of syntax functions and descriptors	19
7.3	Syntax in tabular form	20
7.3.1	Stream packet syntax	20
7.3.2	Raw byte sequence payloads, trailing bits and byte alignment syntax	20
7.3.3	Frame data syntax	30
7.3.4	Annotation channel data syntax	37
7.4	Semantics	37
7.4.1	Stream packet semantics	37
7.4.2	Raw byte sequence payloads, trailing bits and byte alignment semantics	39
7.4.3	Frame data semantics	57
7.4.4	Annotation channel data semantics	62
8	Decoding process	62
8.1	General decoding process	62
8.1.1	General	62
8.1.2	Channel output index derivation process	62
8.1.3	Decoding process for independent frames (stream packets of type IF_SPT)	63
8.1.4	Decoding process for dependent frames (stream packets of type DF_SPT)	63
8.2	Frame data decoding process	64
8.3	Block-wise prediction decoding process	64
8.3.1	Linear extrapolation process of an array to the right	65
8.3.2	Linear extrapolation process of an array to the left	65
8.3.3	Zero prediction decoding process	66
8.3.4	DC prediction decoding process	66
8.3.5	Line fitting prediction decoding process	66
8.3.6	Cross-channel prediction decoding process	67
8.3.7	Block matching prediction decoding process	71
8.4	Block-wise scaling and inverse transformation decoding process	73
8.4.1	Scaling process for transform coefficient levels	73
8.4.2	Inverse transformation process	75
8.5	Backward adaptive prediction	75
8.6	Inverse integer reversible discrete cosine transform	81
8.6.1	General	81
8.6.2	Inverse integer reversible DCT for two signals (IntDualIDCT)	81
8.6.3	Inverse integer reversible DCT for one signal (IntIDCT)	83
8.6.4	Inverse integer reversible DST for two signals (IntDualIDST)	84
8.6.5	Inverse integer reversible DST for one signal (IntIDST)	86
8.6.6	Lifting factorization for inverse Givens rotations - (RotateInverseLift)	87
8.6.7	Fixed-point fast Fourier transform (FPRadix2FFT)	88
8.6.8	Inverse integer reversible DFT for two complex sequences (IFFTLift)	92
8.6.9	Inverse integer reversible DFT for a single complex sequence (IFFTLiftSplit)	93
8.6.10	Inverse integer reversible DFT for two real sequences (LiftDualRealIFFT)	95
8.6.11	Inverse integer invertible DFT for one real sequence (LiftRealIFFT)	97
8.7	Inverse DCT transformation process for multiple channels	99
8.8	Mean value correction process	99
8.9	Sample wise prediction decoding process	100
8.9.1	Overview	100
8.9.2	Sample wise one tap prediction decoding process	101
8.9.3	Sample wise full slope prediction decoding process	101
8.9.4	Sample wise half slope prediction decoding process	101
8.9.5	Filter coefficient decoding process for linear predictive filtering	102
8.9.6	Single channel linear predictive filtering prediction decoding process	102
8.9.7	Multi channel linear predictive filtering prediction decoding process	103
8.10	Deblocking process	104
9	Parsing process	106
9.1	General	106
9.2	Parsing process for escaped values	106
9.3	Parsing process for k-th order Exp-Golomb codes	106
9.3.1	General	106
9.3.2	Mapping process for signed Exp-Golomb codes	107
9.4	Parsing process for un-truncated Rice (UTR) codes	108
9.5	CABAC parsing process for frame data	108
9.5.1	General	108
9.5.2	Initialization process	109
9.5.3	Binarization process	113
9.5.4	Decoding process flow	118
10	Encoder processes	126
10.1	General	126
10.2	Backward adaptive prediction in the encoder	126
10.3	Integer reversible discrete cosine transform (IntDCT)	129
10.3.1	Integer reversible DCT for two signals (IntDualDCT)	129
10.3.2	Integer reversible DCT for one signal (IntDCT)	130
10.3.3	Lifting factorization for Givens rotations - (RotateLift)	132
10.3.4	Integer reversible DFT for two complex sequences (FFTLift)	132
10.3.5	Integer reversible DFT for a single complex sequence (FFTLiftSplit)	134
10.3.6	Integer reversible DFT for two real sequences (LiftDualRealFFT)	135
10.3.7	Integer invertible DFT for one real sequence (LiftReaFFT)	138
10.4	Arithmetic encoding process	139
10.4.1	General	139
10.4.2	Initialization process for the arithmetic encoding engine	140
10.4.3	Encoding process for a binary decision	140
10.4.4	Renormalization process in the arithmetic encoding engine	140
10.4.5	Bypass encoding process for binary decisions	141
10.4.6	Encoding process for a binary decision before termination	142
10.5	Prediction	143
10.6	Quantization rounding error	143
10.6.1	Derivation process for the maximum allowed quantization error	144
10.6.2	Derivation process for the maximum quantization error	144
10.7	Handling of high level syntax packets at the encoder	145
Annex A Inverse quantization tables	147
Annex B Predefined coefficients for integer invertible DCT / IDCT	161

List of Figures
		Page

	Figure 1 – Flowchart of renormalization	114
Figure 2 – Flowchart of bypass decoding process	114
Figure 3 – Flowchart of decoding a decision before termination	115
Figure 10‑1 – Flowchart of renormalization in the encoder	130
Figure 10‑2 – Flowchart of PutBit(B)	130
Figure 10‑3 – Flowchart of encoding bypass	131
Figure 10‑4 – Flowchart of encoding a decision before termination	132
Figure 10‑5 – Flowchart of flushing at termination	132

[bookmark: _Toc382790595][bookmark: _Ref15112964][bookmark: _Hlk14959462]

[bookmark: _Toc46836958][bookmark: _Toc202359530][bookmark: _Toc213429728]Scope
[bookmark: _Toc382790596]This Recommendation | International Standard specifies an interoperable format for efficient compression, transmission, and storage of waveform signals, including biomedical waveform signals such as electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), and photoplethysmogram (PPG) data, as well as other types of general waveform data. It supports various bit depths, a broad range of sampling rates, and large numbers of channels, as required by a range of biomedical and general signal processing applications. The Specification provides for lossy, near-lossless, and lossless compression, and includes features such as optimized data blocking, indexing for rapid access, independent channel decoding, and metadata support including metadata enabling support of efficient artificial intelligence-based workflows.
[bookmark: _Toc203744999][bookmark: _Toc203745251][bookmark: _Toc45876424][bookmark: _Toc45877150][bookmark: _Ref2069873][bookmark: _Toc202359531][bookmark: _Toc213429729]Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.
[bookmark: _Toc382790597][bookmark: _Toc202359532][bookmark: _Toc213429730]Identical Recommendations | International Standards
–	None.
[bookmark: _Toc382790598][bookmark: _Toc202359533][bookmark: _Toc213429731]Paired Recommendations | International Standards equivalent in technical content
–	None.
[bookmark: _Toc382790599][bookmark: _Toc202359534][bookmark: _Toc213429732]Additional references
–	ISO/IEC 10646:2020, Information technology — Universal coded character set (UCS)
–	IETF Internet Standard 66, Uniform Resource Identifier (URI): Generic Syntax, RFC 3986, DOI 10.17487/RFC3986, January 2005 <https://www.rfc-editor.org/info/rfc3986>
· ISO/IEC 23001-17:2024, Information technology — MPEG systems technologies, Part 17: Carriage of uncompressed video and images in ISO base media file format
· ITU-R Recommendation TF.460-6 (02/2022), Standard-frequency and time-signal emissions
· ITU-R Recommendation BS.2088-1 (10/2019), Long-form file format for the international exchange of audio programme materials with metadata
· ISO 8601:2019, Date and time — Representations for information interchange
· ISO/IEC 23008-3:2022, Information technology — High efficiency coding and media delivery in heterogeneous environments, Part 3: 3D audio
· ISO/IEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure Call (RPC), Annex A
· NIST FIPS PUB 180-4 (2015), Secure Hash Standard (SHS)
[bookmark: _Toc203745004][bookmark: _Toc203745256][bookmark: _Toc382790600][bookmark: _Ref15112975][bookmark: _Ref22311301][bookmark: _Toc202359535][bookmark: _Toc213429733]Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.
3.1 [bookmark: _Hlk55490440][bookmark: _Toc382790601]bin: One bit of a bin string.
3.2 bin string: An intermediate binary representation of values of syntax elements from the binarization of the syntax element.
3.3 binarization: A set of bin strings for all possible values of a syntax element.
3.4 bitstream: A sequence of bits that forms the representation of one or more coded waveform sequences.
3.5 coded waveform sequence (CWS): A sequence of packets having the same WPS_waveform_parameter_set_id and containing at least one independent frame.
3.6 context variable: A variable specified for the context-based adaptive binary arithmetic decoding process of clause 9.5 of a bin in a manner that depends on the values of previously decoded bins.
3.7 decoder: An embodiment of a decoding process.
3.8 decoding order: The order in which syntax elements are processed by the decoding process.
3.9 [bookmark: _Ref57451212]decoding process: The process specified in this Specification that reads a bitstream and derives decoded samples from it.
3.10 dependent frame (DF): A stream packet with stream_packet_type equal to DF_SPT.
3.11 encoder: An embodiment of an encoding process.
3.12 encoding process: A process that accepts waveform data as input and produces a bitstream conforming to this Specification.
3.13 flag: A variable or single-bit syntax element that can take one of the two possible values 0 and 1.
3.14 frame: Either an independent frame or a dependent frame.
3.15 frame sequence: A sequence of frames that starts with an independent frame followed by zero or more dependent frames.
3.16 independent frame (IF): A stream packet with stream_packet_type equal to IF_SPT.
3.17 [bookmark: _Ref57451851]stream packet: A string of bytes containing a stream packet header and the syntax structure containing that data.
3.18 stream packet header: A syntax structure specifying the header of a stream packet. It contains a stream_packet_type, a stream_packet_label and a stream_packet_length syntax element that identifies the number of bytes in the syntax structure that follows within the stream packet.
3.19 stream packet stream: A sequence of stream packets.
3.20 syntax element: An element of data represented in the bitstream.
3.21 syntax structure: Zero or more syntax elements that are present together in the bitstream in a specified order.
3.22 transform: A part of the decoding process by which a block of transform coefficients is converted to a block of time-domain values.
3.23 transform block: A block of samples resulting from a transform in the decoding process.
3.24 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a particular frequency index in a transform in the decoding process.
3.25 transform coefficient level: An integer quantity representing the value associated with a particular frequency index in the decoding process prior to scaling for computation of a transform coefficient value.
[bookmark: _Ref15113194][bookmark: _Toc202359536][bookmark: _Toc213429734]Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply.
AC	Annotation Channel
AM	Auxiliary Metadata
CABAC	Context-based Adaptive Binary Arithmetic Coding
CRC	Cyclic Redundancy Check
CGPS	Channel Group Parameter Set
CPRD 	Channel-normalized Percentage Root mean square Distortion
CWS	Coded Waveform Sequence
DCT	Discrete Cosine Transform
DST	Discrete Sine Transform
DF	Dependent Frame
EEG	Electroencephalography
EMG	Electromyography
EGk	Exponential-Golomb (aka Exp-Golomb) with order k
FL	Fixed-Length
HLS	High Level Syntax
IF	Independent Frame
LMS	Least Mean Squares
LPS	Least Probable Symbol
LSB	Least Significant Bit
MAE	Maximum Absolute Error
MSB	Most Significant Bit
PPG	Photoplethysmogram
PRD	Percentage Root (mean square) Distortion
QP	Quantization Parameter
TR	Truncated Rice
URI	Uniform Resource Identifier
UUID	Universally Unique Identifier
WPS	Waveform Parameter Set
UTC	Coordinated Universal Time
[bookmark: _Toc382790602][bookmark: _Ref15113203][bookmark: _Toc202359537][bookmark: _Toc213429735]Conventions
[bookmark: _Toc415475782][bookmark: _Toc423599057][bookmark: _Toc423601561][bookmark: _Toc501130127][bookmark: _Toc510795050][bookmark: _Ref46319490][bookmark: _Toc202359538][bookmark: _Toc213429736]General
The term "this Specification" is used to refer to this Recommendation | International Standard.
The word "shall" is used to express mandatory requirements for conformance to this Specification. When used to express a mandatory constraint on the values of syntax elements or the values of variables derived from these syntax elements, it is the responsibility of the encoder to ensure that the constraint is fulfilled.
The word "may" is used to refer to behaviour that is allowed, but not necessarily required.
The word "should" is used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Specification.
Content of this Specification that is identified as "informative" does not establish any mandatory requirements for conformance to this Specification and is thus not considered an integral part of this Specification. Informative remarks in the text are, in some cases, set apart and prefixed with the word "note" or "NOTE".
The word "reserved" is used to specify that some values of a particular syntax element are for future use by ITU-T | ISO/IEC and shall not be used in syntax structures conforming to this version of this Specification, but could potentially be used in syntax structures conforming to future versions of this Specification by ITU‑T | ISO/IEC.
The word "unspecified" is used to describe some values of a particular syntax element to indicate that the values have no specified meaning in this Specification and are not expected to have a specified meaning in the future as an integral part of future versions of this Specification.
NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0, e.g., "the first" is equivalent to the 0-th, "the second" is equivalent to the 1-st.
[bookmark: _Toc33005123][bookmark: _Toc20134224][bookmark: _Toc24455817][bookmark: _Toc77680335][bookmark: _Toc118289001][bookmark: _Toc226456471][bookmark: _Toc248045174][bookmark: _Toc287363730][bookmark: _Toc311216713][bookmark: _Toc317198678][bookmark: _Toc415475783][bookmark: _Toc423599058][bookmark: _Toc423601562][bookmark: _Toc501130128][bookmark: _Toc510795051][bookmark: _Toc202359539][bookmark: _Toc213429737]Arithmetic operators
The following arithmetic operators are defined as follows:
	+
	addition

	−
	subtraction (as a two-argument operator) or negation (as a unary prefix operator)

	*
	multiplication, including matrix multiplication

	xy
	exponentiation, specifying x to the power of y. In other contexts, such notation is used for superscripting not intended for interpretation as exponentiation.

	/
	integer division with truncation of the result toward zero. For example, 7 / 4 and −7 / −4 are truncated to 1 and −7 / 4 and 7 / −4 are truncated to −1.

	÷
	division in mathematical equations where no truncation or rounding is intended

	
	division in mathematical equations where no truncation or rounding is intended

	
	summation of f(i) with i taking all integer values from x up to and including y

	x % y
	modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0

[bookmark: _Toc219707772][bookmark: _Toc219707773][bookmark: _Toc219707774][bookmark: _Toc219707775][bookmark: _Toc488804403][bookmark: _Toc496067375][bookmark: _Toc496067608][bookmark: _Toc20134225][bookmark: _Toc77680336][bookmark: _Toc118289002][bookmark: _Toc226456472][bookmark: _Toc248045175][bookmark: _Toc287363731][bookmark: _Toc311216714][bookmark: _Toc317198679][bookmark: _Toc415475784][bookmark: _Toc423599059][bookmark: _Toc423601563][bookmark: _Toc501130129][bookmark: _Toc510795052][bookmark: _Toc202359540][bookmark: _Toc213429738]Logical operators
The following logical operators are defined as follows:
x && y	Boolean logical "and" of x and y
x | | y	Boolean logical "or" of x and y
!	Boolean logical "not"
x ? y : z	if x is TRUE, evaluates to the value of y; otherwise, evaluates to the value of z
[bookmark: _Toc488804404][bookmark: _Toc496067376][bookmark: _Toc496067609][bookmark: _Toc20134226][bookmark: _Toc77680337][bookmark: _Toc118289003][bookmark: _Toc226456473][bookmark: _Toc248045176][bookmark: _Toc287363732][bookmark: _Toc311216715][bookmark: _Toc317198680][bookmark: _Toc415475785][bookmark: _Toc423599060][bookmark: _Toc423601564][bookmark: _Toc501130130][bookmark: _Toc510795053]When evaluating a logical expression, the value 0 is interpreted as FALSE and any numerical value not equal to 0 is interpreted as TRUE. The result of any logical expression that evaluates as FALSE is the value 0, and the result of any logical expression that evaluates as TRUE is the value 1.
[bookmark: _Toc202359541][bookmark: _Toc213429739]Relational operators
>	greater than
>=	greater than or equal to
<	less than
<=	less than or equal to
= =	equal to
!=	not equal to
When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal to any other value.
[bookmark: _Toc488804405][bookmark: _Toc496067377][bookmark: _Toc496067610][bookmark: _Toc20134227][bookmark: _Toc77680338][bookmark: _Toc118289004][bookmark: _Toc226456474][bookmark: _Toc248045177][bookmark: _Toc287363733][bookmark: _Toc311216716][bookmark: _Toc317198681][bookmark: _Toc415475786][bookmark: _Toc423599061][bookmark: _Toc423601565][bookmark: _Toc501130131][bookmark: _Toc510795054][bookmark: _Toc202359542][bookmark: _Toc213429740]Bit-wise operators
&	bit-wise "and"
	When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
|	bit-wise "or"
	When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
[bookmark: _Toc488804406][bookmark: _Toc496067378][bookmark: _Toc496067611][bookmark: _Toc20134228]^	bit-wise "exclusive or"
	When operating on integer arguments, operates on a two's complement representation of the integer value. When operating on a binary argument that contains fewer bits than another argument, the shorter argument is extended by adding more significant bits equal to 0.
x >> y	arithmetic right shift of a two's complement integer representation of x by y binary digits
	This function is defined only for non-negative integer values of y. Bits shifted into the most significant bits (MSBs) as a result of the right shift have a value equal to the MSB of x prior to the shift operation.
x << y	arithmetic left shift of a two's complement integer representation of x by y binary digits
	This function is defined only for non-negative integer values of y. Bits shifted into the least significant bits (LSBs) as a result of the left shift have a value equal to 0.
[bookmark: _Toc77680339][bookmark: _Toc118289005][bookmark: _Toc226456475][bookmark: _Toc248045178][bookmark: _Toc287363734][bookmark: _Toc311216717][bookmark: _Toc317198682][bookmark: _Toc415475787][bookmark: _Toc423599062][bookmark: _Toc423601566][bookmark: _Toc501130132][bookmark: _Toc510795055][bookmark: _Toc202359543][bookmark: _Toc213429741]Assignment operators
=	assignment operator
++	increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of the variable prior to the increment operation
− −	decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value of the variable prior to the decrement operation
+=	increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent to x = x + (−3)
−=	decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent to x = x − (−3)
>>=	right shift the variable by the amount specified and store, i.e., x >>= 3 is equivalent to x = x >> 3
<<=	left shift the variable by the amount specified and store, i.e., x <<= 3 is equivalent to x = x << 3
[bookmark: _Toc77680340][bookmark: _Toc118289006][bookmark: _Toc226456476][bookmark: _Toc248045179][bookmark: _Toc287363735][bookmark: _Toc311216718][bookmark: _Toc317198683][bookmark: _Toc415475788][bookmark: _Toc423599063][bookmark: _Toc423601567][bookmark: _Toc501130133][bookmark: _Toc510795056][bookmark: _Toc202359544][bookmark: _Toc213429742][bookmark: _Toc24455822]Range notation
x = y..z	x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers and z being greater than or equal to y.
[bookmark: _Toc77680341][bookmark: _Toc118289007][bookmark: _Ref196969207][bookmark: _Toc226456477][bookmark: _Toc248045180][bookmark: _Toc287363736][bookmark: _Toc311216719][bookmark: _Toc317198684][bookmark: _Toc415475789][bookmark: _Toc423599064][bookmark: _Toc423601568][bookmark: _Toc501130134][bookmark: _Toc510795057][bookmark: _Ref5666222][bookmark: _Toc202359545][bookmark: _Toc213429743]Mathematical functions
Abs(x) = 		(1)
Ceil(x)		smallest integer greater than or equal to x.	(2)
Clip1(x) = Clip3(0, (1 << BitDepth) − 1, x)		(3)
Cos(x)		trigonometric cosine of x radians		(4)
Clip3(x, y, z) = 		(5)
ClipH(v, w, x) = 		(6)
Floor(x)	largest integer less than or equal to x.		(7)
Log2(x)		base-2 logarithm of x.		(8)
Log10(x)	base-10 logarithm of x.		(9)
Min(x, y) = 		(10)
Max(x, y) = 		(11)
Round(x) = Sign(x) * Floor(Abs(x) + 0.5)		(12)
Sign(x) = 		(13)
[bookmark: _Toc226456478][bookmark: _Toc248045181][bookmark: _Toc287363737][bookmark: _Toc311216720][bookmark: _Toc317198685]Sin(x)	trigonometric sine of x radians		(14)
Sqrt(x)	square root of x		(15)
Swap(x, y) = (y, x)		(16)
BitWidth(x) = 	(17)
[bookmark: _Toc212050465][bookmark: _Toc213429744]Mathematical constants
π	Archmedes’ constant; the ratio of the circumferance of a circle to its diameter	(18)
[bookmark: _Toc45535498][bookmark: _Toc415475790][bookmark: _Toc423599065][bookmark: _Toc423601569][bookmark: _Toc501130135][bookmark: _Toc510795058][bookmark: _Ref179204100][bookmark: _Toc202359546][bookmark: _Toc213429745]Order of operation precedence
When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
–	Operations of a higher precedence are evaluated before any operation of a lower precedence.
–	Operations of the same precedence are evaluated sequentially from left to right.
Table 5‑1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher precedence.
NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification is the same as used in the C programming language.
[bookmark: _Ref215994896][bookmark: _Toc246350677][bookmark: _Toc287363916][bookmark: _Toc415476431][bookmark: _Toc423602466][bookmark: _Toc423602640][bookmark: _Toc501130551][bookmark: _Toc510795476][bookmark: _Toc181199098]Table 5‑1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)
	Operations (with operands x, y, and z)

	"x++", "x− −"

	"!x", "−x" (as a unary prefix operator)

	xy

	"x * y", "x / y", "x ÷ y", "", "x % y"

	"x + y", "x − y" (as a two-argument operator), "[image:]"

	"x << y", "x >> y"

	"x < y", "x <= y", "x > y", "x >= y"

	"x = = y", "x != y"

	"x & y"

	"x | y"

	"x && y"

	"x | | y"

	"x ? y : z"

	"x..y"

	"x = y", "x += y", "x −= y"

[bookmark: _Toc219707783][bookmark: _Toc202359547][bookmark: _Toc213429746][bookmark: _Toc77680342][bookmark: _Toc118289008][bookmark: _Toc226456479][bookmark: _Toc248045182][bookmark: _Toc287363738][bookmark: _Toc311216721][bookmark: _Toc317198686][bookmark: _Ref350427772][bookmark: _Toc415475791][bookmark: _Toc423599066][bookmark: _Toc423601570][bookmark: _Toc501130136][bookmark: _Toc510795059]Mathematical functions, operators, and processes for floating-point representations
[bookmark: _Toc202359548][bookmark: _Toc213429747]Floating-point representation
The accuracy of all floating-point representations is specified by the following constant parameter:
–	FPRNumDigitsVal specifies the number of significant binary digits in the floating-point representation. Given the value of FPRNumDigitsVal, all calculations for the significand of a floating-point representation can be implemented using signed integer arithmetic with N = FPRNumDigitsVal + 2 bits.
Division operations for floating-point representations are specified based on a look-up table. The accuracy of division operations is specified by the following two constant parameters:
–	FPRLog2DivTabSize specifies the binary logarithm of the number of elements in the look-up table. The look-up table used for division operations has (1 << FPRLog2DivTabSize) elements.
–	FPRNumDigitsDivTab specifies the number of significant binary digits for the values of the division look-up table. Given the value of FPRNumDigitsDivTab, the elements of the look-up table can be represented as unsigned integers with N = FPRNumDigitsDivTab bits or as signed integers with N = FPRNumDigitsDivTab +1 bits.
The division look-up table is referred to as FPRDivTab. It is determined as specified by the following pseudo-code:
nom = 1 << (FPRLog2DivTabSize + FPRNumDigitsDivTab − 1)
off	= 1 << FPRLog2DivTabSize
for(k = 0; k < (1 << FPRLog2DivTabSize); k++) {	(19)
	denom = off + k
	FPRDivTab[k] = (nom + (denom >> 1)) / denom
}
where the division represents an integer division with truncation towards zero.
For the following specification, the values FPRNumDigitsVal = 30, FPRLog2DivTabSize = 8, and FPRNumDigitsDivTab = 15 are used. All calculations for the significand of a floating-point representation can be implemented in 32-bit signed integer arithmetic. The look-up table FPRDivTab has 256 elements, and each of these elements can be represented as 16-bit signed integer. The total size required for storing the look-up table is 512 bytes.
A floating point representation is specified as a triple (val, exp, sgn) as follows:
–	val is an integer number specifying the significant digits of a floating-point representation, also referred to as the significand. The value of val is represented as signed integer number of at least N = FPRNumDigitsVal + 2 bits. Even though the actual value of val can always be represented by an unsigned integer of FPRNumDigitsVal bits, two additional bits and a signed integer representation is required for intermediate values in calculations with the floating-point representation. With FPRNumDigitsVal = 30, all calculations related to the number val specifying the significand of a floating-point representation can be done using 32-bit signed integers;
–	exp is an integer number representing the exponent;
–	sgn is a bit representing the sign, where negative numbers have sgn = 1 and positive numbers have sgn = 0.
With x being a floating point representation, the elements of the triple (val, exp, sgn) specifying x are also referred to as x.val, x.exp, and x.sgn, respectively.
The floating-point value fx that is specified by a floating-point representation x is given by:
fx = (1 − 2 * x.sgn) * x.val * (1 << x.exp).		(20)
NOTE – As shown in this equation, when x.val is equal to 0, the value represented is 0, regardless of the values of x.exp and x.sgn.
[bookmark: _Toc202359549][bookmark: _Toc213429748]Arithmetic operators and functions for floating-point representations
In the following x, y, and z denote floating-point representations and a denotes an integer. The following functions and arithmetic operators are specified:
–	Conversion of an integer to a floating-point representation:
x = FPRepr(a) 			(21)
The floating-point representation x is derived by invoking the process for converting an integer to a floating-point representation as specified in clause 5.11.3.1 with a as input and the output is assigned to x.
–	Conversion of a floating-point representation to an integer:
a = FPRToInteger(x) 		(22)
The integer a is derived by invoking the process for converting a floating-point representation to an integer as specified in clause 5.11.3.2 with a as input and the output is assigned to a.
–	Bit-shift to the left:
y = FPBitShiftLeft(x, a)		(23)
The floating-point representation y is derived by invoking the process for shifting a floating-point representation to the left as specified in clause 5.11.3.3 with x and a as inputs and the output is assigned to y.
–	Bit-shift to the right:
y = FPBitShiftRight(x, a)		(24)
The floating-point representation y is derived by invoking the process for shifting a floating-point representation to the right as specified in clause 5.11.3.4 with x and a as inputs and the output is assigned to y.
–	Negation:
y = FPNeg(x)			(25)
The floating-point representation y is derived by invoking the process for negating a floating-point representation as specified in clause 5.11.3.5 with x as input and the output is assigned to y.
–	Addition:
z = FPAdd(x, y)			(26)
The floating-point representation z is derived by invoking the process for adding two floating-point representations as specified in clause 5.11.3.6 with x and y as inputs and the output is assigned to z.
–	Subtraction:
z = FPSub(x, y)			(27)
The floating-point representation z is derived by invoking the process for subtracting two floating-point representations as specified in clause 5.11.3.7 with x and y as inputs and the output is assigned to z.
–	Multiplication:
z = FPMult(x, y)			(28)
The floating-point representation z is derived by invoking the process for multiplying two floating-point representations as specified in clause 5.11.3.8 with x and y as inputs and the output is assigned to z.
–	Reciprocal:
y = FPRec(x)				(29)
The floating-point representation y is derived by invoking the process for deriving the reciprocal of a floating-point representation as specified in clause 5.11.3.9 with x as input and the output is assigned to y.
–	Division:
z = FPDiv(x, y)			(30)
The floating-point representation z is derived by invoking the process for dividing two floating-point representations as specified in clause 5.11.3.10 with x and y as inputs and the output is assigned to z.
The operator precedence for floating-point representations is the same as specified in clause 5.10.
[bookmark: _Toc202359550][bookmark: _Toc213429749]Specification of arithmetic operations for floating-point representations
[bookmark: _Ref179038574]Process for converting an integer to a floating-point representation
Input to this process is a signed or unsigned integer value a.
Output of this process is a floating-point representation x = (x.val, x.exp, x.sgn) specifying the integer a.
The output value y is initialized with y.val = 0, y.exp = 0, and y.sgn = 0.
When a is not equal to 0, the output value y is modified as specified by the following pseudo-code:
if(a < 0) {
	absVal = −a
	y.sgn = 1
} else
	absVal = a
y.exp = BitWidth(absVal) − FPRNumDigitsVal		(31)
if(y.exp < 0)
	y.val = absVal << (−y.exp)
else
	y.val = absVal >> y.exp
[bookmark: _Ref179038582]Process for converting a floating-point representation to an integer
Input to this process is a floating-point representation x = (x.val, x.exp, x.sgn).
Output of this process is an integer a specifying the floating-point representation x rounded to an integer value.
The value of a is initially set to 0.
When x.val is not equal to 0, the value of a is modified as specified by the following pseudo-code:
if(x.exp >= 0)
	a = x.val << x.exp
else
	a = (x.val + (1 << (−x.exp − 1))) >> (−x.exp) 	(32)
if(x.sgn)
	a = −a
[bookmark: _Ref179038589]Process for shifting a floating-point representation to the left
Inputs to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn), and
–	a non-negative integer number a representing a bit shift to the left.
Output of this process is a floating-point representation y = (y.val, y.exp, y.sgn) specifying the result of the bit shift.
The floating-point representation y is determined as specified by the following pseudo-code:
y.val = x.val
y.exp = x.exp + a 			(33)
y.sgn = x.sgn
[bookmark: _Ref179038596]Process for shifting a floating-point representation to the right
Inputs to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn), and
–	a non-negative integer number a representing a bit shift to the right.
Output of this process is a floating-point representation y = (y.val, y.exp, y.sgn) specifying the result of the bit shift.
The floating-point representation y is determined as specified by the following pseudo-code:
y.val = x.val
y.exp = x.exp − a 			(34)
y.sgn = x.sgn
[bookmark: _Ref179037547]Process for negating a floating-point representation
Input to this process is a floating-point representation x = (x.val, x.exp, x.sgn).
Output of this process is a floating-point representation y = (y.val, y.exp, y.sgn) specifying the result of the negation of x.
The floating-point representation y is determined as specified by the following pseudo-code:
y.val = x.val
y.exp = x.exp	 			(35)
y.sgn = 1 − x.sgn
[bookmark: _Ref179037556]Process for adding two floating-point representations
Input to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn) specifying the first summand;
–	a floating-point representation y = (y.val, y.exp, y.sgn) specifying the second summand.
Output of this process is a floating-point representation z = (z.val, z.exp, z.sgn) specifying the result of the addition of x and y.
If x.val is equal to 0, z is set equal to y, i.e., z.val = y.val, z.exp = y.exp, and z.sgn = y.sgn.
Otherwise, if y.val is equal to 0, z is set equal to x, i.e., z.val = x.val, z.exp = x.exp, and z.sgn = x.sgn.
Otherwise (x.val is not equal to 0 and y.val is not equal to 0), the value of z is first initialized with z.val = 0, z.exp = 0, and z.sgn = 0 and then updated as specified by the following pseudo-code:
if(x.exp >= y.exp)
	s = x.exp − y.exp
	a = (y.val + ((1 << s) >> 1)) >> s
	b = (1 − 2 * x.sgn) * x.val + (1 − 2 * y.sgn) * a
	c = x.exp
} else {
	s = y.exp − x.exp
	a = (x.val + ((1 << s) >> 1)) >> s
	b = (1 − 2 * x.sgn) * a + (1 − 2 * y.sgn) * y.val	(36)
	c = y.exp
}
if(b < 0) {
	b = −b
	z.sgn = 1
}
if(b > 0) {
	d = BitWidth(b) − FPRNumDigitsVal
	if(d < 0)
		z.val = b << (−d)
	else
		z.val = b >> d
	z.exp = c +d
}
[bookmark: _Ref179038619]Process for subtracting two floating-point representations
Input to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn) specifying the minuend;
–	a floating-point representation y = (y.val, y.exp, y.sgn) specifying the subtrahend.
Output of this process is a floating-point representation z = (z.val, z.exp, z.sgn) specifying the result of subtracting y from of x.
The floating point representation yn is derived by invoking the process for negating a floating-point representation as specified in clause 5.11.3.5 with y as input and the output is assigned to yn.
The floating point representation z is derived by invoking the process for adding two floating-point representation as specified in clause 5.11.3.6 with x and yn as inputs and the output is assigned to z.
[bookmark: _Ref179038625]Process for multiplying two floating-point representations
Input to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn) specifying the multiplier;
–	a floating-point representation y = (y.val, y.exp, y.sgn) specifying the multiplicand.
Output of this process is a floating-point representation z = (z.val, z.exp, z.sgn) specifying the result of the multiplication of x and y.
If x.val is equal to 0 or y.val is equal to 0, z is set equal to zero, i.e., z.val = 0.
Otherwise (x.val is not equal to 0 and y.val is not equal to 0), the floating-point representation z is derived as specified by the following pseudo-code:
HSHIFT = FPRNumDigitsVal >> 1
LMASK = (1 << HSHIFT) − 1
ah = x.val >> HSHIFT
bh = y.val >> HSHIFT		(37)
al = x.val & LMASK
bl = y.val & LMASK
z.val = ((ah * bh) << 1) + ((ah * bl + al * bh + ((al * bl) >> HSHIFT)) >> (HSHIFT − 1))
z.exp = x.exp + y.exp + FPRNumDigitsVal − 1
z.sgn = x.sgn ^ y.sgn
if(z.val >= (1 << FPRNumDigitsVal)) {
	z.val = z.val >> 1
	z.exp = z.exp + 1
}
[bookmark: _Ref179038067]Process for deriving the reciprocal of a floating-point representation
Input to this process is a floating-point representation x = (x.val, x.exp, x.sgn) with x.val being not equal to 0.
Output of this process is a floating-point representation y = (y.val, y.exp, y.sgn) specifying the reciprocal of x.
The floating-point representation y is derived as specified by the following pseudo-code:
DSHIFT = FPRNumDigitsVal − FPRLog2DivTabSize − 1
DADD = (1 << (DSHIFT − 1)) − (1 << (FPRNumDigitsVal − 1))
DMASK = (1 << FPRLog2DivTabSize) − 1
EXSUB = FPRNumDigitsDivTab + FPRNumDigitsVal − 2
a = (x.val + DADD) >> DSHIFT		(38)
b = FPRDivTab[a & DMASK]
c = BitWidth(b) − FPRNumDigitsVal
y.val = b << (−c)
y.exp = c − x.exp − (a >> FPRLog2DivTabSize) − EXSUB
y.sgn = x.sgn
[bookmark: _Ref179038073]Process for dividing two floating-point representations
Input to this process are:
–	a floating-point representation x = (x.val, x.exp, x.sgn) specifying the dividend;
–	a floating-point representation y = (y.val, y.exp, y.sgn), with y.val being not equal to 0, specifying the divisor.
Output of this process is a floating-point representation z = (z.val, z.exp, z.sgn) specifying the result of the division of x and y.
The floating point representation yr is derived by invoking the process for deriving the reciprocal of a floating-point representation as specified in clause 5.11.3.9 with y as input and the output is assigned to yr.
The floating point representation z is derived by invoking the process for multiplying two floating-point representations as specified in clause 5.11.3.10 with x and yr as inputs and the output is assigned to z.
[bookmark: _Ref181091417][bookmark: _Ref181091458][bookmark: _Toc202359551][bookmark: _Toc213429750]Processes for solving linear equation systems using floating-point representations
[bookmark: _Ref179039512]Derivation process for a sub vector
Inputs to this process are:
–	an N-dimensional vector vec of floating-point representations, with N > 1;
–	an index r.
Output of this process is an (N − 1)-dimensional vector subVec that is obtained by deleting the r-th element from the vector vec.
The (N − 1)-dimensional vector subVec is obtained as specified by the following peudo-code:
for(k = 0; k < N − 1; k++)		(39)
	subVec[k] = vec[k + (k >= r ? 1 : 0)]
[bookmark: _Ref179039502]Derivation process for a sub-matrix
Inputs to this process are:
–	an NxN matrix mat of floating-point representations, with N > 1;
–	a row index r; and
–	a column index c.
Output of this process is an (N − 1) × (N − 1) matrix subMat that is obtained by deleting the r-th row and the c-th column from the matrix mat.
The (N − 1) × (N − 1) matrix subMat is obtained as specified by the following pseudo-code:
for(k = 0; k < N − 1; k++)
	for(n = 0; n < N − 1; n++) 		(40)
		subMat[k][n] = mat[k + (k >= c ? 1 : 0)][n + (n >= r ? 1 : 0)]
[bookmark: _Ref179039334]Derivation process for the determinant of a matrix
Inputs to this process is an NxN matrix mat of floating-point representations, with N > 0.
Output of this process is a floating-point representation det that specifies the determinant of the matrix mat.
If N is equal to 1, the determinant det is set equal to det = x[0][0].
Otherwise (N is greater than 1), the determinant det is derived as specified by the following recursive process:
–	The determinant is set equal to det = FPNum(0).
–	For k proceeding over the range from 0 to N − 1, inclusive, the following applies:
· The (N − 1) × (N − 1) sub-matrix subMat is derived by invoking the derivation process for a sub-matrix as specified in clause 5.11.4.2 with mat, the row index k, and the column index 0 as inputs and the output is assigned to the sub-matrix subMat.
· The determinant subDet of the (N − 1) × (N − 1) sub-matrix subMat is derived by invoking the derivation process for the determinant of a matrix as specified in this clause with subMat as input and the output is assigned to subDet.
· Depending on k, the determinant det is updated as specified by the following pseudo-code:
if((k & 1) = = 1)
	det = FPSub(det, FPMult(mat[0][k], subDet))	(41)
else
	det = FPAdd(det, FPMult(mat[0][k], subDet))
[bookmark: _Ref179039811]Process for solving a linear equation system with floating-point matrices and vectors
Inputs to this process are:
–	an NxN matrix mat of floating-point representations, with N > 0;
–	a N-dimensional vector vec of floating-point representations;
–	an unsigned integer bshift specifying the precision of the output.
Output of this process is an N-dimensional vector res of integer values.
The determinant detMat of the matrix mat is determined by invoking the derivation process for the determinant of a matrix as specified in clause 5.11.4.3 with mat as input and the output is assigned to detMat.
If detMat.val is equal to 0, the value of res[0] is set equal to res[0] = 0.
Otherwise (detMat.val is not zero), the value of res[0] is derived as follows:
–	The NxN matrix matX of floating-point representations is derived as specifified by the following pseudo-code:
for(k = 0; k < N; k++)
	matX[0][k] = vec[k]
for(c = 1; c < N; c++) 		(42)
	for(k = 0; k < N; k++)
		matX[c][k] = mat[c][k]
–	The determinant detX of the matrix matX is determined by invoking the derivation process for the determinant of a matrix as specified in clause 5.11.4.3 with matX as input and the output is assigned to detX.
–	The value of res[0] is derived by:
res[0] = FPRToInteger(FPBitShiftLeft(FPDiv(detX, detMat), bshift))	(43)
When N is greater than 1, the values res[k] with k being in the range of 1 to N − 1, inclusive, are determined by the following recursive process:
[bookmark: _Hlk178946562]–	The (N − 1) × (N − 1) sub-matrix subMat is determined by invoking the derivation process for a sub-matrix as specified in clause 5.11.4.2 with mat, the row index 0, and the column index 0 as inputs and the output is assigned to the sub-matrix subMat.
–	The (N − 1)-dimensional sub-vector subVec is determined by invoking the derivation process for a sub-vector as specified in clause 5.11.4.1 with vec and the index 0 as inputs and the output is assigned to the sub-vector subVec.
–	The (N − 1)-dimensional sub-vector subVec is modified as specified by the following pseudo-code:
scale = FPBitShiftRight(FPNum(res[0]), bshift)
for(k = 0; k < N − 1; k++) 		(44)
	subVec[k] = FPSub(subVec[k], FPMult(scale, mat[0][1 + k]))
–	The process for solving a linear equation system with floating-point matrices and vectors as specified in this clause is invoked with the (N − 1) × (N − 1) matrix subMat, the (N − 1)-dimensional vector subVec, and the integer number bshift as input and the output is assigned to the (N − 1)-dimensional integer vector subRes.
–	The values res[k] with k being in the range of 1 to N − 1, inclusive, are determined by:
for(k = 1; k < N; k++) 		(45)
	res[k] = subRes[k − 1]
[bookmark: _Ref213199271]Process for solving a linear equation system in integer arithmetic
Inputs to this process are:
–	an NxN matrix mat of integer values, with N > 0;
–	a N-dimensional vector vec of integer values;
–	an unsigned integer bshift specifying the precision of the output.
Output of this process is an N-dimensional vector res of integer values.
The NxN matrix fprMat of floating-point representations is derived as specified by the following pseudo-code:
for(c = 0; c < N; c++)
	for(r = 0; r < N; r++) 		(46)
		fprMat[c][r] = FPRepr(mat[c][r])
The N-dimensional vector fprVec of floating-point representations is derived as specified by the following pseudo-code:
for(k = 0; k < N; k++) 		(47)
	fprVec[k] = FPRepr (vec[k])
The N-dimensional output vector res is derived by invoking the process for solving a linear equation system with floating-point matrices and vectors as specified in clause 5.11.4.4 with fprMat, fprVec, and bshift as inputs and the output is assigned to res.
[bookmark: _Toc202359552][bookmark: _Toc213429751]Variables, syntax elements and tables
Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case letters with underscore characters), and one descriptor for its method of coded representation. The decoding process behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type.
In some cases the syntax tables and semantics use the values of other variables derived from the values of syntax elements. Such variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all depending syntax structures. Variables starting with an upper case letter could, in some cases, be used in the decoding process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case letter are only used within the clause in which they are derived.
In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of values and names is specified in the text. The names are constructed from one or more groups of letters separated by an underscore character. Each group starts with an upper case letter and could contain more upper case letters.
NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.
Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed as syntax element names and end with left and right round parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more than one variable).
Functions that are not syntax functions (including mathematical functions specified in clause 5.8) are described by their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore character, and end with left and right parentheses including zero or more variable names (for definition) or values (for usage) separated by commas (if more than one variable).
A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position x and vertical position y could be denoted either as s[x][y] or as syx. A single column of a matrix could be referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at horizontal position x could be referred to as the list s[x].
A specification of values of the entries in rows and columns of an array could be denoted by { {...} {...} }, where each inner pair of brackets specifies the values of the elements within a row in increasing column order and the rows are ordered in increasing row order. Thus, setting a matrix s equal to { { 1 6 } { 4 9 }} specifies that s[0][0] is set equal to 1, s[1][0] is set equal to 6, s[0][1] is set equal to 4, and s[1][1] is set equal to 9.
Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", is used in some cases instead of binary notation when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1.
Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.
A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different from zero.
[bookmark: _Toc77680343][bookmark: _Toc118289009][bookmark: _Toc226456480][bookmark: _Toc248045183][bookmark: _Toc287363739][bookmark: _Toc311216722][bookmark: _Toc317198687][bookmark: _Toc415475792][bookmark: _Toc423599067][bookmark: _Toc423601571][bookmark: _Toc501130137][bookmark: _Toc510795060][bookmark: _Toc202359553][bookmark: _Toc213429752]Text description of logical operations
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0)
 statement 0
else if(condition 1)
 statement 1
...
else /* informative remark on remaining condition */
 statement n
is typically described in the following manner:
... as follows / ... the following applies:
–	If condition 0, statement 0
–	Otherwise, if condition 1, statement 1
–	...
–	Otherwise (informative remark on remaining condition), statement n
Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0a && condition 0b)
 statement 0
else if(condition 1a | | condition 1b)
 statement 1
...
else
 statement n
is typically described in the following manner:
... as follows / ... the following applies:
–	If all of the following conditions are true, statement 0:
–	condition 0a
–	condition 0b
–	Otherwise, if one or more of the following conditions are true, statement 1:
–	condition 1a
–	condition 1b
–	...
–	Otherwise, statement n
In the text, a statement of logical operations as would be described mathematically in the following form:
if(condition 0)
 statement 0
if(condition 1)
 statement 1
is typically described in the following manner:
When condition 0, statement 0
When condition 1, statement 1
[bookmark: _Toc77680344][bookmark: _Toc118289010][bookmark: _Toc226456481][bookmark: _Toc248045184][bookmark: _Toc287363740][bookmark: _Toc311216723][bookmark: _Toc317198688][bookmark: _Toc415475793][bookmark: _Toc423599068][bookmark: _Toc423601572][bookmark: _Toc501130138][bookmark: _Toc510795061][bookmark: _Toc202359554][bookmark: _Toc213429753]Processes
Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are available in the process specification and invoking. A process specification might also have a lower case variable explicitly specified as input. Each process specification has explicitly specified an output. The output is a variable that can either be an upper case variable or a lower case variable.
When invoking a process, the assignment of variables is specified as follows:
–	If the variables at the invoking and the process specification do not have the same name, the variables are explicitly assigned to lower case input or output variables of the process specification.
–	Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied.
In the specification of a process, a specific coding block is sometimes referred to by the variable name having a value equal to the address of the specific coding block.

[bookmark: _Ref34468389][bookmark: _Toc77680345][bookmark: _Toc118289011][bookmark: _Toc226456482][bookmark: _Toc248045185][bookmark: _Toc287363741][bookmark: _Toc311216724][bookmark: _Toc317198689][bookmark: _Toc415475794][bookmark: _Toc423599069][bookmark: _Toc423601573][bookmark: _Toc501130139][bookmark: _Toc510795062][bookmark: _Toc202359555][bookmark: _Ref212149400][bookmark: _Toc213429756]
Bitstream and waveform signal format
[bookmark: _Toc81309235][bookmark: _Toc81315995][bookmark: _Toc81318271][bookmark: _Toc81319337][bookmark: _Toc81390023][bookmark: _Toc81393036][bookmark: _Toc81394188][bookmark: _Toc81396366][bookmark: _Toc81462790][bookmark: _Toc81465264][bookmark: _Toc81309253][bookmark: _Toc81316013][bookmark: _Toc81318289][bookmark: _Toc81319355][bookmark: _Toc81390041][bookmark: _Toc81393054][bookmark: _Toc81394206][bookmark: _Toc81396384][bookmark: _Toc81462808][bookmark: _Toc81465282][bookmark: _Toc81309257][bookmark: _Toc81316017][bookmark: _Toc81318293][bookmark: _Toc81319359][bookmark: _Toc81390045][bookmark: _Toc81393058][bookmark: _Toc81394210][bookmark: _Toc81396388][bookmark: _Toc81462812][bookmark: _Toc81465286][bookmark: _Toc81309263][bookmark: _Toc81316023][bookmark: _Toc81318299][bookmark: _Toc81319365][bookmark: _Toc81390051][bookmark: _Toc81393064][bookmark: _Toc81394216][bookmark: _Toc81396394][bookmark: _Toc81462818][bookmark: _Toc81465292][bookmark: _Toc21960917][bookmark: _Toc21961085][bookmark: _Toc331257885][bookmark: _Toc331257893][bookmark: _Toc331257894][bookmark: _Toc33005196][bookmark: _Toc33005206][bookmark: _Toc33005216][bookmark: _Toc33005226][bookmark: _Toc33005236][bookmark: _Toc33005256][bookmark: _Toc33005266][bookmark: _Toc33005276][bookmark: _Toc33005286][bookmark: _Toc33005296][bookmark: _Toc33005306][bookmark: _Toc33005316][bookmark: _Toc33005326][bookmark: _Toc33005336][bookmark: _Toc33005346][bookmark: _Toc33005356][bookmark: _Toc33005376][bookmark: _Toc33005386][bookmark: _Toc33005396][bookmark: _Toc33005406][bookmark: _Toc33005436][bookmark: _Toc33005446][bookmark: _Toc33005456][bookmark: _Toc33005466][bookmark: _Toc33005486][bookmark: _Toc33005496][bookmark: _Toc327178039][bookmark: _Toc327178041][bookmark: _Toc327178043][bookmark: _Toc327178045][bookmark: _Toc327178047][bookmark: _Ref472449315][bookmark: _Toc501130156][bookmark: _Toc510795079][bookmark: _Toc202359556][bookmark: _Toc213429757]Syntax and semantics
[bookmark: _Toc33005504][bookmark: _Toc33005508][bookmark: _Toc33005509][bookmark: _Toc33005525][bookmark: _Toc33005553][bookmark: _Toc33005569][bookmark: _Toc33005589][bookmark: _Toc33005613][bookmark: _Toc33005629][bookmark: _Ref33101620][bookmark: _Toc77680368][bookmark: _Toc118289038][bookmark: _Toc226456515][bookmark: _Toc248045218][bookmark: _Toc287363748][bookmark: _Toc311216736][bookmark: _Toc317198700][bookmark: _Toc415475811][bookmark: _Toc423599086][bookmark: _Toc423601590][bookmark: _Toc501130157][bookmark: _Toc510795080][bookmark: _Toc202359557][bookmark: _Toc213429758]Method of specifying syntax in tabular form
The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax might be specified, either directly or indirectly, in other clauses.
NOTE – An actual decoder is expected to implement some means for identifying entry points into the bitstream and some means to identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified in this Specification.
The following table lists examples of the syntax specification format. When syntax_element appears, it specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax element in the bitstream parsing process.
	
	Descriptor

	/* A statement can be a syntax element with an associated descriptor or can be an expression used to specify conditions for the existence, type and quantity of syntax elements, as in the following two examples */
	

	syntax_element
	ue(k)

	conditioning statement
	

	
	

	/* A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a single statement. */
	

	{
	

		statement
	

		statement
	

		...
	

	}
	

	
	

	/* A "while" structure specifies a test of whether a condition is true, and if true, specifies evaluation of a statement (or compound statement) repeatedly until the condition is no longer true */
	

	while(condition)
	

		statement
	

	
	

	/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of whether a condition is true, and if true, specifies repeated evaluation of the statement until the condition is no longer true */
	

	do
	

		statement
	

	while(condition)
	

	
	

	/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an alternative statement. The "else" part of the structure and the associated alternative statement is omitted if no alternative statement evaluation is needed */
	

	if(condition)
	

		primary statement
	

	else
	

		alternative statement
	

	
	

	/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent statement until the condition is no longer true. */
	

	for(initial statement; condition; subsequent statement)
	

		primary statement
	

[bookmark: _Toc20134239][bookmark: _Ref33442712][bookmark: _Toc77680369][bookmark: _Toc118289039][bookmark: _Ref168818615][bookmark: _Ref196969106][bookmark: _Ref220340855][bookmark: _Toc226456516][bookmark: _Toc248045219][bookmark: _Toc287363749][bookmark: _Toc311216737][bookmark: _Ref316817924][bookmark: _Toc317198701][bookmark: _Ref398984612][bookmark: _Toc415475812][bookmark: _Toc423599087][bookmark: _Toc423601591][bookmark: _Toc501130158][bookmark: _Toc510795081][bookmark: _Ref5666199][bookmark: _Toc202359558][bookmark: _Toc213429759]Specification of syntax functions and descriptors
The functions presented in this clause are used in the specification of the syntax. These functions are expressed in terms of the value of a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream.
byte_aligned() is specified as follows:
–	If the current position in the bitstream is a byte-aligned position, i.e., the current position is an integer multiple of 8 bits from the position of the first bit in the bitstream, the return value of byte_aligned() is equal to TRUE.
–	Otherwise, the return value of byte_aligned() is equal to FALSE.
read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.
The following descriptors specify the parsing process of each syntax element:
–	ae(ctxSet): context-adaptive arithmetic entropy-coded syntax element. The variable ctxSet is a non-negative integer used for deriving the context variables for parsing. The parsing process for this descriptor is specified in clause 9.5.
	NOTE The variable ctxSet adds another dimension to the set of context variables. For example, many syntax elements use disjoint sets of context variables depending on the channel index.
–	aep(): equal probable arithmetic entropy-coded syntax element. The syntax element does not use context variables for parsing. The parsing process for this descriptor is specified in clause 9.5.
–	aet(): arithmetic entropy-coded termination syntax element. The syntax element does not use context variables for parsing. The parsing process for this descriptor is specified in clause 9.5.
–	b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return value of the function read_bits(8).
–	f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for this descriptor is specified by the return value of the function read_bits(n).
–	i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a two's complement integer representation with most significant bit written first.
–	se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in clause 9.3 with the order k equal to 0.
–	st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-8) characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) reads and returns a series of bytes from the bitstream, beginning at the current position and continuing up to but not including the next byte that is equal to 0x00, and advances the bitstream pointer by (stringLength + 1) * 8 bit positions, where stringLength is equal to the number of bytes returned.
	NOTE The st(v) syntax descriptor does not require that the current bit position in the bitstream is a byte-aligned position.
–	u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with most significant bit written first.
–	ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in clause 9.3 with the order k equal to 0.
–	ev(k,n,m): unsigned integer coded using escaped values. The parsing process for this descriptor is specified in clause 9.2.
–	utr(c): unsigned integer un-truncated Rice (UTR)-coded syntax element. The parsing process for this descriptor is specified in clause 9.4 with “c” denoting the cRiceParam parameter.
[bookmark: _Toc31037343][bookmark: _Ref35660929][bookmark: _Toc77680370][bookmark: _Toc118289040][bookmark: _Toc226456517][bookmark: _Toc248045220][bookmark: _Toc287363750][bookmark: _Toc311216738][bookmark: _Toc317198702][bookmark: _Toc415475813][bookmark: _Toc423599088][bookmark: _Toc423601592][bookmark: _Toc501130159][bookmark: _Toc510795082][bookmark: _Toc202359559][bookmark: _Toc213429760][bookmark: _Ref20133281][bookmark: _Toc20134240]Syntax in tabular form
[bookmark: _Toc20134241][bookmark: _Toc77680371][bookmark: _Toc118289041][bookmark: _Ref168818658][bookmark: _Ref220340857][bookmark: _Toc226456518][bookmark: _Toc248045221][bookmark: _Toc287363751][bookmark: _Toc311216739][bookmark: _Toc317198703][bookmark: _Toc415475814][bookmark: _Toc423599089][bookmark: _Toc423601593][bookmark: _Toc501130160][bookmark: _Toc510795083][bookmark: _Toc202359560][bookmark: _Toc213429761]Stream packet syntax
[bookmark: _Ref398984641][bookmark: _Toc415475815][bookmark: _Toc423599090][bookmark: _Toc423601594]General stream packet unit syntax
	stream_packet() {
	Descriptor

		stream_packet_header()
	

		NumBytesInSyntaxStructure = stream_packet_length
	

		for(i = 0; i < NumBytesInSyntaxStructure; i++)
	

			syntax_structure_byte[i]
	b(8)

	}
	

[bookmark: _Ref398984672][bookmark: _Toc415475816][bookmark: _Toc423599091][bookmark: _Toc423601595]Stream packet header syntax
	stream_packet_header() {
	Descriptor

		stream_packet_type
	ev(3,8,8)

		stream_packet_label
	ev(2,8,32)

		stream_packet_length
	ev(11,24,24)

	}
	

[bookmark: _Toc20134242][bookmark: _Toc77680372][bookmark: _Toc118289042][bookmark: _Toc226456519][bookmark: _Toc248045222][bookmark: _Toc287363752][bookmark: _Toc311216740][bookmark: _Toc317198704][bookmark: _Toc415475817][bookmark: _Toc423599092][bookmark: _Toc423601596][bookmark: _Toc501130161][bookmark: _Toc510795084][bookmark: _Toc202359561][bookmark: _Toc213429762]Raw byte sequence payloads, trailing bits and byte alignment syntax
[bookmark: _Ref180859691]Waveform parameter set syntax
	waveform_parameter_set() {
	Descriptor

		wps_waveform_parameter_set_id
	u(4)

		NumChannelGroups = 0
	

		TotalNumChannels = 0
	

		do {
	

			wps_num_channels_in_next_group_minus1
	ue(v)

			wps_num_channel_group_repetitions
	ue(v)

			for(j = 0; j <= wps_num_channel_group_repetitions; j++) {
	

				NumChannels[NumChannelGroups] =
					wps_num_channels_in_next_group_minus1 + 1
	

				ChannelGroupStartingPos[NumChannelGroups++]= TotalNumChannels
	

				TotalNumChannels += wps_num_channels_in_next_group_minus1 + 1
	

			}
	

			wps_more_channel_groups_present_flag
	u(1)

		} while(wps_more_channel_groups_present_flag)
	

		wps_channel_reordering_flag
	u(1)

		if(wps_channel_reordering_ flag) {
	

			wps_num_channel_swaps_minus1
	ue(v)

			for(i = 0; i <= wps_num_channel_swaps_minus1; i++) {
	

				wps_swap_frst_idx[i]
	ue(v)

				wps_swap_scnd_idx_min_frst_idx_min1[i]
	ue(v)

			}
	

		}
	

		wps_num_annotation_channels
	ue(v)

		for(j = 0; j < wps_num_annotation_channels; j++)
	

			AnnotationChannelNumSamples[j] = 0
	ue(v)

		trailing_bits()
	

	}
	

Channel group parameter set syntax
	channel_group_parameter_set() {
	Descriptor

	[bookmark: _Hlk191041744]	cgps_channel_group_parameter_set_id
	u(8)

	[bookmark: _Hlk192163689]	cgps_waveform_parameter_set_id
	u(4)

		cgps_length_signal_mode_flag
	u(1)

		cgps_frame_length_shift
	u(4)

		cgps_max_min_block_size
	u(6)

		cgps_deblocking_mode
	u(2)

		cgps_max_bit_depth
	u(3)

		cgps_allow_cross_channel_pred_flag
	u(1)

		if(cgps_allow_cross_channel_pred_flag) {
	

			cgps_cc_pred_filtering_mode
	u(2)

			cgps_allow_cc_pred_mult_hyp_flag
	u(1)

		}
	

		cgps_allow_block_matching_pred_flag
	u(1)

		if(cgps_allow_block_matching_pred_flag) {
	

			cgps_bm_pred_filtering_mode
	u(2)

			cgps_allow_bm_pred_mult_hyp_flag
	u(1)

			cgps_allow_bm_offset_pred_prev_ch_flag
	u(1)

		}
	

		cgps_allow_DC_pred_flag
	u(1)

		cgps_allow_line_fit_flag
	u(1)

		cgps_allow_lpf_flag
	u(1)

		cgps_allow_sample_pred_fixed_weights_flag
	u(1)

		if(cgps_allow_lpf_flag)
	

			cgps_lpf_allow_prev_ch_flag
	u(1)

		cgps_allow_transform_skip
	u(1)

		cgps_residual_quant_mode
	u(2)

		cgps_ch_indep_interval_idx
	u(4)

		DepChMask = (2 << cgps_ch_indep_interval_idx) − 1
	

		cgps_max_abs_delta_qp_idx
	u(3)

		MaxAbsDeltaQP = (1 << cgps_max_abs_delta_qp_idx) − 1
	

		cgps_qp
	u(10)

		if(cgps_allow_transform_skip)
	

			cgps_allow_verbatim_coding
	u(1)

		cgps_allow_zero_lsb_flag
	u(1)

		cgps_allow_lms_flag
	u(1)

		if(cgps_ allow_lms_flag) {
	

			cgps_allow_lms_split_flag
	u(1)

			cgps_lms_ar_order_over_four
	u(4)

			cgps_allow_cc_lms_flag
	u(1)

			if(cgps_ allow_cc_lms_flag) {
	

				cgps_max_order_cc_lms_minus_one
	u(6)

		}
	

		cgps_ctx_init_flag
	u(1)

		trailing_bits()
	

	}
	

[bookmark: _Toc415475819][bookmark: _Toc423599094][bookmark: _Toc423601598][bookmark: _Ref23239590]Independent frame syntax
	independent_frame() {
	Descriptor

		if_channel_group_parameter_set_id
	u(8)

	[bookmark: _Hlk192085885]	if(NumChannelGroups > 1)
	

	[bookmark: _Hlk192085968]		if_channel_group_id
	u(v)

		for(ch = 1; ch < NumChannels[if_channel_group_id]; ch++) {
	

			if_mean_per_channel[ch]
	u(16)

		}
	

		if(cgps_allow_cross_channel_pred_flag)
	

			for(ch = 1; ch < NumChannels[if_channel_group_id]; ch++)
	

				for(n = 0; n <= cgps_allow_cc_pred_mult_hyp_flag; n++)
	

					CrossChannelPredInputChDistMinus1[ch][n] = 0
	

		if(cgps_allow_block_matching_pred_flag)
	

			for(ch = 0; ch < NumChannels[if_channel_group_id]; ch++)
	

				for(n = 0; n <= cgps_allow_bm_pred_mult_hyp_flag; n++) {
	

					BlockMatchingPredOffsetMinusBlocksSize[ch][n] = 0
	

					Log2BlockMatchingPredBlockSize[ch][n] = 0
	

				}
	

		if(cgps_allow_lpf_flag) {
	

			LPFMaxNumWeights = 16
	

			for(ch = 0; ch < NumChannels[if_channel_group_id]; ch++)
	

				for(n = 0; n <= LPFMaxNumWeights; n++) {
	

					LPFWeightsPred[ch][n] = 0
	

				}
	

		}
	

		if(cgps_length_signal_mode_flag)
	

	[bookmark: _Hlk96607505]		if_indep_num_samples_per_channel_minus1
	u(32)

		if(cgps_ctx_init_flag)
	

			if_ctx_init_mode
	u(1)

		for(i = 0; i < NumChannels[if_channel_group_id]; i++)
	

			CurrBlockQP[i] = cgps_qp
	

		for(ch = 0; ch < NumChannels[if_channel_group_id]; ch++) {
	

			for(size = 0; size < 6; size++) {
	

				LastRingPosNorm[ch][size] = 0
	

			}
	

			LastRingHead[ch] = 0
	

			LastRingCount[ch] = 0
	

			LastDeltaMode[ch] = 0
	

			LastDeltaStreak[ch] = 0
	

			LastScanPosPrev [ch] = 0
	

			Log2BlockSizePrev [ch] = 4
	

		}
	

		byte_alignment()
	

		general_frame_data(NumChannels[if_channel_group_id])
	

		trailing_bits()
	

	}
	

[bookmark: _Toc20134244][bookmark: _Toc77680374][bookmark: _Ref168818756][bookmark: _Ref220341273][bookmark: _Toc226456525][bookmark: _Toc248045224][bookmark: _Toc287363754][bookmark: _Toc311216742][bookmark: _Toc317198706][bookmark: _Toc415475820][bookmark: _Toc423599095][bookmark: _Toc423601599]Dependent frame syntax
	dependent_frame() {
	Descriptor

		if(NumChannels > 1)
	

			df_channel_group_id
	u(v)

		general_frame_data(NumChannels[df_channel_group_id])
	

		trailing_bits()
	

	}
	

Annotation channel syntax
	annotation_channel() {
	Descriptor

		ac_waveform_parameter_set_id
	u(4)

		ac_annotation_channel_id
	ue(v)

		ac_num_annotation_bytes_div2_minus1
	ue(v)

		byte_alignment()
	

		annotation_channel_data()
	

	}
	

[bookmark: _Ref212039970]Timestamp syntax
	timestamp_struct() {
	Descriptor

		ts_waveform_parameter_set_id
	u(4)

		if(NumChannelGroups > 1)
	

			ts_channel_group_id
	u(v)

		ts_time_idx_flag
	u(1)

		if(ts_time_idx_flag)
	

			ts_time_idx
	ue(v)

		ts_offset_type_flag
	u(1)

		ts_time_world_flag
	u(1)

		if(ts_time_world_flag) {
	

			ts_type
	u(3)

			ts_time_type
	u(7)

			if(ts_time_type = = TIME_LONG) {
	

				ts_time_long
	se(v)

				ts_time_offset
	se(v)

			} else if(ts_time_type = = TIME_SHORT) {
	

				ts_time_short
	ev(4,8,8)

				ts_time_offset
	ev(4,8,8)

			} else if(ts_time_type = = TIME_UXT) {
	

				ts_time_uxt
	se(v)

				ts_time_offset
	se(v)

			} else if(ts_time_type = = TIME_TAI) { /* per ISO/IEC 23001-17 */
	

				ts_time_tai
	u(64)

				ts_status_bits
	u(8)

			} else if(ts_time_type = = TIME_UTC)
	

				ts_time_utc
	st(v)

		} else {
	

			ts_time_long_relative
	ue(v)

			ts_time_offset_relative
	ue(v)

		}
	

		trailing_bits()
	

	}
	

[bookmark: _Ref212040249]Segment payload syntax
	segment_payload() {
	Descriptor

		sp_channel_group_parameter_set_id
	u(8)

		if(NumChannelGroups > 1)
	

			sp_channel_group_id
	u(v)

		SegmentPayloadFramesFlag = 1
	

		sp_segment_payload_metadata_flag
	u(1)

		if(sp_segment_payload_metadata_flag) {
	

			segment_payload_metadata()
	

			sp_segment_payload_frames_flag
	u(1)

			SegmentPayloadFramesFlag = sp_segment_payload_frames_flag
	

		}
	

		if(SegmentPayloadFramesFlag) {
	

			sp_num_frames_per_segment_minus_one
	ue(v)

			segment_payload_metadata_coded_sizes()
	

			sp_num_sequences_minus_one
	ue(v)

			sp_varying_num_frames_per_sequence_flag
	u(1)

			if(sp_varying_num_frames_per_sequence_flag)
	

				for(s = 0; s < sp_num_sequences_minus_one + 1; s++) {
	

					sp_num_frames_per_sequence_minus_one
	ue(v)

					NumFramesPerSequence[s] = sp_num_frames_per_sequence_minus_one + 1
	

				}
	

			else
	

				NumFramesPerSequence[0] = (sp_num_frames_per_segment_minus_one + 1) /
												(sp_num_sequences_minus_one + 1)
	

			s = 0
	

			byte_alignment()
	

			for(n = 0; n < sp_num_frames_per_segment_minus_one + 1; n++)
	

				if(n % NumFramesPerSequence[s] = = 0) {
	

					independent_frame()
	

					s = (sp_varying_num_frames_per_sequence_flag = = 1) ? (s + 1) : 0
	

				} else
	

					dependent_frame()
	

		}
	

		trailing_bits()
	

	}
	

[bookmark: _Ref213352614]Segment payload metadata syntax
	[bookmark: _Hlk208498084]segment_payload_metadata() {
	Descriptor

		sp_num_features
	ue(v)

		for(i = 0; i < sp_num_features; i++) {
	

			sp_feature_type
	st(v)

			sp_feature_segment_marking_flag
	u(1)

			if(sp_feature_segment_marking_flag) {
	

				sp_feature_segment_start
	ue(v)

				sp_feature_segment_length
	ue(v)

			}
	

		}
	

	[bookmark: _Hlk209552361]	sp_segment_distortion_measures_flag
	u(1)

		if(sp_segment_distortion_measures_flag) {
	

			DistortionMeasuresInChannelGroupFlag = 1
	

			sp_distortion_measures_per_channel_flag
	u(1)

			if(sp_distortion_measures_per_channel_flag) {
	

				sp_distortion_measures_in_cg_flag
	u(1)

				DistortionMeasuresInChannelGroupFlag = sp_distortion_measures_in_cg_flag
	

				sp_num_distortion_measures_per_channel
	ev(3,8,8)

				for(ch = 0; ch < NumChannels[sp_channel_group_id]; ch++) {
	

					sp_variance[ch]
	u(8)

					sp_squared_error[ch]
	u(8)

					for(i = 0; i < sp_num_distortion_measures_per_channel; i++) {
	

						sp_distortion_measure_type[ch][i]
	st(v)

						sp_distortion_measure[ch][i]
	se(v)

					}
	

				}
	

			}
	

	[bookmark: _Hlk209552434]		if(DistortionMeasuresInChannelGroupFlag) {
	

				sp_num_distortion_measures_in_cg
	ev(3,8,8)

				sp_variance_cg
	u(8)

				sp_squared_error_cg
	u(8)

				for(i = 0; i < sp_num_distortion_measures_in_cg; i++) {
	

					sp_distortion_measure_type_cg[i]
	st(v)

					sp_distortion_measure_cg[i]
	se(v)

				}
	

			}
	

		}
	

	}
	

[bookmark: _Ref213352617]Segment payload metadata coded sizes syntax
	segment_payload_metadata_coded_sizes() {
	Descriptor

		sp_frame_size[0]
	ue(v)

		if(sp_num_frames_per_segment_minus_one > 0) {
	

			sp_delta_utr_param
	u(v)

			for(n = 1; n < sp_num_frames_per_segment_minus_one + 1; n++) {
	

				sp_abs_delta
	utr(sp_delta_utr_param)

				sp_sign_delta
	u(1)

				delta = (sp_sign_delta = = 1) ? −sp_abs_delta : sp_abs_delta
	

				sp_frame_size[n] = sp_frame_size[n − 1] + delta
	

			}
	

		}
	

	}
	

[bookmark: _Ref212040461]Feature set syntax
	feature_set() {
	Descriptor

		ft_waveform_parameter_set_id
	u(4)

		if(NumChannelGroups > 1)
	

			ft_channel_group_id
	u(v)

		ft_num_features
	ue(v)

		for(i = 0; i < ft_num_features; i++) {
	

			ft_feature_annotation_type[i]
	u(2)

			if(ft_feature_annotation_type = = 0)
	

				ft_annotation_str
	st(v)

			else if(ft_feature_annotation_type = = 1)
	

				ft_annotation_uri
	st(v)

			else if(ft_feature_annotation_type = = 2)
	

				ft_annotation_channel_id
	ue(v)

			else
	

				ft_feature_type_enum
	ev(3,8,8)

			FeatureType[i] = feat_extract()
	

			ft_feature_marking_present_flag[i]
	u(1)

			if(ft_feature_marking_present_flag[i]) {
	

				ft_feature_start[i]
	ue(v)

				ft_feature_length[i]
	ue(v)

			}
	

		}
	

		if(cs_enable_high_res_quality_metrics_flag) {
	

			ft_num_qualities
	ev(3,8,8)

			for(j = 0; j < ft_num_qualities; j++) {
	

				ft_quality_start [j]
	ue(v)

				ft_quality_length [j]
	ue(v)

				ft_quality_value [j]
	u(v)

			}
	

		}
	

		trailing_bits()
	

	}
	

[bookmark: _Ref213353282]Config set syntax
	config_set() {
	Descriptor

		cs_num_wps_ids
	u(4)

		for(i = 0; i < cs_num_wps_ids; i++) {
	

			cs_wps_id
	u(4)

			cs_wps_id_label
	ev(2,8,32)

			if(cs_num_wps_ids > 1)
	

				cs_wps_id_label_zero
	ev(2,8,32)

			cs_num_channel_groups_in_wps[i]
	ue(v)

			cs_num_sampling_freqs_in_wps
	u(4)

			for(sf = 0; sf < cs_num_sampling_freqs_in_wps; sf++)
	

				cs_sampling_freq[i][sf]
	ue(v)

			if(cs_num_sampling_freqs_in_wps > 1)
	

				for(cg = 0; cg < cs_num_channel_groups_in_wps[i]; cg++)
	

					cs_sampling_freq_idx[i][cg]
	u(v)

			cs_num_signal_types_in_wps
	u(4)

			for(st = 0; st < cs_num_signal_types_in_wps; st++) {
	

				cs_signal_type[i][st]
	ev(3,8,8)

				cs_signal_num_annotation_channels
	ue(v)

				for(ac = 0; ac < cs_signal_num_annotation_channels; ac++)
	

					cs_signal_annotation_channel_id[i][st][ac]
	ue(v)

			}
	

			if(cs_num_signal_types_in_wps > 1)
	

				for(cg=0; cg < cs_num_channel_groups_in_wps[i]; cg++)
	

					cs_signal_type_idx[i][cg]
	u(v)

			cs_signal_info_data_flag_in_wps
	u(1)

			if(cs_signal_info_data_flag_in_wps) {
	

				for(cg = 0; cg < cs_num_channel_groups_in_wps[i]; cg++) {
	

					cs_has_range_info
	u(1)

					if(cs_has_range_info) {
	

						cs_digital_min[i][cg]
	se(v)

						cs_digital_max[i][cg]
	se(v)

						cs_analogue_min[i][cg]
	se(v)

						cs_analogue_max[i][cg]
	se(v)

						cs_analogue_units[i][cg]
	st(v)

					}
	

					cs_recording_start_time_flag[i][cg]
	u(1)

				}
	

			}
	

		}
	

		cs_config_extension_flag
	u(1)

		if(cs_config_extension_flag)
	

			config_extension_data()
	

		trailing_bits()
	

	}
	

[bookmark: _Ref213353285]Config extension data syntax
	config_extension_data() {
	Descriptor

		for(i = 0; i < cs_num_wps_ids; i++) {
	

			cs_features_in_wps_flag
	u(1)

			if(cs_features_in_wps_flag) {
	

				for(cg = 0; cg < cs_num_channel_groups_in_wps[i]; cg++) {
	

					cs_features_in_cg_id_flag
	u(1)

					if(cs_features_in_cg_id_flag) {
	

						cs_num_features_in_cg_id[i][cg]
	ue(v)

						cs_enable_high_res_quality_metrics_flag
	u(1)

						if(cs_enable_high_res_quality_metrics_flag) {
	

							cs_has_custom_quality_lut_flag
	u(1)

							if(cs_has_custom_quality_lut_flag) {
	

								cs_quality_metric[i][cg]
	u(3)

								if(cs_quality_metric[i][cg] = = 7)
	

									cs_quality_metric[i][cg]
	st(v)

								cs_quality_num_bands
	ue(v)

								for(j = 0; j < cs_quality_num_bands; j++)
	

									cs_quality_lut[i][cg][j]
	u(7)

							}
	

							cs_uses_quality_threshold_flag
	u(1)

							cs_has_custom_quality_threshold_flag
	u(1)

							if(cs_has_custom_quality_threshold_flag)
	

								cs_quality_threshold[i][cg]
	u(7)

						}
	

					}
	

				}
	

			}
	

			cs_segment_payload_frames_in_wps
	u(2)

			if(cs_segment_payload_frames_in_wps > 1) /* 2 or 3: partial */
	

				for(cg = 0; cg < cs_num_channel_groups_in_wps[i]; cg++)
	

					cs_segment_payload_frames_in_cg_id_flag[i][cg]
	u(1)

		}
	

	}
	

Synchronization structure syntax
	synchronization_struct() {
	Descriptor

		syncword_8bits
	u(8)

	}
	

[bookmark: _Ref212040609]User identifier syntax
	user_identifier() {
	Descriptor

		universally_unique_identifier()
	

		trailing_bits()
	

	}
	

[bookmark: _Ref212040619]Stream identifier syntax
	stream_identifier() {
	Descriptor

		universally_unique_identifier()
	

		trailing_bits()
	

	}
	

[bookmark: _Ref213352773][bookmark: _Hlk192247205]Universally unique identifier syntax
	universally_unique_identifier() {
	Descriptor

		uuid_segment_start_flag
	u(1)

		uuid_segment_stop_flag
	u(1)

		uuid_reserved_2bits
	u(2)

		uuid_segment_length_minus1
	u(4)

		for(i = 0; i <= uuid_segment_length_minus1; i++)
	

			uuid_data[i]
	b(8)

	}
	

[bookmark: _Ref212040526]Authentication start syntax
	authentication_start() {
	Descriptor

		aust_id
	u(8)

		aust_sequence_id
	u(1)

		aust_hash_type
	ev(4,8,8)

		aust_key_id
	ev(3,8,8)

		aust_prov_id
	ev(8,8,16)

		if(aust_prov_id = = 0)
	

			aust_key_source_uri
	st(v)

		aust_frame_types_present_flag
	u(1)

		if(aust_frame_types_present_flag) {
	

			aust_inclusion_types_flag
	u(1)

			aust_pactype_list_length_minus1
	u(6)

			for(i = 0; i <= aust_pactype_length_minus1; i++)
	

				aust_packet_type[i]
	ev(8,8,8)

		} else
	

			aust_reserved_7bits
	u(7)

		aust_multi_stream_flag
	u(1)

		if(aust_multi_stream_flag) {
	

			aust_inclusion_labels_flag
	u(1)

			aust_label_list_length_minus1
	u(6)

			for(i = 0; i <= aust_label_list_length_minus1; i++)
	

				aust_add_packet_label[i]
	ev(8,8,32)

		}
	

		trailing_bits()
	

	}
	

[bookmark: _Ref212040537][bookmark: _Hlk192247459]Authentication signature syntax
	authentication_signature() {
	Descriptor

		ausig_id
	u(8)

		ausig_sequence_id
	u(1)

		ausig_partial_sig_flag
	u(1)

		if(ausig_partial_sig_flag) {
	

			ausig_segment_start_flag
	u(1)

			ausig_segment_stop_flag
	u(1)

			ausig_segment_length_minus1
	u(6)

			for(i = 0; i <= ausig_segment_length_minus1; i++)
	

				ausig_sig_partial[i]
	b(8)

		} else {
	

			ausig_length_minus1
	u(6)

			for(i = 0; i <= ausig_segment_length_minus1; i++)
	

				ausig_sig_complete[i]
	b(8)

		}
	

		trailing_bits()
	

	}
	

CRC 16 syntax
	crc16_struct() {
	Descriptor

	}
	

CRC 32 syntax
	crc32_struct() {
	Descriptor

	}
	

Global CRC 16 syntax
	global_crc16_struct() {
	Descriptor

	}
	

Global CRC 32 syntax
	global_crc32_struct() {
	Descriptor

	}
	

Auxiliary metadata syntax
	auxiliary_metadata() {
	Descriptor

		am_header_crc32
	u(32)

		am_extension_present_flag
	u(1)

		am_waveform_type
	u(2)

		am_length_signal_mode
	u(1)

		am_allow_reconfig_flag
	u(1)

		am_copyright_flag
	u(1)

		am_original_flag
	u(1)

		am_private_flag
	u(1)

		am_stream_max_sampling_rate_minus1
	u(24)

		am_stream_max_num_channels_minus1
	u(16)

		if(am_length_signal_mode)
	

			am_stream_num_samples_per_ch
	u(32)

		if(am_waveform_type = = WT_BS2088) {
	

			am_metadata_reserved_flag
	u(1)

			am_metadata_num_bytes_minus1
	u(31)

			for(i = 0; i <= am_metadata_num_bytes_minus1; i++)
	

				am_metadata_payload_bytes[i]
	u(8)

		}
	

		am_signal_type
	u(8)

	}
	

[bookmark: _Toc77680387][bookmark: _Ref168818787][bookmark: _Ref220341300][bookmark: _Toc226456538][bookmark: _Toc248045233][bookmark: _Toc287363760][bookmark: _Toc311216749][bookmark: _Toc317198718][bookmark: _Ref398986104][bookmark: _Toc415475828][bookmark: _Toc423599103][bookmark: _Toc423601607]Trailing bits syntax
	trailing_bits() {
	Descriptor

		stop_one_bit /* equal to 1 */
	f(1)

		while(!byte_aligned())
	

			alignment_zero_bit /* equal to 0 */
	f(1)

	}
	

[bookmark: _Toc311216750][bookmark: _Toc317198719][bookmark: _Ref398986108][bookmark: _Toc415475829][bookmark: _Toc423599104][bookmark: _Toc423601608]Byte alignment syntax
	byte_alignment() {
	Descriptor

		while(!byte_aligned())
	

			byte_alignment_bit_equal_to_zero /* equal to 0 */
	f(1)

	}
	

[bookmark: _Toc311216751][bookmark: _Toc317198720][bookmark: _Toc415475833][bookmark: _Toc423599108][bookmark: _Toc423601612][bookmark: _Toc501130165][bookmark: _Toc510795088][bookmark: _Ref180843929][bookmark: _Ref185617767][bookmark: _Ref185617774][bookmark: _Ref185617797][bookmark: _Toc202359562][bookmark: _Ref213065311][bookmark: _Ref213067491][bookmark: _Ref213067562][bookmark: _Toc213429763]Frame data syntax
[bookmark: _Ref180839627]General frame data syntax
	[bookmark: _Toc328577293][bookmark: _Toc328598096][bookmark: _Toc328662741][bookmark: _Toc328752581][bookmark: _Toc328577294][bookmark: _Toc328598097][bookmark: _Toc328662742][bookmark: _Toc328752582][bookmark: _Toc328577397][bookmark: _Toc328598200][bookmark: _Toc328662845][bookmark: _Toc328752685][bookmark: _Toc328577398][bookmark: _Toc328598201][bookmark: _Toc328662846][bookmark: _Toc328752686][bookmark: _Toc328577399][bookmark: _Toc328598202][bookmark: _Toc328662847][bookmark: _Toc328752687][bookmark: _Toc328577484][bookmark: _Toc328598287][bookmark: _Toc328662932][bookmark: _Toc328752772][bookmark: _Toc328577485][bookmark: _Toc328598288][bookmark: _Toc328662933][bookmark: _Toc328752773][bookmark: _Toc328577486][bookmark: _Toc328598289][bookmark: _Toc328662934][bookmark: _Toc328752774][bookmark: _Toc328577577][bookmark: _Toc328598380][bookmark: _Toc328663025][bookmark: _Toc328752865][bookmark: _Toc328577578][bookmark: _Toc328598381][bookmark: _Toc328663026][bookmark: _Toc328752866][bookmark: _Toc328577579][bookmark: _Toc328598382][bookmark: _Toc328663027][bookmark: _Toc328752867][bookmark: _Toc328577607][bookmark: _Toc328598410][bookmark: _Toc328663055][bookmark: _Toc328752895][bookmark: _Toc311216758][bookmark: _Toc317198728][bookmark: _Ref398986329][bookmark: _Ref398986351][bookmark: _Toc415475836][bookmark: _Toc423599111][bookmark: _Toc423601615]general_frame_data(numChannels) {
	Descriptor

		FrameNumSamplesPerChannel = 0
	

		do {
	

			if(FrameNumSamplesPerChannel > 0)
	

				end_of_frame_sequence_flag
	aet()

			if(!end_of_frame_sequence_flag) {
	

				if(MaxSplitDepth > 0)
	

					block_split_log2
	ae(0)

				Log2BlockSize = Log2MaxBlockSize − block_split_log2
	

				prediction_trafo_data_block(numChannels)
	

				FrameNumSamplesPerChannel += 1 << Log2BlockSize
	

				end_of_truncated_frame_sequence_flag
	aet()

				if(end_of_truncated_frame_sequence_flag)
	

					num_samples_per_channel_to_discard
	u(v)

				if(!end_of_truncated_frame_sequence_flag &&
					FrameNumSamplesPerChannel = = (1 << Log2FrameLength))
	

					end_of_frame_one_bit /* equal to 1 */
	aet()

			}
	

		} while(!end_of_frame_sequence_flag && !end_of_truncated_frame_sequence_flag &&
				!end_of_frame_one_bit)
	

	}
	

[bookmark: _Toc287363765][bookmark: _Toc311216756]Predictive transform coding block syntax
[bookmark: _Ref205561912]Prediction trafo block data syntax
	prediction_trafo_data_block () {
	Descriptor

		for(ch = 0; ch < numChannels; ch++) {
	

			if(cgps_allow_block_matching_pred_flag | | (cgps_allow_cross_channel_pred_flag &&
				(ch & DepChMask) > 0))
	

				block_matching_or_cross_channel_pred_flag
	ae(ch)

			if(block_matching_or_cross_channel_pred_flag) {
	

				if(cgps_allow_block_matching_pred_flag &&
				cgps_allow_cross_channel_pred_flag
				&& (ch & DepChMask) > 0)
	

					cross_channel_pred_flag
	ae(ch)

				if(cross_channel_pred_flag)
	

					cross_channel_prediction_data(ch)
	

				else
	

					block_matching_prediction_data(ch)
	

			} else
	

				block_pred_mode
	ae(ch)

			if(block_matching_or_cross_channel_pred_flag | |
				(block_pred_mode = = BPM_OFF)) {
	

				sample_pred_mode(ch)
	

				if(spred_lpf_flag)
	

					linear_predictive_filtering_data(ch)
	

			}
	

			if(cgps_max_abs_delta_qp_idx > 0) {
	

				block_abs_delta_qp
	ae(ch)

				if(block_abs_delta_qp > 0)
	

					block_delta_qp_sign_flag
	aep()

				blockDeltaQP = block_delta_qp_sign_flag ?
									−block_abs_delta_qp : block_abs_delta_qp
	

				CurrBlockQP[ch] =
				Clip3(0, 1023, CurrBlockQP[ch] + blockDeltaQP)
	

			}
	

			if(spred_lpf_or_diff_flag | | (spred_rem_mode_idx = = 2)) {
	

	[bookmark: _Hlk212630823]			if((spred_rem_mode_idx = = 2) | | CurrBlockQP[ch] > 0) {
	

					transform_present_flag
	ae(ch)

					TransformMode = TM_OFF
	

					if(transform_present_flag) {
	

						transform_dst_flag
	aep()

						TransformMode = (transform_dst_flag = = 1 ? TM_DST : TM_DCT)
	

					}
	

				}
	

			}
	

			if(cgps_allow_zero_lsb_flag && CurrBlockQP[ch] = = 0) {
	

				zlsb_present_flag
	ae(ch)

				if(zlsb_present_flag)
	

					num_zlsb_minus1
	aep()

			}
	

			NumZLSB = zlsb_present_flag ? 1 + num_zlsb_minus1 : 0
	

			quant_res_sample_data(ch)
	

		}
	

	}
	

[bookmark: _Ref180588620]Cross-channel prediction data syntax
	cross_channel_prediction_data(ch) {
	Descriptor

		cc_pred_offset_only_flag
	ae(ch)

		if(cgps_cc_pred_filtering_mode > 0)
	

			cc_pred_filter_flag
	ae(ch)

			if(cgps_cc_pred_filtering_mode = = 2 && cc_pred_filter_flag)
	

				cc_pred_filter_idx
	ae(ch)

		if((ch & DepChMask) > 1) {
	

			if(cgps_allow_cc_pred_mult_hyp_flag)
	

				cc_pred_mult_hyp_flag
	ae(ch)

			if(!cc_pred_mult_hyp_flag | | (ch & DepChMask) > 2) {
	

				for(n = 0; n <= cc_pred_mult_hyp_flag; n++) {
	

					cc_pred_abs_chd_greater0_flag[n]
	ae(ch)

					if(cc_pred_abs_chd_greater0_flag[n]) {
	

						cc_pred_abs_chd_minus1[n]
	aep()

						cc_pred_chd_sign_flag[n]
	aep()

					}
	

					cCPredInputChDistDiffSign = cc_pred_chd_sign_flag[n] ? −1 : 1
	

					cCPredInputChDistDiff = cc_pred_abs_chd_greater0_flag[n] ?
 						cCPredInputChDistDiffSign * (cc_pred_abs_chd_minus1[n] +1) : 0
	

					CrossChannelPredInputChDistMinus1[ch][n] =
						Max(0, Min ((ch & DepChMask) − 1, cCPredInputChDistDiff +
						CrossChannelPredInputChDistMinus1[ch][n]))
	

				}
	

			}
	

		}
	

	}
	

Block matching prediction data syntax
	block_matching_prediction_data(ch) {
	Descriptor

		if(cgps_allow_bm_pred_mult_hyp_flag) {
	

			bm_pred_mult_hyp_flag
	ae(ch)

			bm_pred_add_offset_flag
	ae(ch)

		}
	

		for(n = 0; n <= bm_pred_mult_hyp_flag; n++) {
	

			if(cgps_bm_pred_filtering_mode > 0)
	

				bm_pred_filter_flag[n]
	ae(ch)

			if(bm_pred_filter_flag[n] && cgps_bm_pred_filtering_mode = = 2)
	

				bm_pred_filter_idx[n]
	ae(ch)

			if(cgps_allow_bm_offset_pred_prev_ch_flag && (ch & DepChMask) > 0)
	

				bm_pred_off_pred_prev_ch_flag[n]
	ae(ch)

			bm_pred_abs_offd_greater0_flag[n]
	ae(ch)

			if(bm_pred_abs_offd_greater0_flag[n]) {
	

				bm_pred_abs_offd_minus1[n]
	ae(ch)

				bm_pred_offd_sign_flag[n]
	aep()

			}
	

			bmOffsetMinusBlockSizeDiffSign = bm_pred_offd_sign_flag[n] ? −1 :1
	

			bmOffsetMinusBlockSizeDiff = bm_pred_abs_offd_greater0_flag[n] ?
				bmOffsetMinusBlockSizeDiffSign *(bm_pred_abs_offd_minus1 + 1) : 0
	

			bmOffsetMinusBlockSizePred = bm_pred_off_pred_prev_ch_flag[n] ?
				BlockMatchingPredOffsetMinusBlocksSize[ch − 1][n] :
				BlockMatchingPredOffsetMinusBlocksSize[ch][n]
	

			log2BMBlockSizePred = bm_pred_off_pred_prev_ch_flag[n] ?
				Log2BlockMatchingPredBlockSize[ch − 1][n] :
				Log2BlockMatchingPredBlockSize[ch][n]
	

			if((log2BMBlockSizePred = = Log2BlockSize) | |
			(log2BMBlockSizePred = = 0)) {
	

				BlockMatchingPredOffsetMinusBlocksSize[ch][n] =
					bmOffsetMinusBlockSizePred + bmOffsetMinusBlockSizeDiff
	

			} else {
	

				bmOffsetPred = bmOffsetMinusBlockSizePred + (1 << log2BMBlockSizePred)
	

				if(log2BMBlockSizePred > Log2BlockSize && bmOffsetMinusBlockSizePred >
				(Log2BlockSize << 6))
	

					bmOffsetPred = bmOffsetPred >> (log2BMBlockSizePred − Log2BlockSize)
	

				if(bmOffsetPred < (1 << Log2BlockSize))
	

					bmOffsetPred = bmOffsetPred << (Log2BlockSize − log2BMBlockSizePred)
	

				BlockMatchingPredOffsetMinusBlocksSize[ch][n] =
				bmOffsetPred − (1 << Log2BlockSize) + bmOffsetMinusBlockSizeDiff
	

			}
	

			BlockMatchingPredOffsetMinusBlocksSize[ch][n] = Clip3(0, (1 << 16) − 1,
			BlockMatchingPredOffsetMinusBlocksSize[ch][n])
	

			Log2BlockMatchingPredBlockSize[ch][n] = Log2BlockSize
	

		}
	

	}
	

Sample pred mode syntax
	sample_pred_mode(ch) {
	Descriptor

		spred_lpf_or_diff_flag
	ae(ch)

		if(cgps_allow_lpf_flag && spred_lpf_or_diff_flag)
	

			spred_lpf_flag
	ae(ch)

		if(!spred_lpf_or_diff_flag)
	

			spred_rem_mode_idx
	ae(ch)

	}
	

Linear predictive filtering data syntax
	linear_predictive_filtering_data(ch) {
	Descriptor

		if((ch & DepChMask) > 0 &&
			cgps_lpf_allow_prev_ch_flag)
	

			lpf_prev_ch_flag
	ae(ch)

		if(lpf_prev_ch_flag) {
	

			lpf_prev_ch_idx
	aep()

			lpf_prev_ch_weight_abs
	aep()

			if(lpf_prev_ch_weight_abs > 0)
	

				lpf_prev_ch_weight_sign_flag
	aep()

		}
	

		lpf_delta_coding_flag
	ae(ch)

		lpf_num_weights_idx
	ae(ch)

		LPFNumWeightsCurr = ((lpf_num_weights_idx + 1) << 1)
	

		for(n = 0; n < LPFNumWeightsCurr; n++) {
	

			abs_lpf_weight_greater0_flag[n]
	ae(ch)

			if(abs_lpf_weight_greater0_flag[n]) {
	

				abs_lpf_weight_minus1[n]
	ae(ch)

				lpf_weight_sign_flag[n]
	aep()

			}
	

			lpfWeightSign = lpf_weight_sign_flag[n] ? − 1 : 1
	

			currentVal = abs_lpf_weight_greater0_flag[n] ?
					lpfWeightSign * (abs_lpf_weight_minus1[n] + 1) : 0
	

			if(lpf_delta_coding_flag)
	

				LPFWeightsCurr[n] = Clip3(−32, 32,
				currentVal + LPFWeightsPred[ch][n])
	

			else
	

				LPFWeightsCurr[n] = currentVal
	

		}
	

		for(n = 0; n < LPFMaxNumWeights; n++) {
	

			LPFWeightsPred[ch][n] = (n < LPFNumWeightsCurr) ?
			LPFWeightsCurr[n] : 0
	

		}
	

	}
	

Quant res sample data syntax
	quant_res_sample_data(ch) {
	Descriptor

		NumQuantIndices = 1 << Log2BlockSize
	

		if(block_pred_mode = = BPM_OFF && TransformMode = = TM_OFF &&
		 SamplePredMode = = SPM_OFF && cgps_allow_verbatim_coding_flag = = 1) {
	

			IntBitDepth = BitDepthMax − NumZLSB
	

			offset = (1 << IntBitDepth) >> 1
	

			for(k = 0; k < NumQuantIndices; k = k + 1) {
	

				coeff_bypass_value[k]
	aep()

				QuantIndices[k] = coeff_bypass_value[k] − offset
	

			}
	

		} else if(TransformMode = = TM_OFF) {
	

			numLevels = 0
	

			sumAbsLevels = 0
	

			TSkipRiceParameter = 1
	

			for(k = NumQuantIndices − 1; k >= 0; k = k − 1) {
	

				abs_tskip_coeff_gt0_flag[k]
	ae(ch)

				QuantIndices[k] = abs_tskip_coeff_gt0_flag[k]
	

				if(QuantIndices[k] > 0) {
	

					abs_tskip_coeff_offset[k]
	ae(ch)

					QuantIndices[k] += abs_tskip_coeff_offset[k]
	

				}
	

				if(QuantIndices[k] = = NumTSkipGtxFlags + 1) {
	

					abs_tskip_coeff_rem_prefix[k]
	ae(ch)

					QuantIndices[k] += (abs_tskip_coeff_rem_prefix[k] << RiceParameter)
	

					if(abs_tskip_coeff_rem_prefix[k] < MaxTSkipRemPrefix)
	

						if(TSkipRiceParameter > 0) {
	

							abs_tskip_coeff_rem_fl_suffix[k]
	aep()

							QuantIndices[k] += abs_tskip_coeff_rem_rice_suffix[k]
	

						}
	

					else {
	

						abs_tskip_coeff_rem_eg0_suffix[k]
	ae(ch)

						QuantIndices[k] += abs_tskip_coeff_rem_eg0_suffix[k]
	

					}
	

				}
	

				if(QuantIndices[k] > 0) {
	

					tskip_coeff_sign_flag[k]
	aep()

					if(tskip_coeff_sign_flag[k])
	

						QuantIndices[k] = −QuantIndices[k]
	

				}
	

				numLevels += 1
	

				sumAbsLevels += Abs(QuantIndices[k])
	

				if(sumAbsLevels > 15 * numLevels)
	

					TSkipRiceParameter = 4
	

				else if(sumAbsLevels > 5 * numLevels)
	

					TSkipRiceParameter = 3
	

				else if(sumAbsLevels > 2 * numLevels)
	

					TSkipRiceParameter = 2
	

				else
	

					TSkipRiceParameter = 1
	

			}
	

		} else {
	

			mean_value_trafo_block(ch)
	

			last_pos_index_gt0_flag
	ae(ch)

			lastScanPosDelta = 0
	

			lastScanPosBase = 0
	

			if(last_pos_index_gt0_flag) {
	

				last_pos_index_rem
	ae(ch)

				lastScanPosDelta = 1 + last_pos_index_rem
	

				if(Log2BlockSize > 8) {
	

					last_pos_index_sign
	aep()

					if(last_pos_index_sign) {
	

						lastScanPosDelta = –lastScanPosDelta
	

					}
	

				}
	

			}
	

			ringMin = INT32_MAX]
	

			ringMax = INT32_MIN
	

			if(LastRingCount[ch] > 0) {
	

				lastIndex = (LastRingHead[ch] – LastRingCount[ch] + 6) % 6
	

				for(ringPos = 0; ringPos < LastRingCount[ch]; ringPos++) {
	

					if(LastRingPosNorm[ch][ringPos] < ringMin) {
	

						ringMin = LastRingPosNorm[ch][ringPos]
	

					}
	

					if(LastRingPosNorm[ch][ringPos] > ringMax) {
	

						ringMax = LastRingPosNorm[ch][ringPos]
	

					}
	

				}
	

				LastRingRange = ringMax – ringMin
	

			} else {
	

				LastRingRange =0
	

			}
	

			if(LastRingRange <= 4) {
	

				LastDeltaMode[ch] = 1
	

			} else if(LastRingRange >= 9) {{
	

				LastDeltaMode[ch] = 0
	

			}
	

				log2BlockSizeDiff = Log2BlockSize – Log2BlockSizePrev[ch]lastScanPosBase = LastScanPosPrev[ch]
	

				if(Llog2BlockSizeDiffog2BlockSize > 0Log2BlockSizePrev[ch]) {
	

					lastScanPosBase <<= ((Log2BlockSize – Log2BlockSizePrev[ch] << log2BlockSizeDiff))
	

				} else {
	

					lastScanPosBase = >>= (Log2BlockSizePrev[ch] + (1 << (log2BlockSizeDiff – Log2BlockSize 1))) >> log2BlockSizeDiff
	

				}
	

			if(LastDeltaMode[ch] || Log2BlockSize > 7) {		}
	

				LastScanPos = lastScanPosBase + lastScanPosDelta
	

			} else {
	

				LastScanPos = lastScanPosDelta
	

			}
	

			lastScanPosDelta = abs(LastScanPos – lastScanPosBase)
	

			if(lastScanPosDelta >= 6) {
	

				LastDeltaStreak[ch]++
	

			} else {
	

				LastDeltaStreak[ch] = 0
	

			}
	

			if(LastDeltaStreak[ch] >= 8) {
	

				LastDeltaMode[ch] = 0
	

				LastDeltaStreak[ch] = 0
	

			}
	

			lastScanPosNorm = LastScanPos
	

			if(Log2BlockSize < 6) {
	

				lastScanPosNorm = LastScanPos << (6 – Log2BlockSize)
	

			} else if(Log2BlockSize > 6) {
	

				log2BlockSizeDiff = Log2BlockSize – 6
	

				lastScanPosNorm = (LastScanPos + (1 << (log2BlockSizeDiff – 1))) >> log2BlockSizeDiff
	

			}
	

			maxLastPosRef = (1 << 6) – 1
	

			if(lastScanPosNorm > maxLastPosRef)
	

				lastScanPosNorm = maxLastPosRef
	

			if(lastPosNorm < 0)
	

				lastScanPosNorm = 0
	

			LastRingPosNorm[ch][LastRingHead] = lastScanPosNorm
	

			LastRingHead = (LastRingHead + 1) % 6
	

			if(LastRingCount < 6)
	

				LastRingCount++
	

				LastScanPosPrev[ch] = LastScanPos
	

				Log2BlockSizePrev[ch] = Log2BlockSize
	

			if (cgps_allow_lms_flag)
	

				lms_data (ch)
	

			for(k = 0; k < NumQuantIndices; k = k + 1)
	

				QuantIndices[k] = 0
	

			QState = 0
	

			numCoeffsTemplateSum = 0
	

			for(k = LastScanPos; k >= 0; k = k − 1) {
	

				TemplateSum = 0
	

				for(n = k + 1; n <= k+numCoeffsTemplateSum; n = n + 1)
	

					TemplateSum += Abs(QuantIndices[n])
	

				if(numCoeffsTemplateSum < 4)
	

					numCoeffsTemplateSum += 1
	

				pShift = (TemplateSum > 3) ? 1 : 0
	

				if(k = = LastScanPos && k > 0)
	

					QuantIndices[k] = 1
	

				else {
	

					abs_trafo_coeff_gt0_flag[k]
	ae(ch)

					QuantIndices[k] = abs_trafo_coeff_gt0_flag[k]
	

				}
	

				if(pShift > 0) {
	

					abs_trafo_parity_flag[k]
	ae(ch)

					QuantIndices[k] += 1 − abs_trafo_parity_flag[k]
	

					if(abs_trafo_parity_flag[k])
	

						NumTCoeffGtxFlags = NumTCoeffGtxFlags << 1
	

				}
	

				if(QuantIndices[k] > 0) {
	

					abs_trafo_coeff_offset[k]
	ae(ch)

					QuantIndices[k] += abs_trafo_coeff_offset[k] << pShift
	

				}
	

				if(QuantIndices[k] = = NumTCoeffGtxFlags + 1) {
	

					abs_trafo_coeff_remainder[k]
	ae(ch)

					QuantIndices[k] += abs_trafo_coeff_remainder[k] << pShift
	

				}
	

				if(QuantIndices[k] > 0) {
	

					trafo_coeff_sign_flag[k]
	aep()

					if(trafo_coeff_sign_flag[k] > 0)
	

						QuantIndices[k] = −QuantIndices[k]
	

				}
	

				QState = QStateTransTab[QState][QuantIndices[k] & 1]
	

			}
	

		}
	

	}
	

[bookmark: _Ref213074737]LMS data syntax
	lms_data (ch) {
	Descriptor

		lms_flag
	ae(ch)

		if (lms_flag) {
	

			if(cgps_allow_lms_split_flag)
	

				lms_split_flag
	ae(ch)

			if(cgps_lms_ar_order_over_four > 0) {
	

				enable_ar_lms[0]
	ae(ch)

				if (lms_split_flag)
	

					enable_ar_lms[1]
	ae(ch)

			}
	

			if(cgps_allow_cc_lms_flag && ch > 0) {
	

				enable_cc_lms[0]
	ae(ch)

				if (lms_split_flag)
	

					enable_cc_lms[1]
	ae(ch)

			}
	

		}
	

	}
	

Mean value trafo block syntax
	mean_value_trafo_block (ch) {
	Descriptor

		MeanValueTrafoBlock = 0
	

		mean_value_sig_flag
	ae(ch)

		if(mean_value_sig_flag = = 1) {
	

			mean_value_abs_rem
	aep()

			mean_value_sign_flag
	aep()

			MeanValueTrafoBlock = (mean_value_sign_flag = =0) ? mean_value_abs_rem + 1 :
			− (mean_value_abs_rem + 1)
	

		}
	

	}
	

[bookmark: _Toc202359563][bookmark: _Toc213429764]Annotation channel data syntax
	annotation_channel_data() {
	Descriptor

		offset = AnnotationChannelNumSamples[ac_annotation_channel_id]
	

		for(i = 0; i < 2 * (ac_num_annotation_bytes_div2_minus1 + 1); i++) {
	

			am_annotation_byte
	u(8)

			AnnotationChannelBytes[ac_annotation_channel_id][offset + i] = am_annotation_byte
	

			AnnotationChannelNumSamples[ac_annotation_channel_id]++
	

		}
	

	}
	

[bookmark: _Ref397950527][bookmark: _Toc415475851][bookmark: _Toc423599126][bookmark: _Toc423601630][bookmark: _Toc501130168][bookmark: _Toc510795091][bookmark: _Toc202359564][bookmark: _Toc213429765]Semantics
[bookmark: _Toc45535536][bookmark: _Toc20134268][bookmark: _Ref29357062][bookmark: _Ref29357065][bookmark: _Toc77680400][bookmark: _Toc118289047][bookmark: _Ref168820094][bookmark: _Ref220341643][bookmark: _Toc226456554][bookmark: _Toc248045246][bookmark: _Toc287363773][bookmark: _Toc311216920][bookmark: _Toc317198741][bookmark: _Toc415475853][bookmark: _Toc423599128][bookmark: _Toc423601632][bookmark: _Toc501130170][bookmark: _Toc510795093][bookmark: _Toc202359566][bookmark: _Toc213429766]Stream packet semantics
[bookmark: _Ref398986473][bookmark: _Toc415475854][bookmark: _Toc423599129][bookmark: _Toc423601633]General stream packet semantics
syntax_structure_byte[i] is the i-th byte of the syntax structure contained in the stream packet.
[bookmark: _Ref398986483][bookmark: _Toc415475855][bookmark: _Toc423599130][bookmark: _Toc423601634]Stream packet header semantics
stream_packet_type specifies the stream packet type, i.e., the type of syntax structure contained in the stream packet as specified in Table 7‑1.
[bookmark: _Ref330857631][bookmark: _Toc415476433][bookmark: _Toc423602473][bookmark: _Toc423602647][bookmark: _Toc501130553][bookmark: _Toc510795478]Stream packets that have stream_packet_type in the range of UNSPEC_20 to UNSPEC_517, inclusive, for which semantics are not specified, shall not affect the decoding process specified in this Specification.
[bookmark: _Ref181092562][bookmark: _Ref181092400]Table 7‑1 – Stream packet types
	stream_packet_type
	Name of stream_packet_type
	Content of stream packet and associated syntax structure

	0
	FORBIDDEN_SPT
	Reserved

	1
	WPS_SPT
	Waveform parameter set
waveform_parameter_set()

	2
	CGPS_SPT
	Channel group parameter set
channel_group_parameter_set()

	3
	TIMESTAMP_SPT
	Timestamp
timestamp_struct()

	4
	IF_SPT
	Independent frame
independent_frame()

	5
	DF_SPT
	Dependent frame
dependent_frame()

	6
	SEGMENT_SPT
	Segment payload
segment_payload()

	7
	AC_SPT
	Annotation channel
annotation_channel()

	8
	FEATURE_SPT
	Feature Set
feature_set()

	9
	SYNC_SPT
	Synchronization structure
synchronization_struct()

	10
	CRC16_SPT
	CRC 16
crc16_struct()

	11
	CRC32_SPT
	CRC 32
crc32_struct()

	12
	UUID_U_SPT
	User identifier
user_identifier()

	13
	UUID_S_SPT
	Stream identifier
stream_identifier()

	14
	GLOBAL_CRC16_SPT
	Global CRC 16
global_crc16_struct()

	15
	GLOBAL_CRC32_SPT
	Global CRC 32
global_crc32_struct()

	16
	AUTH_START_SPT
	Authentication start
authentication_start()

	17
	AUTH_SIG_SPT
	Authentication signature
authentication_signature()

	18
	AM_SPT
	Auxiliary metadata
auxiliary_metadata()

	19
	CONFIG_SET_SPT
	Configuration set metadata
config_set()

	20..517
	UNSPEC_20..
UNSPEC_517
	Reserved

stream_packet_label specifies a sub-stream indication. For values of 1 and higher, this element provides an indication of which packets in a stream belong together (so called sub-streams). In addition, packets with stream_packet_label set to a value of 0 apply to all sub-streams. A sub-stream is referring to a single CWS consisting of stream packets referencing to a particular wps_waveform_parameter_set_id of a WPS packet. Stream packets in a CWS shall have the same non-zero stream_packet_label as the one specified by the WPS packet or zero (apply to all sub-streams). In a multiplexed bitstream, stream_packet_label is used to facilitate sub-stream identification.
stream_packet_length indicates the length of the stream_packet_payload in bytes. It specifies the number of syntax structure bytes in the stream packet.
[bookmark: _Toc39341506][bookmark: _Toc20134269][bookmark: _Toc77680408][bookmark: _Toc118289050][bookmark: _Toc248045249][bookmark: _Toc287363776][bookmark: _Toc311216923][bookmark: _Toc317198744][bookmark: _Toc415475858][bookmark: _Toc423599133][bookmark: _Toc423601637][bookmark: _Toc501130171][bookmark: _Toc510795094][bookmark: _Toc202359567][bookmark: _Toc213429767]Raw byte sequence payloads, trailing bits and byte alignment semantics
[bookmark: _Toc415475860][bookmark: _Toc423599135][bookmark: _Toc423601639]Waveform parameter set semantics
A WPS shall be available to the decoding process prior to it being referenced by either of the following:
· a channel group parameter set with cgps_waveform_parameter_set_id equal to the value of wps_waveform_parameter_set_id in the WPS,
· a timestamp structure with ts_waveform_parameter_set_id equal to the value of wps_waveform_parameter_set_id in the WPS,
· a feature set with ft_waveform_parameter_set_id equal to the value of wps_waveform_parameter_set_id in the WPS,
· an annotation channel with ac_waveform_parameter_set_id equal to the value of wps_waveform_parameter_set_id in the WPS.
All WPS stream packets with a particular value of wps_waveform_parameter_set_id in a CWS shall have the same content.
wps_waveform_parameter_set_id provides an identifier for the WPS for reference by other syntax elements.
wps_num_channels_in_next_group_minus1 plus 1 specifies the number of channels in the next channel group in the sequence of channel groups.
wps_num_channel_group_repetitions specifies the number of channel groups that follow the previous channel group. Each of these channel groups has the same number of channels as the previous channel group.
wps_more_channel_groups_present_flag equal to 1 specifies that more channel groups are specified on the WPS.
wps_channel_reordering_flag equal to 1 specifies that syntax elements for reordering the channels in the decoded waveform sequence is present.
wps_num_channel_swaps_minus1 plus 1 specifies the number of channel swaps to be carried out in order to perform channel reordering on the decoded waveform sequence.
wps_swap_frst_idx[i] specifies the first channel of channel pair i to be swpped.
wps_swap_scnd_idx_min_frst_idx_min1[i] plus 1 plus wps_swap_frst_idx[i] specifies the second channel of channel pair i to be swapped.
wps_num_annotation_channels specifies the number of annotation channels present in the bitstream.
[bookmark: _Ref185598486]Channel group parameter set semantics
A CGPS shall be available to the decoding process prior to it being referenced by either of the following:
· an independent frame with if_channel_group_parameter_set_id equal to the value of cgps_channel_group_parameter_set_id in the CGPS,
· a dependent frame with df_channel_group_parameter_set_id equal to the value of cgps_channel_group_parameter_set_id in the CGPS,
· a segment metadata with sm_channel_group_parameter_set_id equal to the value of cgps_channel_group_parameter_set_id in the CGPS,
All CGPS stream packets with a particular value of cgps_channel_group_parameter_set_id in a coded channel group segment shall have the same content.
cgps_channel_group_parameter_set_id provides an identifier for the CGPS for reference by other syntax elements.
cgps_waveform_parameter_set_id specifies the value of wps_waveform_parameter_set_id for the WPS in use.
cgps_length_signal_mode_flag equal to 1 specifies that a syntax element if_indep_num_samples_per_channel_minus1 is present.
cgps_frame_length_shift specifies an offset for deriving the variable Log2FrameLength as follows:
Log2FrameLength = Log2MaxBlockSize + cgps_frame_length_shift	(48)
cgps_max_min_block_size specifies an index for deriving variable Log2MaxBlockSize as follows:
Log2MaxBlockSize = LutBlockSizeMaxLog2[cgps_max_min_block_size]	(49)
The value of cgps_max_min_block_size shall be in the range of 0 to 62, inclusive.
The array LutBlockSizeMaxLog2[] is specified as follows:
LutBlockSizeMaxLog2[] =	(50)
{
 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9,
 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11,
 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13,
 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14
}
The array LutBlockSizeMinLog2[] is specified as follows:
LutBlockSizeMinLog2[] =	(51)
{
 4, 4, 5, 4, 5, 6, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4,
 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 10, 4, 5, 6, 7,
 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 6, 7,
 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14
}
The variable MaxSplitDepth is derived as follows:
MaxSplitDepth = Log2MaxBlockSize − LutBlockSizeMinLog2[cgps_max_min_block_size]	(52)
cgps_deblocking_mode equal to 0 specifies that the deblocking process is not invoked. Otherwise, it specifies the strength of the applied deblocking process.
cgps_max_bit_depth specifies an index for deriving the variable BitDepthMax as follows:
BitDepthMax = LutBitDepthMax[cgps_max_bit_depth]	(53)
The value of cgps_max_bit_depth shall be in the range of 0 to 6, inclusive.
The array LutBitDepthMax[] is specified as follows:
LutBitDepthMax[] =	(54)
{4, 8, 12, 16, 20, 24, 28}
cgps_allow_cross_channel_pred_flag equal to 1 specifies that the cross-channel prediction mode is allowed.
cgps_cc_pred_filtering_mode specifies the allowed filtering options that may be applied to the cross-channel prediction signal as follows:
· If cgps_cc_pred_filtering_mode is equal to 0, no filtering may be applied to the cross-channel prediction signal.
· Otherwise, if cgps_cc_pred_filtering_mode is equal to 1, a half-sample position filtering of the cross-channel prediction signal is allowed.
· Otherwise (cgps_cc_pred_filtering_mode is equal to 2), a half-sample position filtering and a full-sample position filtering of the cross-channel prediction signal are allowed.
The value of cgps_cc_pred_filtering_mode shall lie in the range from 0 to 2, inclusive.
cgps_allow_cc_pred_mult_hyp_flag equal to 1 specifies that cross-channel prediction with two input channels is allowed.
cgps_allow_block_matching_pred_flag equal to 1 specifies that the block matching prediction mode is allowed.
cgps_bm_pred_filtering_mode specifies the allowed filtering options that may be applied to the block matching prediction signal as follows:
· If cgps_bm_pred_filtering_mode is equal to 0, no filtering may be applied to the block matching prediction.
· Otherwise, if cgps_bm_pred_filtering_mode is equal to 1, a half-sample position filtering of the block matching prediction signal is allowed.
· Otherwise (cgps_bm_pred_filtering_mode is equal to 2), a half-sample position filtering and a full-sample position filtering of the block matching prediction signal are allowed.
The value of cgps_bm_pred_filtering_mode shall lie in the range from 0 to 2, inclusive.
cgps_allow_bm_pred_mult_hyp_flag equal to 1 specifies that block matching prediction with two hypothesis is allowed.
cgps_allow_bm_offset_pred_prev_ch_flag equal to 1 specifies that offsets for the block matching prediction can be predicted from offsets for the block matching prediction of the previous channel.
cgps_allow_lpf_flag equal to 1 specifies that linear predictive filtering is allowed.
cgps_allow_sample_pred_fixed_weights_flag equal to 1 specifies that sample wise prediction with fixed weights is allowed.
cgps_lpf_allow_prev_ch_flag equal to 1 specifies that linear predictive filtering using input samples from a given number of previous channels is allowed.
cgps_allow_transform_skip equal to 1 specifies that a sample wise prediction is allowed
cgps_residual_quant_mode specifies the quantization mode.
cgps_ch_indep_interval_idx specifies the variable DepChMask = (2 << cps_ch_indep_interval_idx) − 1. For the decoding process of clause 8, the channels can be grouped into consecutive groups of channels, each consisting of at most DepChMask +1 many channels, such that each group of channels can be processed independently from each other group of channels.
cgps_max_abs_delta_qp_idx determines the value of the variable MaxAbsDeltaQP = (1 << cgps_max_abs_delta_qp_idx) − 1.
cgps_qp specifies the initial quantization parameter.
[bookmark: _Hlk212723809]cgps_allow_verbatim_coding_flag equal to 1 specifies that fixed length binarization and fixed length coding is applied to the sample values if no prediction and no DCT are used on a given block. When cgps_allow_verbatim_coding_flag is not present, it is inferred to be zero.
cgps_allow_zero_lsb_flag equal to 1 specifies that a coding mode that transmis the number of zero least-significant bits per block is enabled.
cgps_ctx_init_flag equal to 1 indicates that if_ctx_init_mode is present.
cgps_allow_lms_flag equal to 1 specifies that LMS prediction is enabled.
cgps_lms_split_flag equal to 1 specifies that a resetting of the LMS prediction at the middle of the spectrum is enabled.
cgps_lms_ar_order_over_four specifies the LMS predictor order in the direction of the current channel, divided by four. As the LMS can operate on mulitple block lengths, the cgps_lms_order parameter is scaled relative to a block length of 2048. The variable LMSOrder is derived as follows:

GetLmsArOrder(cgps_lms_ar_order_over_four, log2blocksize) {
 If (cgps_lms_ar_order_over_four > 0) {
 lmsOrderOverFourScaled = ((cgps_lms_ar_order_over_four << (1 + log2blocksize))) >> 11;
 lmsOrderOverFourScaled = (lmsOrderOverFourScaled + 1) >> 1;
 lmsOrderOverFourScaled = lmsOrderOverFourScaled > 0 ? lmsOrderOverFourScaled : 1;
 LMSOrder = lmsOrderOverFourScaled << 2;
 }
 else {
 LMSOrder = 0;
 }
 return LMSOrder;
}cgps_allow_cc_lms_flag equal to one specifies that LMS in the direction of previously decoded channels is enabled.
cgps_max_order_cc_lms_minus_one plus 1specifies the maximal lms order in the direction of previously decoded channels.
Dependent on the maximum allowed blocksize the variable LMSMaxCCOrder is derived as follows:

GetMaxLmsCcOrder(cgps_max_order_cc_lms_minus_one, cgps_lms_ar_order_over_four, Log2MaxBlockSize) {
 maxLmsArOrder = GetLmsArOrder(cgps_lms_ar_order_over_four, Log2MaxBlockSize)
 maxLmsCcOrder = cgps_max_order_cc_lms_minus_one + 1;
 LMSMaxCCOrder = maxLmsCcOrder < 72 − maxLmsArOrder ? maxLmsCcOrder : 72 − maxLmsArOrder;
 return LMSMaxCCOrder;
}
Independent frame semantics
if_channel_group_parameter_set_id specifies the value of cgps_channel_group_parameter_set_id for the CGPS in use.
if_channel_group_id identifies the channel group to which the current independent frame belongs. This channel group corresponds to the active channel group to be used when parsing syntax elements of the current independent frame. The length of this syntax element is Ceil(Log2(NumChannelGroups)) bits. When if_channel_group_id is not present, it is inferred to be equal to 0.
if_mean_per_channel specifies the coded data sample mean per channel.
if_indep_num_samples_per_channel_minus1 plus 1 specifies the number of samples per channel present in the current frame sequence.
if_ctx_init_mode indicates which parameters are used for context initialization.
[bookmark: _Toc20134274][bookmark: _Toc77680413][bookmark: _Ref168820890][bookmark: _Ref220341835][bookmark: _Toc226456571][bookmark: _Toc248045253][bookmark: _Toc287363780][bookmark: _Toc311216928][bookmark: _Toc317198754][bookmark: _Ref398989262][bookmark: _Toc415475863][bookmark: _Toc423599138][bookmark: _Toc423601642]Dependent frame semantics
[bookmark: _Hlk38719511]It is a requirement of bitstream conformance that a DF unit only occurs in the bitstream if at least one IF occured before whose syntax element if_channel_group_parameter_set_id is equal to the value of df_channel_group_parameter_set_id of the current DF.
df_channel_group_id identifies the channel group to which the current independent frame belongs. This channel group corresponds to the active channel group to be used when parsing syntax elements of the current dependent frame. The length of this syntax element is Ceil(Log2(NumChannelGroups)) bits. When df_channel_group_id is not present, it is inferred to be equal to 0.
Annotation channel semantics
ac_waveform_parameter_set_id specifies the value of wps_waveform_parameter_set_id for the WPS in use.
ac_annotation_channel_id specifies the annotation channel index.
ac_num_annotation_bytes_div2_minus1 is used to determine the number of syntax elements am_annotaion_bytes present in the current AC as 2 * (ac_num_annotation_bytes_div2_minus1 + 1).
[bookmark: _Ref212039911]Timestamp semantics
The timestamp shall be used for the following cases:
· Indicating the timing information related to the generation of a (first) sample of the signals (acquisition/recording time)
· Indicating the timing information related to the generation of coded data (encoding time)
· Indicating the true signal length or period triggered by an event (e.g., in the presence of discontinuity triggered by an encoder event due to sensor interruption, displacement or restart)
· Enabling signal alignment across multiple channels, sub-streams and signal types, e.g., compensating a clock drift between two input or decoded signals, each having a waveform acquisition timestamp.

Upon receiving the timing data, timestamp insertion into the bitstream can occur in both the encoder (signal input) and bitstream input sides.
ts_waveform_parameter_set_id specifies the value of wps_waveform_parameter_set_id for the WPS in use.
ts_channel_group_id identifies the channel group to which the current timestamp belongs. The length of this syntax element is Ceil(Log2(NumChannelGroups)) bits. When ts_channel_group_id is not present, it is inferred to be equal to 0.
ts_type indicates the timestamp use case as specified in Table 7‑2.
[bookmark: _Ref200721298]Table 7‑2 – Values of ts_type
	ts_type
	Timing use case

	0
	Waveform acquisition

	1
	Encoding start

	2
	Waveform acquisition and encoding start

	3
	Discontinuity: last useful sample

	4
	Discontinuity: first useful sample

	5
	Encoding end

	6, 7
	Reserved

[bookmark: _Hlk207911066]ts_time_idx_flag equal to 1 indicates the usage of a timestamp identifier specified by ts_time_idx.
ts_time_idx indicates the unique index of the timestamp packet related to feature set.
ts_time_type indicates the time type as specified in Table 7‑3.
[bookmark: _Ref181569436]Table 7‑3 – Values of ts_time_type
	ts_time_type
	Timing scheme

	0
	TIME_LONG

	1
	TIME_SHORT

	2
	TIME_UXT

	3
	TIME_TAI

	4
	TIME_UTC

	5..127
	Reserved

ts_offset_type_flag equal to 0 specifies the unit of ts_time_offset in milliseconds. ts_offset_type_flag equal to 1 specifies the unit as the exact sample index. In this case, the resulting floating-point time resolution in seconds is calculated using the underlying signal sampling frequency, i.e., Ts = ts_time_offset ÷ SampFreq in seconds, where SampFreq denotes the sampling frequency.
ts_time_long is counted in seconds and the count starts on January 1st, 2025 at 00:00:00 UTC.
ts_time_offset specifies an offset of time, added to ts_time_long or ts_time_short or ts_time_uxt, respectively, in units signalled by ts_offset_type_flag.
ts_time_short in seconds elapsed since the last “ts_time_type = = TIME_LONG”-update.
ts_time_uxt specifies that time is in units of seconds or fractions thereof, such that the zero value corresponds to 00:00:00 UTC on 1 January 1970.
ts_time_tai specfies the time measurement of an International Atomic Time (TAI) clock and shall be used according to the syntax and semantics TAI_timestamp as specified in ISO/IEC 23001-17.
ts_status_bits shall be used according to the syntax and semantics synchronization_state, timestamp_generation_failure and timestamp_is_modified as specified ISO/IEC 23001-17. Each syntax element is a 1-bit element arranged sequentially from left-most bit to the right-most bit.
ts_time_utc specifies the UTC timing information as defined in ITU-R Recommendation TF.460-6 and the format shall follow ISO 8601, e.g.,. yyyy-mm-ddThh:mm:ss[.xxx]Z, e.g., 1970-01-01T00:00:00.000Z.
ts_time_world_flag equal to 1 indicates the timing information based on the dates of the Gregorian calendar and times based on a 24-hour clock; otherwise this indicates the timing information based on ts_time_long_relative and ts_time_offset_relative.
ts_time_long_relative is counted in seconds and the count starts from the very first sample of the waveform.
ts_time_offset_relative specifies an offset of time, added to ts_time_long_relative, in unit signalled by ts_offset_type_flag.

The time shall be set in a way that (ts_time_long + ts_time_offset) or (ts_time_short + ts_time_offset) or (ts_time_uxt + ts_time_offset) or (ts_time_long_relative + ts_time_offset_relative) indicates the time. If ts_offset_type_flag is equal to 0, the indicated timing information is, e.g., Ts = (1000 * ts_time_long + ts_time_offset) in milliseconds. The uniquely associated sample index shall be obtained by (Floor(0.5 + Ts * SampFreq ÷ 1000)), where SampFreq denotes the sampling frequency. If ts_offset_type_flag is equal to 1, the indicated timing information Ts is, e.g., (ts_time_long + ts_time_offset ÷ SampFreq) in seconds.
The time referring to the waveform indicates when the sample of following IF_SPT or DF_SPT with the same stream_packet_label has been recorded. The value stream_packet_label equal to to 0 indicates a timing information applied to all sub-streams.
[bookmark: _Ref212040291]Segment payload semantics
A segment is defined at a channel group level, refering to one of the channel groups specified by the WPS. Based on the desired configuration, a segment in a particular channel group may refer to the whole waveform, any waveform partition resulting from the whole waveform partitioning, or any arbitrary waveform excerpt. The definition also applies to the corresponding coded bitstream. Such a representation is mainly intended to facilitate random access interval and for archiving use case.
The following configuration applies:
· A single whole segment of a waveform or bitstream refers to a segment covering the whole waveform or the corresponding coded bitstream.
· A segment is also defined as a single or multiple of random access intervals. A random access interval consists of a single or multiple of frame sequences. A frame sequence is a sequence of one IF_SPT followed by zero or more DF_SPT frames. A bitstream may contain only IF_SPT frames or may also contain DF_SPT frames.
A segment payload contains syntax elements mainly consisting of, by default, concatenated headerless frame sequences within a segment (segment payload frames) and/or the segment payload metadata. Forming a segment payload packet from an existing sequence of payload packets in a segment requires the extraction of payload frame sizes from the payload packet headers to obtain the segment_payload_metadata_coded_sizes() data, followed by the concatenation of segment payload frames. Generating a segment payload from an input signal also follows the same procedure with the exception that the payload frame sizes are directly obtained from the framewise encoding process. Obtaining the sequence of individual payload packets from the segment payload packets is done by a reverse process of decoding the payload frame sizes to identify individual payload frames, assigning the correct payload packet type (IF_SPT or DF_SPT) to each segment payload frame, followed by generating the corresponding payload packet header. Alternatively, the last step can be substituted by generating the decoded signal.
sp_channel_group_parameter_set_id specifies the value of cgps_channel_group_parameter_set_id for the CGPS in use.
sp_channel_group_id identifies the channel group to which the current segment payload belongs. The length of this syntax element is Ceil(Log2(NumChannelGroups)) bits. When sp_channel_group_id is not present, it is inferred to be equal to 0.
sp_num_frames_per_segment_minus_one plus 1, indicates the number of payload frames carried in a segment.
sp_segment_payload_metadata_flag indicates whether segment payload metadata information is present or not.
sp_segment_payload_frames_flag indicates whether segment payload frames information is present or not.
sp_num_sequences_minus_one plus 1, specifies the number frame sequences within a segment.
sp_varying_num_frames_per_sequence_flag indicates whether there is a varying number of frames in each frame sequence in the segment.
sp_num_frames_per_sequence_minus_one plus 1, specifies the number of frames in a frame sequence.
Prior to extraction, a segment of interest is identified by a sub-stream identifier (see stream_packet_label), a channel group identifier and segment portion boundaries or markers (e.g., provided by a user or machine upon inspecting the signal).
Extracting a segment payload shall include the corresponding HLS packets (e.g., WPS, multiple CGPS packets) to ensure that the indicated payload packets are decodable. The payload packets of a segment consist of one or more frame sequences, with the possbility to drop trailing DF_SPT packets. The accompanying HLS packets are of types WPS_SPT, CGPS_SPT, TIMESTAMP_SPT and SEGMENT_SPT. An additional TIMESTAMP packet can be inserted to provide information on the location of an extracted segment within the source bitstream or signal. A segment payload or an extracted segment payload shall be decodable.
Obtaining the exact (input or decoded) signal portion as indicated by a segment shall utilize the segment’s boundary information (i.e., start and length as previously provided by a user or machine).
[bookmark: _Ref213352635]Segment payload metadata semantics
Segment payload metadata can provide information on the following:
· The presence of features within a segment with the possibility to specify feature markers and annotations
· Distortion measures.
The segment payload metadata packet, when sp_segment_payload_frames_flag = 0, is inserted at the end of each segment.
The distortion measure information can be used, for example, for the following purposes:
· Indicating or classifying the segment’s coding behaviour, i.e., lossless, near lossless (small distortion) or lossy.
· Deriving other distortion measure metrics.
· Enabling assessment of distortion at the decoder side without having access to the original signals. This use case is related to retrieval of lossy coded segments from a dataset by classifying and filtering of the segments in the context of further post-processing such as artificial intelligence-based training.
· Transcoding (encoding of a decoded bitstream) from lossless to lossy or tandem coding (lossy to lossy). According to the first use case of lossless to lossy, the first encoding stage is lossless, therefore during the second stage encoding, the signal from the first stage encoding can be used a a reference, thus enabling computation of the distortion measures. According to the second use case of tandem coding, the first encoding stage is lossy, therefore there is no direct access to the reference signal during the second encoding stage. In this case, estimating the distortion at the second stage involves estimating the distortion measures based on an approximation derived from the distortion measures or quantization parameters from the first encoding stage.
sp_num_features specifies the number of features within a segment.
sp_feature_type specifies the FeatureType, as defined in feat_extract() in clause 7.4.2.10, stored in string type value.
sp_feature_segment_marking_flag indicates the presence of feature marking.
sp_feature_segment_start indicates the offset start of a feature marking in units of samples.
sp_feature_segment_length indicates the length of a feature marking in units of samples.
sp_segment_distortion_measures_flag equal to 1 indicates the presence of distortion measures metadata in the segment. This is also indicating the coded data coding mode, a lossless codec shall set this to 0.
sp_distortion_measures_per_channel_flag indicates whether the per-channel distortion measure metadata is present.
sp_num_distortion_measures_per_channel indicates the number of other per-channel distortion measures calculated for the segment.
sp_variance indicates the estimated signal variance measured per channel in decibel units, as specified by the expression Round(10 * Log10(x)), where x denotes the statistical variance of the signal of interest.
sp_squared_error indicates the estimated average signal squared error measured per channel in decibel units, as specified by the expression Round(10 * Log10(), where ei denotes the signal error introduced by the encoding of the i-th sample in a sequence of n samples.
sp_distortion_measure_type indicates other types of per-channel distortion measure calculated in a segment, e.g., maximum absolute error or maximum amplitude error, including its unit. Some distortion measures can also be derived from sp_variance or sq_squared_error such as the percentage root mean square distortion (PRD), channel-normalized percentage root mean square distortion (CPRD), as defined below.

where denotes the signal error introduced by the encoding of the i-th sample in a sequence of n sample, for the j-th channel out of M channels. denotes the encoding (original) input signal i-th sample of the j-th channel and denotes the mean of the encoding input for the j-th channel defined as

NOTE – The definition of the PRD includes a mean-removal in order to be invariant towards constant signal-shifts.
sp_distortion_measure indicates the per-channel distortion measure value.
sp_distortion_measures_in_cg_flag indicates the measure of distortion per-channel group.
sp_num_distortion_measures_in_cg indicates the number of other per-channel group distortion measures calculated for the segment.
sp_variance_cg indicates the estimated signal variance per-channel group in decibel units, as specified by the expression Round(10 * Log10(x)), where x denotes the statistical variance of the signal of interest in the channel group.
sp_squared_error_cg indicates the estimated signal squared error per-channel group in decibel units.
sp_distortion_measure_type_cg indicates other types of per-channel group distortion measure calculated in a segment, e.g., maximum absolute error or maximum amplitude error, including its unit.
sp_distortion_measure_cg indicates the per-channel group distortion measure value.
[bookmark: _Ref213352637]Segment payload metadata coded sizes semantics
Segment payload metadata coded sizes is part of the segment payload storing the coded payload frame sizes.
sp_frame_size[0] indicates the size/length of the first (n equal to 0, IF_SPT) coded data frame in the segment. Subsequent frame sizes (for n greater than 0) are encoded using the un-truncated Rice or Golomb-Rice delta encoding method.
sp_delta_utr_param specifies the parameter that controls the un-truncated Rice or Golomb-Rice delta encoding of subsequent sp_frame_size[n]. It uses the fixed-length (FL) binarization process having cMax equal to 15, see clause 9.5.3.7.
sp_abs_delta for a given iteration n, specifies the encoded absolute value of the difference between the n-th and (n – 1)-th sp_frame_size values (encoded absolute delta value).
sp_sign_delta specifies the sign of abs_delta. It uses the fixed-length (FL) binarization process having cMax = 1, see clause 9.5.3.7.
[bookmark: _Ref212040482]Feature set semantics
The feature set syntax structure is used to indicate a portion of the signal that has particular characteristics or is of particular interest, such as for the following purposes:
· Defining, marking, annotating and maintaining a list of feature segments. Any arbitrary waveform excerpt can constitute a feature segment. Feature segments may be disjoint, overlapping or may have a superset/subset relationship.
· Indicating sparsely and ultra-low sampled measurements or metadata. The timestamp of instantaneous measurements or metadata is specified by setting ft_feature_length value to the same value as ft_feature_start, ensuring a single timestamp per measurement. The measurement value is stored in ft_annotation_str, ft_annotation_uri, or ft_annotation_channel_id.
ft_waveform_parameter_set_id specifies the value of wps_waveform_parameter_set_id for the WPS in use.
ft_channel_group_id identifies the channel group to which the current feature set belongs. The length of this syntax element is Ceil(Log2(NumChannelGroups)) bits. When ft_channel_group_id is not present, it is inferred to be equal to 0.
ft_num_features the number of features available in the bitstream.
ft_feature_annotation_type specifies the desired feature annotation type as indicated in Table 7‑4.
[bookmark: _Ref200722969]Table 7‑4 – Values of ft_feature_annotation_type
	ft_feature_annotation_type
	Annotation type

	0
	Embedded annotation

	1
	Out-of-band annotation

	2
	Annotation channel

	3
	Pre-defined annotation

ft_annotation_str specifies an arbitrary feature type annotation string.
ft_annotation_uri specifies the feature type annotation string as a URI which shall be as specified in IETF Internet Standard 66.
ft_annotation_channel_id indicates the annotation channel index of the specified annotation_channel ID (ac_annotation_channel_id). Together with ft_annotation_channel_wps_id, they shall point to the annotation stored in the annotation_channel_data of the specified annotation_channel.
ft_feature_type_enum indicates a certain type of features of the signal as indicated in the following tables (Table 7‑5, Table 7‑6, or Table 7‑7) for different signal types.
[bookmark: _Ref184594938][bookmark: _Ref184594927]Table 7‑5 – Values of ft_feature_type_enum (for cs_signal_type ST_ECG or ST_PPG)
	ft_feature_type_enum
	Feature type

	0
	General

	1
	Abnormal rhythm

	2
	Abnormal rate

	3..99
	Reserved

	All other values
	May be used as determined by the application

[bookmark: _Ref184594969]Table 7‑6 – Values of ft_feature_type_enum (for cs_signal_type ST_EEG)
	ft_feature_type_enum
	Feature type

	0
	General

	1
	Triphasic waves

	2
	Interictal epileptiform discharges (IED)

	3
	Slowing/diffuse slowing/focal slowing

	4
	Electrocerebral inactivity

	5
	Burst suppression pattern

	6
	Breach rhythm

	7..99
	Reserved

	All other values
	May be used as determined by the application

[bookmark: _Ref184594973]Table 7‑7 – Values of ft_feature_type_enum (for cs_signal_type ST_EMG)
	ft_feature_type_enum
	Feature type

	0
	General

	1..99
	Reserved

	All other values
	May be used as determined by the application

feat_extract() function processes the input syntax elements ft_annotation_str or ft_annotation_uri or ft_annotation_channel_id or ft_feature_type_enum, and returns the FeatureType value. In case ft_feature_type_enum, feat_extract() returns FeatureType value as indicated by Feature type values in Table 7‑5, Table 7‑6 and Table 7‑7, depending on cs_signal_type. FeatureType provides a description or annotation to the portion of the signal that has particular characteristics or is of particular interest (feature segment).
ft_feature_marking_present_flag equal to 1 indicates the presence of markers defining feature segment boundaries in the bitstream. The markers, ft_feature_start and feature_length, define a feature segment associated with FeatureType. In the absence of such markers (ft_feature_marking_present_flat equal to 0), the feature segment is refering to the whole signal or bitstream.
ft_feature_start indicates the timestamp index ts_time_idx of the start of a feature marking. Utilizing ts_time_idx requires setting ts_time_idx_flag to 1.
ft_feature_length indicates the timestamp index ts_time_idx denoting the end of a feature marking defining the feature segment length. The segment length indicates the signal portion that has the corresponding portion of payload packets. Utilizing ts_time_idx requires setting ts_time_idx_flag to 1.
ft_num_qualities the number of quality level periods available in the bitstream.
ft_quality_start indicates the timestamp index ts_time_idx of the start of a quality level marking.
ft_quality_length indicates the timestamp index ts_time_idx denoting the end of a quality level marking defining the quality level length.
ft_quality_value indicates the value of the marked quality, as contained in the cs_quality_lut.
Prior to extraction, a feature segment of interest is identified by a sub-stream identifier (see stream_packet_label), a channel group identifier and segment portion boundaries or markers (either from the stored markers in FEATURE set packet in the bitstream or provided by a user or machine upon inspecting the signal).
Extracting a feature segment shall include the corresponding HLS packets (e.g., WPS, multiple CGPS packets) to ensure that the indicated payload packets of the segment are decodable. The payload packets of a segment consist of one or more frame sequences, with the possbility to drop trailing DF_SPT packets. The accompanying HLS packets of an extracted feature segment are of types WPS_SPT, CGPS_SPT, TIMESTAMP_SPT and FEATURE_SPT. An additional TIMESTAMP packet can be inserted to provide information on the location of an extracted segment within the source bitstream or signal. The extracted segment’s HLS packets shall be adjusted such that the number of features, ft_num_features, in FEATURE set packet and the TIMESTAMP packets indicated by ft_feature_start and ft_feature_length, correspond to the feature(s) contained in the extracted segment. A feature segment or an extracted feature segment shall be decodable.
Obtaining the exact (input or decoded) signal portion as indicated by a feature segment shall utilize the feature segment’s boundary information (i.e., start and length derived from FEATURE_SPT).
[bookmark: _Ref213353300]Config set semantics
The default syntax elements constitute the minimum configuration information. This can be extended by specifying config_extension_data().
cs_num_wps_ids specifies the number of WPS packets in the bitstream.
cs_wps_id specifies the value of wps_waveform_parameter_set_id for a particular WPS.
cs_wps_id_label specifies the stream_packet_label value of the WPS indicated by cs_wps_id.
cs_wps_id_label_zero specifies a non-zero value denoting the mapping of stream_packet_label 0 belonging to a subset of wps packets in the bitstream.
cs_num_channel_groups_in_wps indicates the number of channel groups in the indicated WPS.
cs_num_sampling_freqs_in_wps indicates the number of sampling frequencies in the indicated WPS.
cs_sampling_freq specifies the sampling frequency value.
cs_sampling_freq_idx specifies the corresponding index indicating the sampling frequency value. The number of bits required is calculated as Ceil(Log2(cs_num_sampling_freqs_in_wps)).
cs_num_signal_types_in_wps indicates the number of signal types in the indicated WPS.
cs_signal_type specifies the signal type value.
cs_signal_num_annotation_channels specifies the number of annotation channels associated with the signal type.
cs_signal_annotation_channel_id specifies the ac_annotation_channel_id in use.
cs_signal_type_idx specifies the corresponding index indicating the signal type value. The number of bits required is calculated as Ceil(Log2(cs_num_signal_types_in_wps)).
cs_signal_info_data_flag_in_wps indicates whether signal-specific metadata is included for the channel groups within the WPS
cs_has_range_info indicates whether the digital and analogue ranges are specified for the channel group.
cs_digital_min and cs_digital_max specify the minimum and maximum values that may occur for the signals within the channel group respectively.
cs_analogue_min and cs_analogue_max specify the analogue values to which cs_digital_min and cs_digital_max may be converted to respectively. Linear interpolation shall be used for the intermediate values.
cs_analogue_units specifies the analogue units for the waveforms within the channel group, e.g. ‘mV’.
cs_recording_start_time_flag indicates whether the starting time of the recording is included in a timestamp_struct().
cs_config_extension_flag indicates whether config_extension_data() is present.
[bookmark: _Ref213353302]Config extension data semantics
cs_features_in_wps_flag equal to 1 indicates the presence of feature segments in the indicated WPS.
cs_features_in_cg_id_flag equal to 1 indicates the presence of feature segments in a particular channel group within the indicated WPS.
cs_num_features_in_cg_id indicates the number of features present in the indicated channel group.
cs_enable_high_res_quality_metrics_flag specifies whether a feature_set() syntax structure may contain quality metrics for the encoding performance of the channels within the channel group.
cs_has_custom_quality_lut_flag specifies whether a custom look-up table is defined to be used with the quality metric.
cs_quality_metric specifies the metric used to asses the quality of the channel encoding, as specified in Table 7‑8. When cs_has_custom_quality_lut_flag is equal to 0, cs_quality_metric is inferred as specified by Table 7‑9.

[bookmark: _Ref209012429]Table 7‑8 – Values of cs_quality_metric
	cs_quality_metric
	Quality Metric

	0
	SNR

	1
	PSNR

	2
	PRD

	3
	MAE

	4..6
	Reserved

	7
	Defined by encoder as a string

[bookmark: _Ref209012697]Table 7‑9 – Default values of cs_quality_metric by cs_signal_type
	cs_signal_type
	cs_quality_metric to be used

	ST_ECG
	MAE

	ST_EEG
	MAE

	ST_EMG
	PSNR

	ST_PPG
	PSNR

	default
	SNR

cs_quality_num_bands specifies the number of bands that shall be used to construct the look up tables for the quality metric.
cs_quality_lut[i][j] specifies the lower bound for the quality specified by the jth entry into the look up table for the ith channel group. When cs_has_custom_quality_lut_flag is equal to 0, the values of cs_quality_lut[i] are inferred as specified by Table 7‑10 to Table 7‑13.
[bookmark: _Ref209076791]Table 7‑10 – Default cs_quality_lut[i][j] for cs_quality_metric = = SNR
	cs_quality_lut[i][j]
	Lower Bound

	0
	67

	1
	64

	2
	61

	3
	58

	4
	55

	5
	52

	6
	49

	7
	46

	8
	43

	9
	40

	10
	0

Table 7‑11 – Default cs_quality_lut[i][j] for cs_quality_metric = = PSNR
	cs_quality_lut[i][j]
	Lower Bound

	0
	100

	1
	95

	2
	90

	3
	85

	4
	80

	5
	75

	6
	70

	7
	65

	8
	60

	9
	55

	10
	0

Table 7‑12 – Default cs_quality_LUT[i][j] for cs_quality_metric = = PRD
	cs_quality_LUT[i][j]
	Upper Bound

	0
	1.5

	1
	2

	2
	2.5

	3
	3

	4
	4

	5
	6

	6
	8

	7
	10

	8
	13

	9
	16

	10
	20

	11
	100

[bookmark: _Ref209076796]Table 7‑13 – Default cs_quality_lut[i][j] for cs_quality_metric = = MAE
	cs_quality_lut[i][j]
	Upper Bound

	0
	2

	1
	4

	2
	8

	3
	16

	4
	32

	5
	64

	6
	128

	7
	256

	8
	inf

cs_uses_quality_threshold_flag specifies whether a minimum quality threshold is used. If true, all time periods are assumed to have a quality level at or above that given by cs_quality_threshold.
cs_has_custom_quality_threshold_flag specifies whether a minmum quality threshold value is provided in the bitstream.
cs_quality_threshold[i][cg] specifies the default quality value used for all time periods not indicated by a feature_set() quality period. When cs_has_custom_quality_threshold_flag is equal to 0, the values of [i][cg] are inferred as specified by Table 7‑14.
[bookmark: _Ref209015453]Table 7‑14 – Default values of cs_quality_threshold[i][cg]
	cs_quality_metric
	cs_quality_threshold[i][cg]

	SNR
	70

	PSNR
	100

	PRD
	1

	MAE
	2

cs_segment_payload_frames_in_wps equal to 0 indicates the absence of segment payload frames in the bitstream. Equal to 1 indicates that all channel groups have the segment payload frames. Setting it to values greather than 1 indicate the partial presence of segment payload frames. The partial presence in each channel group is indicated by cs_segment_payload_frames_in_cg_id_flag, where equal to 1 indicates the presence and 0 the absence in a channel group.
cs_segment_payload_frames_in_cg_id_flag equal to 1 indicates the presence of a segment payload frames in a channel group.
Synchronization structure semantics
syncword_8bits shall be equal to 0xDD.
[bookmark: _Ref212040640]User identifier semantics
The UUID specified in the user identifier data, indicates a user identifier and shall have a value specified as a UUID according to the procedures of ISO/IEC 11578, Annex A.
[bookmark: _Ref212040653]Stream identifier semantics
The UUID specified in the stream identifier data, indicates a stream identifier and shall have a value specified as a UUID according to the procedures of ISO/IEC 11578, Annex A.
[bookmark: _Ref213352842]Universally unique identifier semantics
uuid_segment_start_flag equal to 1 indicates the start of a UUID segment.
uuid_segment_stop_flag equal to 1 identifies the end of a uuid_segment. If both uuid_segment_start_flag and uuid_segment_stop_flag are equal to 1, the uuid_data-field contains the full UUID.
uuid_reserved_2bits shall be equal to 0 in bitstreams that conform to this version of this Specification. However, decoders that conform to this version of this Specification shall allow other values to be present and shall ignore the value. It is possible that a future version of this Specification will allow other values and specify their meaning.
uuid_segment_length_minus1 plus 1 specifies the length of the partial UUID in bytes.
uuid_data specifies a segment of a UUID or the full UUID.
[bookmark: _Ref212040564]Authentication start semantics
aust_id contains an identifying number of a verification system that may be applied for verifying that the coded packets represented by the current verification period have been produced by the content provider identified by this packet. It indicates the combination of aust_hash_type, aust_prov_id and aust_key_id to which the related authentication information belongs to. This can be used to enable authentication of one authentication sequence with different authentication configurations.
aust_sequence_id indicates the authentication sequence the related authentication information belongs to.
aust_hash_type indicates the hashing algorithm as specified in Table 7‑15.
[bookmark: _Ref181602732]Table 7‑15 – Values of aust_hash_type
	aust_hash_type
	Hashing algorithm

	0
	SHA-1 (see NIST FIPS PUB 180-4)

	1
	SHA-224 (see NIST FIPS PUB 180-4)

	2
	SHA-256 (see NIST FIPS PUB 180-4)

	3
	SHA-384 (see NIST FIPS PUB 180-4)

	4
	SHA-512 (see NIST FIPS PUB 180-4)

	All other values
	Reserved

aust_key_id identifies the authentication key used to calculate the value of the signature (ausig_sig_partial, ausig_sig_complete) as specified in Table 7‑16. The values of this field are implementation dependent and are not defined in the present document. This value shall be set to 0 in case there is no key needed of the underlying hash-function.
[bookmark: _Ref181603341]Table 7‑16 – Values of aust_key_id
	aust_key_id
	Hashing algorithm

	0
	No key.

	1..2048
	Reserved

	All other values
	May be used as determined by the application

aust_prov_id identifies the provider of the authentication system, as specified in Table 7‑17. In case aust_prov_id equals to 1, there is no provider. This mode can be used to create the message digest only by using the method identified by aust_hash_type.
[bookmark: _Ref181603466]Table 7‑17 – Values of aust_prov_id
	aust_prov_id
	Hashing algorithm

	0
	See authSourceURI.

	1
	Message Digest only

	2..2048
	Reserved

	All other values
	May be used as determined by the application

aust_key_source_uri contains a URI with syntax and semantics as specified in IETF Internet Standard 66.
aust_frame_types_present_flag indicates if authentication information for additional packet types is signalled.
[bookmark: _Hlk181604102]aust_inclusion_types_flag indicates the following. If set to 1, all packet types signalled in aust_packet_type[] syntax elements shall be included into the calculation of the authentication information. If set to 0, all packet types signalled in aust_packet_type[] syntax elements shall be excluded from the calculation of the authentication information.
aust_reserved_7bits shall be equal to 0 in bitstreams that conform to this version of this Specification. However, decoders that conform to this version of this Specification shall allow other values to be present and shall ignore the value. It is possible that a future version of this Specification will allow other values and specify their meaning.
aust_pactype_length_minus1 plus 1 indicates the number of syntax elements aust_packet_type[] present.
aust_packet_type[] indicates the following. If aust_inclusion_types_flag is equal to 1, all packet types signalled in aust_packet_type[] syntax elements are included into the calculation of the authentication information. If aust_inclusion_types_flag is equal to 0, all packet types signalled in aust_packet_type[] syntax elements are excluded from the calculation of the authentication information.
aust_multi_stream_flag indicates if authentication information for additional labels is signalled.
aust_inclusion_labels_flag indicates the following. If equal to 1, all sub-streams signalled in aust_add_packet_label[] syntax elements are included into the calculation of the authentication information. If equal to 0, all sub-streams signalled in aust_add_packet_label[] syntax elements are excluded from the calculation of the authentication information.
aust_label_list_length_minus1 indicates the number of syntax elements aust_add_packet_label[] present.
aust_add_packet_label[] indicates the following. The value of aust_add_packet_label[] indicates that the sub-stream with this packet label are included in (aust_inclusion_labels_flag is equal to 1) or excluded from (aust_inclusion_labels_flag is equal to 0) the calculation of the authentication information in addition to the sub-stream with the same stream_packet_label as assigned to the AUTH_START_SPT packet.
stream_packet_label equal to 0 indicates that all sub-streams are included. In this case, aust_inclusion_labels_flag should be set to 0, to signal exclusion of the labels indicated in aust_add_packet_label[].
[bookmark: _Ref212040573]Authentication signature semantics
ausig_id contains an identifying number of a verification system that may be applied for verifying that the coded packets represented by the current verification period have been produced by the content provider indicated by the associated authentication start packet.
ausig_sequence_id indicates the authentication sequence the related authentication information belongs to.
ausig_partial_sig_flag indicates whether a partial or a complete signature is present.
ausig_segment_start_flag indicates whether the first part of new signature is present in ausig_sig_partial.
ausig_segment_stop_flag indicates whether the last part of new signature is present in ausig_sig_partial. If both ausig_segment_start_flag and and ausig_segment_stop_flag are equal to 1, ausig_sig_partial contains a signature which is complete, but shorter than a full signature resulting from the related hashing algorithm. In this case, verification may happen comparing only a subset of the bits resulting from the hashing algorithm.
ausig_segment_length_minus1 indicates the number of bytes for the syntax element ausig_sig_partial.
ausig_sig_partial carries partial protection information.
ausig_length_minus1 indicates the number of bytes for the syntax element ausig_sig_complete.
ausig_sig_complete carries complete protection information.
An authentication verification of protected encoded messages in the received packets shall be conducted to ensure their authenticity.
CRC 16
Shall be used according to the syntax and semantics mhasParity16Data for MHASPacketType PACTYP_CRC16 as specified in ISO/IEC 23008-3:2022.
CRC 32
Shall be used according to the syntax and semantics mhasParity32Data for MHASPacketType PACTYP_CRC16 as specified in ISO/IEC 23008-3:2022.

Global CRC 16
Shall be used according to the syntax and semantics global_CRC_type for MHASPacketType PACTYP_GLOBAL_CRC16 as specified in ISO/IEC 23008-3:2022.

Global CRC 32
Shall be used according to the syntax and semantics global_CRC_type for MHASPacketType PACTYP_GLOBAL_CRC32 as specified in ISO/IEC 23008-3:2022.

Auxiliary metadata semantics
An AM unit shall only occur as the first stream packet in the bitstream.
am_header_crc32 is the CRC calculated over the byte sequence starting with the byte containing the am_reserved_flag until the end of auxiliary_metadata().
am_extension_present_flag shall be equal to 0 in bitstreams that conform to this version of this Specification. However, decoders that conform to this version of this Specification shall allow the value 1 to be present and shall ignore the value. It is possible that a future version of this Specification will allow the value 1 and specify its meaning.
am_waveform_type specifies the waveform type according to Table 7‑18.
[bookmark: _Ref178371469]Table 7‑18 – Name association to am_waveform_type and type description
	am_waveform_type
	Name of am_waveform_type
	Type of waveform

	0
	WT_GENERIC
	Waveform type not indicated.

	1
	WT_BS2088
	BW64, ITU-R BS.2088-1 metadata (RIFF chunk data bytes starting after cbSize field) is signalled in am_metadata_payload_bytes

	All other values
	WT_RESERVED
	Reserved

am_length_signal_mode equal to 1 indicates that syntax element am_stream_num_samples_per_ch is present in the bitstream.
am_allow_reconfig_flag
am_copyright_flag
am_original_flag
am_private_flag
am_stream_max_sampling_rate_minus1 plus 1 specifies the maximum sampling rate present in the bitstream.
am_stream_max_num_channels_minus1 plus 1 specifies the maximum number of channels in the bitstream.
am_stream_num_samples_per_ch specifies the number of samples per channel present in the bitstream.
am_metadata_reserved_flag shall be equal to 0 in bitstreams that conform to this version of this Specification. However, decoders that conform to this version of this Specification shall allow the value 1 to be present and shall ignore the value. It is possible that a future version of this Specification will allow the value 1 and specify its meaning..
am_metadata_num_bytes_minus1 plus 1 specifies the number of metadata payload bytes present in the AM.
am_metadata_payload_bytes[i] specifies the i-th metadata payload byte. The array am_metadata_payload_bytes is a bitstream according to ITU-R BS.2088-1 (RIFF chunk data bytes starting after cbSize field).
[bookmark: _Toc317198757][bookmark: _Toc338688377][bookmark: _Toc77680423][bookmark: _Ref168820904][bookmark: _Ref220341852][bookmark: _Toc226456581][bookmark: _Toc248045260][bookmark: _Toc287363784][bookmark: _Toc311216932][bookmark: _Toc317198759][bookmark: _Ref398989347][bookmark: _Toc415475869][bookmark: _Toc423599144][bookmark: _Toc423601648]am_signal_type indicates the present signal type as specified in Table 7‑19
[bookmark: _Ref181606582]Table 7‑19 – Name association to am_signal_type and cs_signal_type type description
	am_signal_type
	Name of am_signal_type
	Signal type

	0
	ST_ECG
	Electrocardiography (ECG) data

	1
	ST_EEG
	Electroencephalography (EEG) data

	2
	ST_EMG
	Electromyography (EMG) data

	3
	ST_PPG
	Photoplethysmogram (PPG) data

	All other values
	ST_RESERVED
	Reserved

Trailing bits semantics
stop_one_bit shall be equal to 1.
alignment_zero_bit shall be equal to 0.
[bookmark: _Toc311216933][bookmark: _Toc317198760][bookmark: _Ref398989362][bookmark: _Toc415475870][bookmark: _Toc423599145][bookmark: _Toc423601649]Byte alignment semantics
byte_alignment_bit_equal_to_zero shall be equal to 0.
[bookmark: _Toc415475879][bookmark: _Toc423599154][bookmark: _Toc423601658][bookmark: _Toc501130177][bookmark: _Toc510795100][bookmark: _Toc202359568][bookmark: _Toc213429768]Frame data semantics
General frame data semantics
[bookmark: _Toc328577703][bookmark: _Toc328598506][bookmark: _Toc328663151][bookmark: _Toc328752991][bookmark: _Ref398990158][bookmark: _Toc415475881][bookmark: _Toc423599156][bookmark: _Toc423601660]end_of_frame_sequence_flag equal to 1 indicates that that the current frame sequence is terminated. When end_of_frame_sequence_flag is not present, it is inferred to be equal to 0.
block_split_log2 specifies a parameter for calculating Log2BlockSize. When block_split_log2 is not present, it is inferred to be equal to 0.
end_of_truncated_frame_sequence_flag equal to 1 indicates that the current block is the last block of the frame sequence. When end_of_truncated_frame_sequence_flag is not present, it is inferred to be equal to 0.
num_samples_per_channel_to_discard specifies the number of samples per channel to be discarded at the end of the current block. Discarding of samples is only done if end_of_truncated_frame_sequence_flag equals 1. The length of this syntax element is Log2BlockSize bits. The value of num_samples_per_channel_to_discard shall not be equal to 0.
end_of_frame_one_bit equal to 1 indicates the end of a frame. When end_of_frame_one_bit is present, it shall be equal to 1. When end_of_frame_one_bit is not present, it is inferred to be equal to 0.
Predictive transform coding block semantics
[bookmark: _Ref205562421]Predictive trafo block data semantics
block_matching_or_cross_channel_pred_flag equal to 1 indicates that the predicition is generated by invoking either the block-matching or the linear model prediction mode. When block_matching_or_cross_channel_pred_flag is not present, it is inferred to be 0.
cross_channel_pred_flag equal to 1 indicates that the prediction is generated by invoking the cross-channel prediction mode.
When cross_channel_pred_flag is not present, it is inferred as follows:
–	If cgps_allow_cross_channel_pred_flag is equal to 1 and block_matching_or_cross_channel_pred_flag is equal to 1, cross_channel_pred_flag is inferred to be 1.
–	Otherwise (cgps_allow_cross_channel_pred_flag is equal to 0 or block_matching_or_cross_channel_pred_flag is equal to 0), the value of cross_channel_pred_flag is inferred to be 0.
block_pred_mode specifies the block prediction mode according to Table 7‑20. When block_pred_mode is not present, it is inferred to be equal to BPM_OFF.
[bookmark: _Ref178091304]Table 7‑20 – Name association to block_pred_mode and mode description
	block_pred_mode
	Name of block_pred_mode
	Mode description

	0
	BPM_DC
	Average value prediction

	1
	BPM_LF
	Linear-function predictor

	2
	BPM_OFF
	No block prediction

block_abs_delta_qp specifies the absolute value of the current QP-value-difference associated with the current block of the current channel. When block_abs_delta_qp is not present, it is inferred to be equal to 0.
block_delta_qp_sign_flag specifies the sign of the current QP-value-difference.
When block_delta_qp_sign_flag is not present, it is inferred to be 0.
transform_present_flag equal to 1 indicates that the identity transform is not used on the current block.
transform_dst_flag equal to 1 indicates that the discrete sine transform is used on the current block.
The syntax elements transform_present_flag and transform_dst_flag determine the block-wise transform TransformMode for the current block. The possible values of TransformMode are delineated in Table 7‑21.
[bookmark: _Ref179668782]Table 7‑21 – Name association to TransformMode and mode description
	Name of transform_mode
	Mode description

	TM_OFF
	Identity transform

	TM_DCT
	Discrete cosine transform

	TM_DST
	Discrete sine transform

zlsb_present_flag equal to 1 specifies that zero least significant bits are present. If zlsb_present_flag is not present, it is inferred to be equal to zero.
num_zlsb_minus1 plus 1, specifies the number of zero least significant bits.
Cross-channel prediction data semantics
cc_pred_offset_only_flag equal to 1 indicates that the cross-channel prediction mode is to be applied without a scaling factor.
cc_pred_filter_flag equal to 1 indicates that the output of the cross-channel prediction mode is to be filtered, where the set of filter coefficients is determined by the syntax element cc_pred_filter_idx. When cc_pred_filter_flag is not present, it is inferred to be 0.
cc_pred_filter_idx specifies the index filterIdx to derive the array CCFiltCoeffs as specified in Table 7‑22 for filtering the output of the cross-channel prediction.
[bookmark: _Ref179449734]Table 7‑22 – Name association to filterIdx
	filterIdx
	Filter coefficients

	0
	{-3, 0, 19, 32, 19, 0, -3, 0}

	1
	{-1, -4, 8, 29, 29, 8, -4, -1}

When cc_pred_filter_idx is not present, it is inferred to be 1:
cc_pred_mult_hyp_flag equal to 1 indicates that the cross-channel prediction mode with two hypotheses is used. When cc_pred_mult_hyp_flag is not present, it is inferred to be 0.
cc_pred_abs_chd_greater0_flag[n] equal to 1 indicates that the channel difference to the predicted input channel difference minus 1 for the n-th hypothesis of the cross-channel prediction is not 0.

cc_pred_abs_chd_minus1[n] plus 1 specifies the absolute value of the channel difference to the predicted input channel difference minus 1 for the n-th hypothesis of the cross-channel prediction.

cc_pred_chd_sign_flag[n] specifies the sign of the channel difference to the predicted input channel difference minus 1 for the n-th hypothesis of the cross-channel prediction.
When cc_pred_chd_sign_flag[n] is not present, it is inferred to be 0.
Block matching prediction data semantics
bm_pred_mult_hyp_flag equal to 1 indicates that the block matching prediction mode with two hypotheses is used. When bm_pred_mult_hyp_flag is not present, it is inferred to be 0.
bm_pred_add_offset_flag equal to 1 indicates that an offset, derived from previous reconstructed samples, is added to the block matching prediction.
bm_pred_filter_flag[n] equal to 1 indicates that the reference samples used for the n-th hypothesis of the block matching prediction are to be filtered, where the set of filter coefficients is determined by the syntax element bm_pred_filter_idx[n]. When bm_pred_filter_flag[n] is not present, it is inferred to be 0.
bm_pred_filter_idx[n] specifies the index filterIdx used to derive the array BMFiltCoeffs[n][i], with 0 <=i < 7, of filter coefficients according to Table 7‑22 for filtering the reference samples of the n-th hypothesis of the block matching prediction. When bm_pred_filter_idx[n] is not present, it is inferred to be 1.
bm_pred_off_pred_prev_ch_flag[n] equal to 1 indicates that the value of offset minus block size for the n-th block matching prediction hypothesis is predicted from the value of offset minus block size of the n-th hypothesis of the previous channel. When bm_pred_off_pred_prev_ch_flag[n] is not present, it is inferred to be 0.
bm_pred_abs_offd_greater0_flag[n] equal to 1 indicates that the offset difference to the predicted value of offset minus block size for the n-th hypothesis of the block matching prediction is not 0.
bm_pred_abs_offd_minus1[n] plus 1 specifies the absolute value of the offset difference to the predicted value of offset minus blocksize for the n-th hypothesis of the block matching prediction.
bm_pred_offd_sign_flag[n]specifies the sign of the offset difference to the predicted value of offset minus blocksize for the n-th hypothesis of the block matching prediction.
When bm_pred_offd_sign_flag[n] is not present, it is inferred to be 0.
Sample pred mode data semantics
The sample pred mode data syntax specifes the mode SamplePredMode for the sample wise prediction on a block. The supported options for SamplePredMode and their name and meaning are delinated in Table 7‑23.
[bookmark: _Ref179449247][bookmark: _Ref179448809]Table 7‑23 – Name association to SamplePredMode and mode description
	SamplePredMode
	Name of SamplePredMode
	Mode description

	0
	SPM_SLOPE
	Full-slope delta coding

	1
	SPM_HALF_SLOPE
	Half-slope delta coding

	2
	SPM_OFF
	No sample prediction

	3
	SPM_LPF
	Linear predictive filtering

	4
	SPM_DIFFS
	Sample-wise delta coding

spred_lpf_or_diff_flag equal to 1 specifies that either linear predictive filtering or sample-wise delta coding is to be used as a sample wise prediction mode.
spred_lpf_flag equal to 1 specifies that linear predictive filtering is to be used as a sample wise prediction mode. When spred_lpf_flag is not present, it is inferred to be 0.
spred_rem_mode_idx specifies the sample wise prediction mode to be used among the first three options in Table 7‑23.
The variable SamplePredMode is derived as follows:
–	When spred_lpf_or_diff_flag is equal to 1, the following applies: 	
–	If spred_lpf_flag is equal to 0, SamplePredMode is set to 4.
–	Otherwise (spred_lpf_flag is equal to 1), SamplePredMode is set to 3.
–	Otherwise (spred_lpf_or_diff_flag is not equal to 0), SamplePredMode is set to spred_rem_mode_idx.
Linear predictive filtering data semantics
The array LPFWeightsCurr[] represents the filter coefficients used for the linear linear predictive filtering on the current block.
lpf_prev_ch_flag equal to 1 specifies that the weighted samples from a specified previous channel are added to the output of the linear predictive filtering. When lpf_prev_ch_flag is not present, it is inferred to be 0.
lpf_prev_ch_idx specifies the absolute value of the channel difference to the current channel minus 1 for the previous channel which contributes to the linear predictive filtering.
lpf_prev_ch_weight_abs specifies the absolute value of the weighting factor for the samples of a specified previous channel for the linear predictive filtering.
lpf_prev_ch_weight_sign_flag specifies the sign of the weighting factor for the samples of a specified previous channel for the linear predictive filtering.
When the lpf_prev_ch_weight_sign_flag is not present, it is inferred to be 0.
lpf_delta_coding_flag equal to 1 specifies that the current filter coefficients for the linear predictive filtering process are to be reconstructed predictively by using the filter coefficients LPFWeightsPred[] as a prediction input. When lpf_delta_coding_flag is not present, it is inferred to be 0.
lpf_num_weights_idx determines the number of filter coefficients for the linear predictive filtering process.
abs_lpf_weight_greater0_flag[n] equal to 1 specifies that the current coded filter coefficient value is not 0.
abs_lpf_weight_minus1[n] plus 1 specifies the absolute value of the current coded filter coefficient value.
lpf_weight_sign_flag[n] specifies the sign of the current coded filter coefficient value.
When lpf_weight_sign_flag[n] is not present, it is inferred to be 0.
[bookmark: _Ref2806536]Quant res sample data semantics
The array QuantIndices[k] represents an array of quantization indices for the current block. The array index k specifies the location of the quantization index within the current block.
The variables NumTSkipGtxFlags, MaxTSkipRemPrefix, Log2SbbSize, and NumTCoeffGtxFlags are specified as follows:
NumTSkipGtxFlags = 4	(55)
MaxTSkipRemPrefix = 32	(56)
Log2SbbSize = 1	(57)
NumTCoeffGtxFlags = 20	(58)
The array QStateTransTable is specified as follows:
–	If cgps_residual_quant_mode is equal to 0, QStateTransTable is given by:
QStateTransTable[][] = { { 0, 0 } }	(59)
–	Otherwise, if cgps_residual_quant_mode is equal to 1, QStateTransTable is given by:
QStateTransTable[][] = { { 0, 1 }, { 2, 3 }, { 1, 0 }, { 3, 2 } }	(60)
–	Otherwise (cgps_residual_quant_mode is equal to 2), QStateTransTable is given by:
QStateTransTable[][] = { { 0, 2 }, { 5, 7 }, { 1, 3 }, { 6, 4 }, { 2, 0 }, { 4, 6 }, { 3, 1 }, { 7, 5 } }	(61)
coeff_bypass_value[k] represents, when the current block is coded in bypass mode, the quantization index at location k within the current block as an unsigned integer. The value of coeff_bypass_value[k] shall be in the range of 0 to (1 << IntBitDepth) − 1, inclusive.
abs_tskip_coeff_gt0_flag[k] specifies, when the current block is coded with a sample-wise prediction mode, whether the quantization index at location k within the current block is non-zero as follows:
–	If abs_tskip_coeff_gt0_flag[k] is equal to 0, the quantization index at location k is set equal to 0.
–	Otherwise (abs_tskip_coeff_gt0_flag[k] is equal to 1), the quantization index at location k has non-zero value.
abs_tskip_coeff_offset[k] specifies, when the current block is coded with a sample-wise prediction mode, an offset, coded using truncated unary binarization, for the absolute value of the quantization index at location k. The value of abs_tskip_coeff_offset[k] shall be in the range of 0 to NumTSkipGtxFlags, inclusive. When abs_tskip_coeff_offset[k] is not present, it shall be inferred to be equal to 0.
abs_tskip_coeff_rem_prefix[k] specifies, when the current block is coded with a sample-wise prediction mode, a prefix for the remainder of the absolute quantization index at location k within the current block. The value of abs_tskip_coeff_rem_prefix[k] shall be in the range of 0 to MaxTSkipRemPrefix, inclusive. When abs_tskip_coeff_rem_prefix[k] is not present, it shall be inferred to be equal to 0.
abs_tskip_coeff_rem_fl_suffix[k] specifies, when the current block is coded with a sample-wise prediction mode, a suffix, coded using a fixed-length binarization, for the remainder of the absolute quantization index at location k within the current block. The value of abs_tskip_coeff_rem_fl_suffix[k] shall be in the range of 0 to (1 << RiceParameter) − 1, inclusive. When abs_tskip_coeff_rem_fl_suffix[k] is not present, it shall be inferred to be equal to 0.
abs_tskip_coeff_rem_eg0_suffix[k] specifies, when the current block is coded with a sample-wise prediction mode, a suffix, coded using an exponential Goslomb code of order zero, for the remainder of the absolute quantization index at location k within the current block. When abs_tskip_coeff_rem_eg0_suffix[k] is not present, it shall be inferred to be equal to 0.
tskip_coeff_sign_flag[k] specifies, when the current block is coded with a sample-wise prediction mode, the sign of the quantization index at location k as follows:
–	If tskip_coeff_sign_flag[k] is equal to 0, the quantization index at location k a non-negative value.
–	Otherwise (tskip_coeff_sign_flag[k] is equal to 1), the quantization index at location k has a negative value.
When tskip_coeff_sign_flag[k] is not present, it shall be inferred to be equal to 0.
last_pos_index_gt0_flag specifies, when the current block is coded with a block-wise transform, whether the last non-zero quantization index within the current block is non-zero.
last_pos_index_rem specifies, when the current block is coded with a block-wise transform, the remainder of the last non-zero quantization index within the current block. The value of last_pos_index_rem shall be in the range of 0 to (1 << Log2BlockSize) − 1, inclusive. When last_pos_index_rem is not present, it shall be inferred to be equal to 0.
last_pos_index_sign specifies, when the current block is coded with a block-wise transform, the sign of the coded last significant scanning position for the current block. If last_pos_index_sign is not present, it is inferred to be equal to 0.
abs_trafo_coeff_gt0_flag[k] specifies, when the current block is coded with a block-wise transform, whether the quantization index at location k within the current block is non-zero as follows:
–	If abs_trafo_coeff_gt0_flag[k] is equal to 0, the quantization index at location k is set equal to 0.
–	Otherwise (abs_trafo_coeff_gt0_flag[k] is equal to 1), the quantization index at location k has non-zero value.
When abs_trafo_coeff_gt0_flag[k] is not present, it is inferred as follows:
–	If k is equal to LastScanPos and k is greater than zero, the value of abs_trafo_coeff_gt0_flag[k] is inferred to be equal to 1.
–	Otherwise (k is not equal to ((last_pos_index_gt0_flag + last_pos_index_rem) << Log2SbbSize) + last_index_offset or k is equal to 0), the value of abs_trafo_coeff_gt0_flag[k] is inferred to be equal to 0.
abs_trafo_parity_flag[k] specifies, when the current block is coded with a block-wise transform and the variable TemplateSum is greater than 3, the parity of the current absolute quantization index.
abs_trafo_coeff_offset[k] specifies, when the current block is coded with a block-wise transform, an offset, coded using truncated unary binarization, for the absolute value of the quantization index at location k. The value of abs_trafo_coeff_offset[k] shall be in the range of 0 to NumTCoeffGtxFlags, inclusive. When abs_trafo_coeff_offset[k] is not present, it shall be inferred to be equal to 0.
abs_trafo_coeff_remainder[k] specifies, when the current block is coded with a block-wise transform, the remainder of the absolute quantization index at location k within the current block. When abs_trafo_coeff_remainder[k] is not present, it shall be inferred to be equal to 0.
trafo_coeff_sign_flag[k] specifies, when the current block is coded with a block-wise transform, the sign of the quantization index at location k as follows:
–	If trafo_coeff_sign_flag[k] is equal to 0, the quantization index at location k a non-negative value.
–	Otherwise (trafo_coeff_sign_flag[k] is equal to 1), the quantization index at location k has a negative value.
When trafo_coeff_sign_flag[k] is not present, it shall be inferred to be equal to 0.
[bookmark: _Ref213074960]LMS data semantics
lms_flag equal to 1 indicates that least mean squares prediction is used for DCT coefficients.
lms_split_flag indicates that the DCT domain frequency and channel prediction is seperately controlled for the first half of the spectrum and the second half of the spectrum. When the spectrum is split (lms_split_flag equals to 1), two additional control bits are sent for each half of the spectrum. When lms_split_flag is equal to 0 then the prediction runs across the entire spectrum.
enable_ar_lms[0] and enable_ar_lms[1] (when present) enable the backward adaptive LMS predictor to run along frequency for the relevant part of the signal. If lms_split_flag is equal to 0, the value enable_ar_lms[0] applies to the entire signal; otherwise, there will be two values enable_ar_lms[0] and enable_ar_lms[1], which each apply to half of the signal.
enable_cc_lms[0] and enable_cc_lms[1] (when present) enable the backward adaptive LMS predictor to predict across channels for the relevant part of the signal. If lms_split_flag is equal to 0, the value enable_cc_lms[0] applies to the entire signal; otherwise, there will be two values enable_cc_lms[0] and enable_cc_lms[1], which each apply to half of the signal.
Mean value trafo block semantics
mean_value_sig_flag equal to one specifies that the mean value on the current block is not zero. When mean_value_sig_flag is not present, it is inferred to be zero.
mean_value_abs_rem specifies the absolute value minus one of the mean value on the current block.
mean_value_sign_flag specifies the sign of the mean value on the current block.
[bookmark: _Toc202359569][bookmark: _Toc213429769]Annotation channel data semantics
am_annotation_byte specifies an annotation channel byte.
[bookmark: _Ref4979877][bookmark: _Toc202359570][bookmark: _Toc213429770]Decoding process
[bookmark: _Toc202359571][bookmark: _Toc213429771]General decoding process
[bookmark: _Toc202359572][bookmark: _Toc213429772]General
Input to this process is a bitstream BitstreamToDecode. Output of this process are a list of decoded channels, each having an associated waveform parameter set identifyer and an associated channel index.
The decoding process is specified such that all decoders that conform to the specification will produce numerically identical decoded output channels when invoking the decoding process. Any decoding process that produces identical decoded channels conforms to the decoding process requirements of this Specification.
[bookmark: _Ref180876412][bookmark: _Toc202359573][bookmark: _Toc213429773]Channel output index derivation process
Input of this process are:
· The syntax elements of a waveform parameter set according to clause 7.3.2.1,
· a channel group index chGrpIdx
· a channel index chIdxInChGroup in a channel group.
Output of this process is an output channel index outChIdx.
This index is derived as follows:
The variable chIdxBRd which specifies the channel index before reordering (if applicable) is set to ChannelGroupStartingPos[chGrpIdx] + chIdxInChGroup.
If wps_channel_reordering_flag is equal to zero, chIdxBdR is set equal to outChIdx.
Otherwise (wps_channel_reordering_flag is not equal to zero), the following process is invoked:
	Set outChIdx = chIdxBRd.
	Set i = 0
	do
		if(outChIdx = = wps_swap_frst_idx[i])
			outChIdx += wps_swap_scnd_idx_min_frst_idx_min1[i] + 1
		else if(outputChIx = = wps_swap_frst_idx[i] + wps_swap_scnd_idx_min_frst_idx_min1[i] + 1)
			outChIdx = wps_swap_frst_idx[i]
		i = i + 1
	while (i <= wps_num_channel_swaps_minus1)
[bookmark: _Toc202359574][bookmark: _Toc213429774]Decoding process for independent frames (stream packets of type IF_SPT)
The syntax elements of the last previously decoded waveform parameter set in the bitstream in decoding order that has the same waveform parameter set identifier as the current independent frame (waveform_parameter_set_id = = if_waveform_parameter_set_id) are inferred. It is a requirement of bitstream conformance that such a waveform parameter set exists. The set of syntax elements of this waveform parameter set shall be referred to as wpsCurr.
The variable wPId is set to if_waveform_parameter_set_id and the variable chGId is set to if_channel_group_id.
The frame decoding process of clause 8.2 is invoked with the variable frameStartPos set to 0 and the variable frameNumChannels set to NumChannels[if_channel_group_id].
The output of this process is assigned to the number of reconstructed samples numRecSmpls and the array of reconstructed sample values Rec[wPId][chGId][c][i] with 0 <= c < NumChannels[if_channel_group_id] and 0 <= i < numRecSmpls.
The variable NumSpls[wPId][chGId] which specifies the number of decoded samples corresponding to the current waveform parameter set id and to the current channel group id is set to numRecSmpls.
For each c with 0 <= c < NumChannels[if_channel_group_id], the following applies:
· The decoded output channel outCh[c] is specified as the channel of reconstructed sample values Rec[wPId][chGId][c][i] with 0 <= i < numRecSmpls.
· The waveform parameter set identifier associated to outCh[c] is set to wpId.
· The process of clause 8.1.2 is invoked with the set of waveform parameter set syntax elements set to wpsCurr, the variable chGrpIdx set to if_channel_group_id and the variable chIdxInChGroup set to c. The output of this process is assigned to the output channel index outputIdx associated to outCh[c].
[bookmark: _Toc202359575][bookmark: _Toc213429775]Decoding process for dependent frames (stream packets of type DF_SPT)
The syntax elements of the independent frame header of the last previously decoded independent frame in the bitstream in decoding order that has the same waveform parameterset id and the same channel group id as the current dependent frame (if_waveform_parameter_set_id = = df_waveform_parameter_set_id and if_channel_group_id = = df_channel_group_id) are inferred. It is a requirement of bitstream conformance that such an independent frame exists. The set of syntax elements of the last previously decoded waveform parameter set that has the same waveform parameter set identifier as the current dependent frame (waveform_parameter_set_id = = df_waveform_parameter_set_id) shall be referred to as wpsCurr.
The variable wPId is set to df_waveform_parameter_set_id and the variable chGId is set to df_channel_group_id.
The frame decoding process of clause 8.2 is invoked with the variable frameStartPos set to NumSpls[wPId][chGId], the variable frameNumChannels set to NumChannels[if_channel_group_id] and the input array sample values recSamples[c][i] set to Rec[wPId][chGId][c][i] for 0 <= c < NumChannels[df_channel_group_id] and 0 <= i < NumSpls[wPId][chGId].
The output of this process is assigned to the number of currently reconstructed samples numRecSmpls and the reconstructed sample values rec[c][i] with 0 <= c < NumChannels[df_channel_group_id] and numSpls[wPId][chGId] <= i < numSpls[wPId][chGId] + numRecSmpls.
The values rec[c][i] are assigned to the variables Rec[wPId][chGId][c][i] for 0 <= c < NumChannels[df_channel_group_id] and numSpls[wPId][chGId] <= i < numSpls[wPId][chGId] + numRecSmpls.
The variable NumSpls[wPId][chGId] is set to NumSpls[wPId][chGId] + numRecSmpls.
For each c with 0 <= c < NumChannels[df_channel_group_id], the following applies:
· The decoded output channel outCh[c] is specified as the channel of reconstructed sample values Rec[wPId][chGId][c][i] with numSpls[wPId][chGId] <= i < numSpls[wPId][chGId] + numRecSmpls.
· The waveform parameter set identifier associated to outCh[c] is set to wpId.
· The process of clause 8.1.2 is invoked with the set of waveform parameter set syntax elements set to wpsCurr, the variable chGrpIdx set to df_channel_group_id and the variable chIdxInChGroup set to c to specify the output channel index outputIdx associated to outCh[c].
[bookmark: _Ref180839004][bookmark: _Toc202359576][bookmark: _Toc213429776]Frame data decoding process
Input to this process are:
· a starting position startPos.
· a number of channels numCh
· if starPos is not equal to zero: An array of reconstructed sample values rec[c][i] with 0 <= c < numCh and
0 <= i < startPos.
Output of this process are the number of reconstructed samples numRecSmpls and the newly reconstructed sample values rec[c][i] with 0 <= c <numCh and startPos <= i < startPos + numRecSmpls.
The ordered steps in the the decoding process of this clause follow the corresponding orderd steps in the syntax of clause 7.3.3.1, where at each step, the associated syntax elements are inferred from clause 7.3.3.
The variable currLog2TSize is set to 4 and the variable currTSize is set to (1 << currLog2Tsize).
[bookmark: _Hlk212641791]The variable maxVal is set to (1 << (BitDepthMax − 1)) − 1 and the variable minVal is set to −maxVal − 1.
The variable currBlockPos is initialized to 0.
For each step in the enclosing while loop of clause 7.3.3.1, the following ordered steps apply:
· The variable blockSize is set equal to (1 << Log2BlockSize).
· For each channel with channel index currCh, 0 <= currCh < numCh, the following ordered steps apply:
1. The block-wise prediction decoding process of clause 8.3 is applied. The output of this process is assigned to the prediction sample values predCurr[i] with 0 <= i < blockSize and the extended left adjacent residual samples resiLeftCurr[j] with 0 <= j < currTSize.
2. If lms_flag is equal to 1, the Backward Adaptive (LMS prediction) process of clause 8.5 is applied.
3. The scaling and inverse block-wise transform process from clause 8.4 is applied. The output of this process is assigned to the intermediate reconstructed residual sample values resImdCurr[i] with 0 <= i < blockSize.
4. The sample wise prediction decoding process of clause 8.9 is applied. The output of this process is assigned to the final residual sample values resCurr[i] with 0 <= i < blockSize.
5. For 0 <= i < blockSize, the value Clip3(minVal, maxVal, predCurr[i] + resCurr[i]) is assigned to the reconstructed sample values rec[currCh][i]
6. When transform_present_flag is equal to 1, currBlockPos is greater than 0 and cgps_deblocking_mode is greater than 0, the deblocking process of clause 8.10 is applied.
· The variable currBlockPos is incremented as follows:
· If end_of_truncated_frame_sequence_flag is equal to 1, the variable currBlockPos is set equal to currBlockPos + blockSize − num_samples_per_channel_to_discard
· Otherwise (end_of_truncated_frame_sequence_flag is not equal to 1), the variable currBlockPos is set equal to currBlockPos + blockSize.
The variable currBlockPos is set equal to numRecSmpls.
[bookmark: _Toc202358543][bookmark: _Toc202358775][bookmark: _Toc202359580][bookmark: _Toc202358544][bookmark: _Toc202358776][bookmark: _Toc202359581][bookmark: _Toc202358545][bookmark: _Toc202358777][bookmark: _Toc202359582][bookmark: _Toc202358546][bookmark: _Toc202358778][bookmark: _Toc202359583][bookmark: _Toc202358547][bookmark: _Toc202358779][bookmark: _Toc202359584][bookmark: _Toc202358548][bookmark: _Toc202358780][bookmark: _Toc202359585][bookmark: _Toc202358549][bookmark: _Toc202358781][bookmark: _Toc202359586][bookmark: _Toc202358550][bookmark: _Toc202358782][bookmark: _Toc202359587][bookmark: _Toc202358551][bookmark: _Toc202358783][bookmark: _Toc202359588][bookmark: _Toc202358552][bookmark: _Toc202358784][bookmark: _Toc202359589][bookmark: _Toc202358553][bookmark: _Toc202358785][bookmark: _Toc202359590][bookmark: _Toc202358554][bookmark: _Toc202358786][bookmark: _Toc202359591][bookmark: _Toc202358555][bookmark: _Toc202358787][bookmark: _Toc202359592][bookmark: _Toc202358556][bookmark: _Toc202358788][bookmark: _Toc202359593][bookmark: _Toc202358557][bookmark: _Toc202358789][bookmark: _Toc202359594][bookmark: _Toc202358558][bookmark: _Toc202358790][bookmark: _Toc202359595][bookmark: _Toc202358559][bookmark: _Toc202358791][bookmark: _Toc202359596][bookmark: _Toc202358560][bookmark: _Toc202358792][bookmark: _Toc202359597][bookmark: _Toc202358561][bookmark: _Toc202358793][bookmark: _Toc202359598][bookmark: _Toc202358562][bookmark: _Toc202358794][bookmark: _Toc202359599][bookmark: _Toc202358563][bookmark: _Toc202358795][bookmark: _Toc202359600][bookmark: _Toc202358564][bookmark: _Toc202358796][bookmark: _Toc202359601][bookmark: _Toc202358565][bookmark: _Toc202358797][bookmark: _Toc202359602][bookmark: _Toc202358566][bookmark: _Toc202358798][bookmark: _Toc202359603][bookmark: _Toc202358567][bookmark: _Toc202358799][bookmark: _Toc202359604][bookmark: _Toc202358568][bookmark: _Toc202358800][bookmark: _Toc202359605][bookmark: _Toc202358569][bookmark: _Toc202358801][bookmark: _Toc202359606][bookmark: _Toc202358570][bookmark: _Toc202358802][bookmark: _Toc202359607][bookmark: _Toc202358571][bookmark: _Toc202358803][bookmark: _Toc202359608][bookmark: _Toc202358572][bookmark: _Toc202358804][bookmark: _Toc202359609][bookmark: _Toc202358573][bookmark: _Toc202358805][bookmark: _Toc202359610][bookmark: _Toc202358574][bookmark: _Toc202358806][bookmark: _Toc202359611][bookmark: _Toc202358575][bookmark: _Toc202358807][bookmark: _Toc202359612][bookmark: _Toc202358576][bookmark: _Toc202358808][bookmark: _Toc202359613][bookmark: _Toc202358577][bookmark: _Toc202358809][bookmark: _Toc202359614][bookmark: _Toc202358578][bookmark: _Toc202358810][bookmark: _Toc202359615][bookmark: _Toc202358579][bookmark: _Toc202358811][bookmark: _Toc202359616][bookmark: _Toc202358580][bookmark: _Toc202358812][bookmark: _Toc202359617][bookmark: _Toc202358581][bookmark: _Toc202358813][bookmark: _Toc202359618][bookmark: _Toc202358582][bookmark: _Toc202358814][bookmark: _Toc202359619][bookmark: _Toc202358583][bookmark: _Toc202358815][bookmark: _Toc202359620][bookmark: _Toc202358584][bookmark: _Toc202358816][bookmark: _Toc202359621][bookmark: _Toc202358585][bookmark: _Toc202358817][bookmark: _Toc202359622][bookmark: _Toc202358586][bookmark: _Toc202358818][bookmark: _Toc202359623][bookmark: _Toc202358587][bookmark: _Toc202358819][bookmark: _Toc202359624][bookmark: _Toc202358588][bookmark: _Toc202358820][bookmark: _Toc202359625][bookmark: _Toc202358589][bookmark: _Toc202358821][bookmark: _Toc202359626][bookmark: _Toc202358590][bookmark: _Toc202358822][bookmark: _Toc202359627][bookmark: _Toc202358591][bookmark: _Toc202358823][bookmark: _Toc202359628][bookmark: _Toc202358592][bookmark: _Toc202358824][bookmark: _Toc202359629][bookmark: _Toc202358593][bookmark: _Toc202358825][bookmark: _Toc202359630][bookmark: _Toc202358594][bookmark: _Toc202358826][bookmark: _Toc202359631][bookmark: _Toc202358595][bookmark: _Toc202358827][bookmark: _Toc202359632][bookmark: _Toc202358596][bookmark: _Toc202358828][bookmark: _Toc202359633][bookmark: _Toc202358597][bookmark: _Toc202358829][bookmark: _Toc202359634][bookmark: _Toc202358598][bookmark: _Toc202358830][bookmark: _Toc202359635][bookmark: _Toc202358599][bookmark: _Toc202358831][bookmark: _Toc202359636][bookmark: _Toc202358600][bookmark: _Toc202358832][bookmark: _Toc202359637][bookmark: _Toc202358601][bookmark: _Toc202358833][bookmark: _Toc202359638][bookmark: _Toc202358602][bookmark: _Toc202358834][bookmark: _Toc202359639][bookmark: _Toc202358603][bookmark: _Toc202358835][bookmark: _Toc202359640][bookmark: _Toc202358604][bookmark: _Toc202358836][bookmark: _Toc202359641][bookmark: _Toc202358605][bookmark: _Toc202358837][bookmark: _Toc202359642][bookmark: _Toc202358606][bookmark: _Toc202358838][bookmark: _Toc202359643][bookmark: _Toc202358607][bookmark: _Toc202358839][bookmark: _Toc202359644][bookmark: _Toc202358608][bookmark: _Toc202358840][bookmark: _Toc202359645][bookmark: _Toc202358609][bookmark: _Toc202358841][bookmark: _Toc202359646][bookmark: _Toc202358610][bookmark: _Toc202358842][bookmark: _Toc202359647][bookmark: _Toc202358611][bookmark: _Toc202358843][bookmark: _Toc202359648][bookmark: _Toc202358612][bookmark: _Toc202358844][bookmark: _Toc202359649][bookmark: _Toc202358613][bookmark: _Toc202358845][bookmark: _Toc202359650][bookmark: _Toc202358614][bookmark: _Toc202358846][bookmark: _Toc202359651][bookmark: _Toc202358615][bookmark: _Toc202358847][bookmark: _Toc202359652][bookmark: _Toc202358616][bookmark: _Toc202358848][bookmark: _Toc202359653][bookmark: _Toc202358617][bookmark: _Toc202358849][bookmark: _Toc202359654][bookmark: _Toc202358618][bookmark: _Toc202358850][bookmark: _Toc202359655][bookmark: _Toc202358619][bookmark: _Toc202358851][bookmark: _Toc202359656][bookmark: _Toc202358620][bookmark: _Toc202358852][bookmark: _Toc202359657][bookmark: _Toc202358621][bookmark: _Toc202358853][bookmark: _Toc202359658][bookmark: _Toc202358622][bookmark: _Toc202358854][bookmark: _Toc202359659][bookmark: _Toc202358623][bookmark: _Toc202358855][bookmark: _Toc202359660][bookmark: _Toc202358624][bookmark: _Toc202358856][bookmark: _Toc202359661][bookmark: _Toc202358625][bookmark: _Toc202358857][bookmark: _Toc202359662][bookmark: _Toc202358626][bookmark: _Toc202358858][bookmark: _Toc202359663][bookmark: _Toc202358627][bookmark: _Toc202358859][bookmark: _Toc202359664][bookmark: _Toc202358628][bookmark: _Toc202358860][bookmark: _Toc202359665][bookmark: _Toc202358629][bookmark: _Toc202358861][bookmark: _Toc202359666][bookmark: _Toc202358630][bookmark: _Toc202358862][bookmark: _Toc202359667][bookmark: _Toc202358631][bookmark: _Toc202358863][bookmark: _Toc202359668][bookmark: _Toc202358632][bookmark: _Toc202358864][bookmark: _Toc202359669][bookmark: _Toc202358633][bookmark: _Toc202358865][bookmark: _Toc202359670][bookmark: _Toc202358634][bookmark: _Toc202358866][bookmark: _Toc202359671][bookmark: _Toc202358635][bookmark: _Toc202358867][bookmark: _Toc202359672][bookmark: _Toc202358636][bookmark: _Toc202358868][bookmark: _Toc202359673][bookmark: _Toc202358637][bookmark: _Toc202358869][bookmark: _Toc202359674][bookmark: _Toc202358638][bookmark: _Toc202358870][bookmark: _Toc202359675][bookmark: _Toc202358639][bookmark: _Toc202358871][bookmark: _Toc202359676][bookmark: _Toc202358640][bookmark: _Toc202358872][bookmark: _Toc202359677][bookmark: _Toc202358641][bookmark: _Toc202358873][bookmark: _Toc202359678][bookmark: _Toc202358642][bookmark: _Toc202358874][bookmark: _Toc202359679][bookmark: _Toc202358643][bookmark: _Toc202358875][bookmark: _Toc202359680][bookmark: _Toc202358644][bookmark: _Toc202358876][bookmark: _Toc202359681][bookmark: _Toc202358645][bookmark: _Toc202358877][bookmark: _Toc202359682][bookmark: _Toc202358646][bookmark: _Toc202358878][bookmark: _Toc202359683][bookmark: _Toc202358647][bookmark: _Toc202358879][bookmark: _Toc202359684][bookmark: _Toc202358648][bookmark: _Toc202358880][bookmark: _Toc202359685][bookmark: _Toc202358649][bookmark: _Toc202358881][bookmark: _Toc202359686][bookmark: _Toc202358650][bookmark: _Toc202358882][bookmark: _Toc202359687][bookmark: _Toc202358651][bookmark: _Toc202358883][bookmark: _Toc202359688][bookmark: _Toc202358652][bookmark: _Toc202358884][bookmark: _Toc202359689][bookmark: _Toc202358653][bookmark: _Toc202358885][bookmark: _Toc202359690][bookmark: _Toc202358654][bookmark: _Toc202358886][bookmark: _Toc202359691][bookmark: _Toc202358655][bookmark: _Toc202358887][bookmark: _Toc202359692][bookmark: _Toc202358656][bookmark: _Toc202358888][bookmark: _Toc202359693][bookmark: _Toc202358657][bookmark: _Toc202358889][bookmark: _Toc202359694][bookmark: _Toc202358658][bookmark: _Toc202358890][bookmark: _Toc202359695][bookmark: _Toc202358659][bookmark: _Toc202358891][bookmark: _Toc202359696][bookmark: _Toc202358660][bookmark: _Toc202358892][bookmark: _Toc202359697][bookmark: _Toc202358661][bookmark: _Toc202358893][bookmark: _Toc202359698][bookmark: _Toc202358662][bookmark: _Toc202358894][bookmark: _Toc202359699][bookmark: _Toc202358663][bookmark: _Toc202358895][bookmark: _Toc202359700][bookmark: _Toc202358664][bookmark: _Toc202358896][bookmark: _Toc202359701][bookmark: _Toc202358665][bookmark: _Toc202358897][bookmark: _Toc202359702][bookmark: _Toc202358666][bookmark: _Toc202358898][bookmark: _Toc202359703][bookmark: _Toc202358667][bookmark: _Toc202358899][bookmark: _Toc202359704][bookmark: _Toc202358668][bookmark: _Toc202358900][bookmark: _Toc202359705][bookmark: _Toc202358669][bookmark: _Toc202358901][bookmark: _Toc202359706][bookmark: _Toc202358670][bookmark: _Toc202358902][bookmark: _Toc202359707][bookmark: _Toc185595512][bookmark: _Toc185597053][bookmark: _Toc185601390][bookmark: _Toc185595206][bookmark: _Toc185595513][bookmark: _Toc185597054][bookmark: _Toc185601391][bookmark: _Toc185595207][bookmark: _Toc185595514][bookmark: _Toc185597055][bookmark: _Toc185601392][bookmark: _Toc185595208][bookmark: _Toc185595515][bookmark: _Toc185597056][bookmark: _Toc185601393][bookmark: _Toc185595209][bookmark: _Toc185595516][bookmark: _Toc185597057][bookmark: _Toc185601394][bookmark: _Toc185595210][bookmark: _Toc185595517][bookmark: _Toc185597058][bookmark: _Toc185601395][bookmark: _Toc185595211][bookmark: _Toc185595518][bookmark: _Toc185597059][bookmark: _Toc185601396][bookmark: _Toc185595212][bookmark: _Toc185595519][bookmark: _Toc185597060][bookmark: _Toc185601397][bookmark: _Toc185595213][bookmark: _Toc185595520][bookmark: _Toc185597061][bookmark: _Toc185601398][bookmark: _Toc185595214][bookmark: _Toc185595521][bookmark: _Toc185597062][bookmark: _Toc185601399][bookmark: _Toc185595215][bookmark: _Toc185595522][bookmark: _Toc185597063][bookmark: _Toc185601400][bookmark: _Toc185595216][bookmark: _Toc185595523][bookmark: _Toc185597064][bookmark: _Toc185601401][bookmark: _Toc185595217][bookmark: _Toc185595524][bookmark: _Toc185597065][bookmark: _Toc185601402][bookmark: _Toc185595218][bookmark: _Toc185595525][bookmark: _Toc185597066][bookmark: _Toc185601403][bookmark: _Toc185595219][bookmark: _Toc185595526][bookmark: _Toc185597067][bookmark: _Toc185601404][bookmark: _Toc185595220][bookmark: _Toc185595527][bookmark: _Toc185597068][bookmark: _Toc185601405][bookmark: _Toc185595221][bookmark: _Toc185595528][bookmark: _Toc185597069][bookmark: _Toc185601406][bookmark: _Toc185595222][bookmark: _Toc185595529][bookmark: _Toc185597070][bookmark: _Toc185601407][bookmark: _Toc185595223][bookmark: _Toc185595530][bookmark: _Toc185597071][bookmark: _Toc185601408][bookmark: _Toc185595224][bookmark: _Toc185595531][bookmark: _Toc185597072][bookmark: _Toc185601409][bookmark: _Ref180843405][bookmark: _Toc202359708][bookmark: _Toc213429777][bookmark: _Ref21941604][bookmark: _Ref41645934]Block-wise prediction decoding process
Input to this process are:
· the current channel index currCh,
· the current block position currBlockPos,
· the array of reconstructed samples of previous channels rec[c][i] with 	
Max(currCh − (DepChMask & currCh), 0) <= c < currCh and 0 <= i < currBlockPos + (1 << Log2BlockSize).
· the array of reconstructed samples of the current channel rec[currCh][i] with 0 < = i < currBlockPos.
· the parameter currLog2TSize which determines the size of the adjacent left residual samples to be computed and the size of the template for the parameter computation of the cross-channel and the block-matching prediction.
Output to this process are the prediction sample values pred [i] with 0 <= i < (1 << Log2BlockSize) and the extended residual sample values resiLeft[j] with 0 <= j < (1 << currLog2TSize). These values are derived as follows:
· If block_matching_or_cross_channel_pred_flag is equal to 1, the following applies:
· If cross_channel_pred_flag is equal to 1, the cross-channel prediction decoding process of clause 8.3.6 is invoked with chIdx set equal to currCh, blockPos set equal to currBlockPos, log2BlockSize set equal to Log2BlockSize, the reference sample values of previous channels ref[c][i] set equal to rec[c][i] for Max(currCh − (DepChMask & currCh), 0) <= c < currCh and 0 <= i < currBlockPos + (1 << Log2BlockSize), the reference sample values of the current channel refCurr[i] set equal to rec[currCh][i] with 0 <= i < currBlockPos and log2TSize set equal to currLog2TSize.
· Otherwise (cross_channel_pred_flag is not equal to 1), the block matching prediction decoding process of clause 8.3.7 is invoked with chIdx set equal to currCh, blockPos set equal to currBlockPos, log2BlockSize set equal to Log2BlockSize, the reference sample values ref[i] set equal to rec[currCh][i] with 0 <= i < currBlockPos and log2TSize set equal to currLog2TSize.
· Otherwise (block_matching_or_cross_channel_pred flag is not equal to 1), the following applies:
· If block_pred_mode is equal to BPM_DC, the DC prediction decoding process of clause 8.3.4 is invoked with blockPos set equal to currBlockPos, log2BlockSize set equal to Log2BlockSize, the reference sample values ref[i] set equal to rec[currCh][i] with 0 <= i < currBlockPos and log2TSize set equal to currLog2TSize.
· If block_pred_mode is equal to BPM_LF, the line fitting decoding process of clause 8.3.5 is invoked with blockPos set equal to currBlockPos, log2BlockSize set equal to Log2BlockSize, the reference sample values ref[i] set equal to rec[currCh][i] with 0 <= i < currBlockPos and log2TSize set equal to currLog2TSize.
· If block_pred_mode is equal to BPM_OFF, the zero prediction decoding process of clause 8.3.3 is invoked with log2BlockSize set equal to Log2BlockSize and log2TSize set equal to currLog2TSize.
[bookmark: _Toc185601411][bookmark: _Toc185601412][bookmark: _Toc185601413][bookmark: _Toc185601414][bookmark: _Toc185601415][bookmark: _Toc185601416][bookmark: _Toc185601417][bookmark: _Toc185601418][bookmark: _Toc185601611][bookmark: _Toc185601612][bookmark: _Toc185601613][bookmark: _Toc185601614][bookmark: _Toc185601615][bookmark: _Toc185601616][bookmark: _Toc185601617][bookmark: _Toc185601618][bookmark: _Toc185601619][bookmark: _Toc185601620][bookmark: _Toc185601621][bookmark: _Toc185601622][bookmark: _Toc185601623][bookmark: _Toc185601624][bookmark: _Toc185601625][bookmark: _Toc185601626][bookmark: _Toc185601627][bookmark: _Toc185601628][bookmark: _Toc185601629][bookmark: _Toc185601630][bookmark: _Toc185601631][bookmark: _Toc185601632][bookmark: _Toc185601633][bookmark: _Toc185601634][bookmark: _Toc185601635][bookmark: _Toc185601636][bookmark: _Toc185601637][bookmark: _Toc185601638][bookmark: _Toc185601639][bookmark: _Toc185601640][bookmark: _Toc185601641][bookmark: _Toc185601642][bookmark: _Toc185601643][bookmark: _Toc185601644][bookmark: _Toc185601645][bookmark: _Toc185601646][bookmark: _Toc185601647][bookmark: _Toc185601648][bookmark: _Toc185601649][bookmark: _Toc185601650][bookmark: _Toc185601651][bookmark: _Toc185601652][bookmark: _Toc185601653][bookmark: _Toc185601654][bookmark: _Toc185601655][bookmark: _Toc185601656][bookmark: _Toc185601657][bookmark: _Toc185601658][bookmark: _Toc185601659][bookmark: _Toc185601660][bookmark: _Toc185601661][bookmark: _Toc185601662][bookmark: _Toc185601663][bookmark: _Toc185601664][bookmark: _Toc185601665][bookmark: _Toc185601666][bookmark: _Toc185601667][bookmark: _Toc185601668][bookmark: _Toc185601669][bookmark: _Toc185601670][bookmark: _Toc185601671][bookmark: _Toc185601672][bookmark: _Toc185601673][bookmark: _Toc185601674][bookmark: _Toc185601675][bookmark: _Toc185601676][bookmark: _Toc185601677][bookmark: _Toc185601678][bookmark: _Toc185601679][bookmark: _Toc185601680][bookmark: _Toc185601681][bookmark: _Toc185601682][bookmark: _Toc185601683][bookmark: _Toc185601684][bookmark: _Toc185601685][bookmark: _Toc185601686][bookmark: _Toc185601687][bookmark: _Toc185601688][bookmark: _Toc185601689][bookmark: _Toc185601690][bookmark: _Toc185601691][bookmark: _Toc185601692][bookmark: _Toc185601693][bookmark: _Toc185601694][bookmark: _Toc185601695][bookmark: _Toc185601696][bookmark: _Toc185601697][bookmark: _Toc185601698][bookmark: _Toc185601699][bookmark: _Toc185601700][bookmark: _Toc185601701][bookmark: _Toc185601702][bookmark: _Toc185601703][bookmark: _Toc185601704][bookmark: _Toc185601705][bookmark: _Toc185601706][bookmark: _Toc185601707][bookmark: _Toc185601708][bookmark: _Toc185601709][bookmark: _Toc185601710][bookmark: _Toc185601711][bookmark: _Toc185601712][bookmark: _Toc185601713][bookmark: _Toc185601714][bookmark: _Toc185601715][bookmark: _Toc185601716][bookmark: _Toc185601717][bookmark: _Toc185601718][bookmark: _Toc185601719][bookmark: _Toc185601720][bookmark: _Toc185601721][bookmark: _Toc185601722][bookmark: _Toc185601723][bookmark: _Toc185601724][bookmark: _Toc185601725][bookmark: _Toc185601726][bookmark: _Toc185601727][bookmark: _Toc185601728][bookmark: _Toc185601729][bookmark: _Toc185601730][bookmark: _Toc185601731][bookmark: _Toc185601732][bookmark: _Toc185601733][bookmark: _Toc185601734][bookmark: _Toc185601735][bookmark: _Toc185601736][bookmark: _Toc185601737][bookmark: _Toc185601738][bookmark: _Toc185601739][bookmark: _Toc185601740][bookmark: _Toc185601741][bookmark: _Toc185601742][bookmark: _Toc185601743][bookmark: _Toc185601744][bookmark: _Toc185601745][bookmark: _Toc185601746][bookmark: _Toc185601747][bookmark: _Toc185601748][bookmark: _Toc185601749][bookmark: _Toc185601750][bookmark: _Toc185601751][bookmark: _Toc185601752][bookmark: _Toc185601753][bookmark: _Toc185601754][bookmark: _Toc185601755][bookmark: _Toc185601756][bookmark: _Toc185601757][bookmark: _Toc185601758][bookmark: _Toc185601759][bookmark: _Toc185601760][bookmark: _Toc185601761][bookmark: _Toc185601762][bookmark: _Toc185601763][bookmark: _Toc185601764][bookmark: _Toc185601765][bookmark: _Toc185601766][bookmark: _Toc185601767][bookmark: _Toc185601768][bookmark: _Toc185601769][bookmark: _Toc185601770][bookmark: _Toc185601771][bookmark: _Toc185601772][bookmark: _Toc185601773][bookmark: _Toc185601774][bookmark: _Toc185601775][bookmark: _Toc185601776][bookmark: _Toc185601777][bookmark: _Toc185601778][bookmark: _Toc185601779][bookmark: _Toc185601780][bookmark: _Toc185601781][bookmark: _Toc185601782][bookmark: _Toc185601783][bookmark: _Toc185601784][bookmark: _Toc185601785][bookmark: _Toc185601786][bookmark: _Toc185601787][bookmark: _Toc185601788][bookmark: _Toc185601789][bookmark: _Toc185601790][bookmark: _Toc185601791][bookmark: _Toc185601792][bookmark: _Toc185601793][bookmark: _Toc185601794][bookmark: _Toc185601795][bookmark: _Toc185601796][bookmark: _Toc185601797][bookmark: _Toc185601798][bookmark: _Toc185601799][bookmark: _Toc185601800][bookmark: _Toc185601801][bookmark: _Toc185601802][bookmark: _Toc185601803][bookmark: _Toc185601804][bookmark: _Toc185601805][bookmark: _Toc185601806][bookmark: _Toc185601807][bookmark: _Toc185601808][bookmark: _Toc185601809][bookmark: _Toc185601810][bookmark: _Toc185601811][bookmark: _Toc185601812][bookmark: _Toc185601813][bookmark: _Toc185601814][bookmark: _Toc185601815][bookmark: _Toc185601816][bookmark: _Toc185601817][bookmark: _Toc185601818][bookmark: _Toc185601819][bookmark: _Toc185601820][bookmark: _Toc185601821][bookmark: _Toc185601822][bookmark: _Toc185601823][bookmark: _Toc185601824][bookmark: _Toc185601825][bookmark: _Toc185601826][bookmark: _Toc185601827][bookmark: _Toc185601828][bookmark: _Toc185601829][bookmark: _Toc185601830][bookmark: _Toc185601831][bookmark: _Toc185601832][bookmark: _Toc185601833][bookmark: _Toc185601834][bookmark: _Toc185601835][bookmark: _Toc185601836][bookmark: _Toc185601837][bookmark: _Toc185601838][bookmark: _Toc185601839][bookmark: _Toc185601840][bookmark: _Toc185601841][bookmark: _Toc185601842][bookmark: _Toc185601843][bookmark: _Toc185601844][bookmark: _Toc185601845][bookmark: _Toc185601846][bookmark: _Toc185601847][bookmark: _Toc185601848][bookmark: _Toc185601849][bookmark: _Toc185601850][bookmark: _Toc185601851][bookmark: _Toc185601852][bookmark: _Toc185601853][bookmark: _Toc185601854][bookmark: _Toc185601855][bookmark: _Toc185601856][bookmark: _Toc185601857][bookmark: _Toc185601858][bookmark: _Toc185601859][bookmark: _Toc185601860][bookmark: _Toc185601861][bookmark: _Toc185601862][bookmark: _Toc185601863][bookmark: _Toc185601864][bookmark: _Toc185601865][bookmark: _Toc185601866][bookmark: _Toc185601867][bookmark: _Toc185601868][bookmark: _Toc185601869][bookmark: _Toc185601870][bookmark: _Toc185601871][bookmark: _Toc185601872][bookmark: _Toc185601873][bookmark: _Toc185601874][bookmark: _Toc185601875][bookmark: _Toc185601876][bookmark: _Toc185601877][bookmark: _Toc185601878][bookmark: _Toc185601879][bookmark: _Toc185601880][bookmark: _Toc185601881][bookmark: _Toc185601882][bookmark: _Toc185601883][bookmark: _Toc185601884][bookmark: _Toc185601885][bookmark: _Toc185601886][bookmark: _Toc185601887][bookmark: _Toc185601888][bookmark: _Toc185601889][bookmark: _Toc185601890][bookmark: _Toc185601891][bookmark: _Ref180685498][bookmark: _Toc202359709][bookmark: _Toc213429778]Linear extrapolation process of an array to the right
Input to this process are:
· an input array size szArr >= 4,
· an input array of sample values p[i] with 0 <= i < szArr,
· an extrapolation size log2SzExt >= 0
Output to this process are the array values extrapolated to the right p[szArr + j] with 0 <= j < (1 << log2SzExt) and an extrapolated mean value meanValExtr.
The variable szExt is set to 1 << log2SzExt.
The variable slope is set to 15*(p[szArr − 1] − p[szArr − 4]) +5*(p[szArr − 2] − p[szArr − 3]).
The variable offset is set to ((p[szArr − 4] + p[szArr − 3] + p[szArr − 2] + p[szArr − 1] +2) << 7).
For 0 <= j < szExt, the extrapolated array values p[szArr + j] are defined as follows:
· stepCurr = 25 + j * 10.
· slopeCurr = slope * (2 * szExt − j).
· p[szArr + j] = ((offset << (log2SzExt +1))+ slopeCurr*stepCurr) >> (log2SzExt + 10).
Then meanValExtr is set to (offset + 20 * slope) >> 9.
[bookmark: _Ref180695594][bookmark: _Toc202359710][bookmark: _Toc213429779]Linear extrapolation process of an array to the left
Input to this process are:
· an input array starting position startPos
· an input array size szArr with szArr – startPos >= 4,
· an input array of sample values p[i] with startPos <= i < szArr,
· an extrapolation size szExt greater than 0
Output to this process are the array values extrapolated to the left p[startPos − 1 − j] with 0 <= j < szExt.
The mirrored input array sample values pMirror[i] with 0 <= i < szArr − startPos are defined as pMirror[i] = p[szArr − 1− i].
The extrapolation process to the right from clause 8.3.1 is invoked with the input array size szArr − startPos, the input array pMirror and the extrapolation size set to Ceil(Log2 (szExt)) as input to obtain the array values pMirror[szArr + j] with 0 <= j < (1 << Ceil(Log2 (szExt))).
For 0 <= j < szExt the value pMirror[szArr + j] is assigned to p[startPos − 1 − j].
[bookmark: _Ref180692956][bookmark: _Toc202359711][bookmark: _Toc213429780]Zero prediction decoding process
Input to this process are:
· a variable log2BlockSize that determines the size of the current block,
· the parameter log2TSize which determines the size of the adjacent left residual samples to be computed.
This process specifies as an output the arrays pred[i] = 0 with 0 <= i < (1 << log2BlockSize) and the array of adjacent left residual samples resiLeft[j] = 0 with 0 <= j < (1 << log2TSize).
[bookmark: _Ref180692800][bookmark: _Toc202359712][bookmark: _Toc213429781]DC prediction decoding process
Input to this process are:
· a variable blockPos specifying the position of the first sample of the current block,
· a variable log2BlockSize that determines the size of the current block,
· an array of reconstructed samples of the current channel ref[i] with 0 <= i < blockPos.
· a parameter log2TSize which determines the size of the adjacent left residual samples to be computed.
Output of this process are the array of DC prediction sample values pred[i] with 0 <= i < (1 << log2BlockSize) and the array of adjacent left residual samples resiLeft[j] with 0 <= j < (1 << log2TSize).
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to −maxPredVal − 1.
The variable blockSize is set to 1 << log2BlockSize.
The variable tSize is set to 1 << log2TSize.
· If blockPos < 4, the values pred[i] with 0 <= i < blockSize and the values resiLeft[j] with 0 <= j < tSize are set to 0.
· Otherwise (blockPos >= 4), the following applies:
· The array q[j] with 0 <= j <4 is defined as q[j] = ref[blockPos − 4 + j].
· The linear extrapolation process to the right from clause 8.3.1 is invoked with input the input array size 4, the input array q and the extrapolation size 0 to obtain the extrapolated mean value meanValExtr.
· The variable meanClipped is set as 	
meanClipped = Clip3(minPredVal, maxPredVal, meanValExtr).
· pred[i] is set equal to meanClipped for all i with 0 <= i < blockSize.
· If blockPos >= tSize, resiLeft[j] is set to (ref[blockPos − tSize + j] − meanClipped) for all j with 0 <= j < tSize.
· Otherwise (blockPos < tSize), resiLeft[j] is set to 0 for all j with 0 <= j < tSize.
[bookmark: _Ref180692840][bookmark: _Toc202359713][bookmark: _Toc213429782]Line fitting prediction decoding process
Input to this process are:
· a variable blockPos specifying the position of the first sample of the current block,
· a variable log2BlockSize that determines the size of the current block,
· the array of reconstructed samples of the current channel ref[i] with 0 <= i < blockPos.
· the parameter log2TSize which determines the size of the adjacent left residual samples to be computed.
Output of this process are the array of line fitting prediction sample values pred[i] with 0 <= i < (1 << log2BlockSize) and the array of adjacent left residual samples resiLeft[j] with 0 <= j < (1 << log2TSize).
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to − maxPredVal − 1.
The variable blockSize is set to 1 << log2BlockSize.
The variable tSize is set to 1 << log2TSize.
· If blockPos < 4, the values pred[i] with 0 <= i < blockSize and the values resiLeft[j] with 0 <= j < tSize are set to 0.
· Otherwise (blockPos >= 4), the following applies:
· The array q[j] with 0 <= j <4 is defined as q[j] = ref[blockPos − 4 + j].
· The linear extrapolation process to the right from clause 8.3.1 is invoked with input the input array size 4, the input array q and the extrapolation size log2BlockSize to obtain the array values q[4 + i] with 0 <= i < blockSize and the extrapolated mean value meanValExtr.
· pred[i] is set equal to Clip3(minPredVal, maxPredVal, q[4+i]) for all 0 <= i < blockSize.
· If blockPos >= tSize, resiLeft[j] is set to (ref[blockPos − tSize + j] − meanValExtr) for all j with 0 <= j < tSize.
· Otherwise (blockPos < tSize), resiLeft[j] is set to 0 for all j with 0 < = j < tSize.
[bookmark: _Ref180690922][bookmark: _Toc202359714][bookmark: _Toc213429783]Cross-channel prediction decoding process
Input to this process are:
· a variable chIdx specifying the current channel,
· a variable blockPos specifying the position of the first sample of the current block,
· a variable log2BlockSize that determinesthe size of the current block,
· the array of reference samples of previous channels ref[c][i] with 	
Max(chIdx − (DepChMask & chIdx), 0) <= c < chIdx and 0 <= i < blockPos + (1 << log2BlockSize).
· the array of reference samples of the current channel refCurr[i] with 0 < = i < blockPos.
· the parameter log2TSize which determines the size of the adjacent left residual samples to be computed and which determines the size of the template used for parameter derivation.
Output of this process are the array of cross-channel prediction sample values pred[i] with 0 <= i < (1 << log2BlockSize) and the array of adjacent left residual samples resiLeft[j] with 0 <= j < (1 << log2TSize).
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to − maxPredVal − 1.
The variable blockSize is set to 1 << log2BlockSize.
The variable firstPrevCh which indexes the first input channel is set to
chIdx − 1 − CrossChannelPredInputChDistMinus1[chIdx][0].
If cc_pred_mult_hyp_flag is not equal to zero, the variable secondPrevCh, which indexes the second input channel, is set to chIdx − 1− CrossChannelPredInputChDistMinus1[chIdx][1].
The variable tSize is set to 1 << log2TSize.
The variable fPdL which specifies the length to the left for the prediction filters of clause 7.3.3.2.2 is set to 3.
The variable log2FPdR which which determines the length to the right for the prediction filters of clause 7.3.3.2.2 is set to 2.
The variable fPdR is set to 1 << log2FPdR.
The variable fSz which specifies the filter size for the filters of clause 7.3.3.2.2 is set to fPdL + fPdR.
· If blockPos < tSize, the following applies:
· The intermediate cross-channel prediction samples before filtering and extrapolation p[i] with 0 <= i < blockSize are defined as follows:
· If cc_pred_mult_hyp_flag is equal to zero, one pust p[i] = ref[firstPrevCh][blockPos + i].
· Otherwise (cc_pred_mult_hyp_flag is not equal to zero), one set 	
p[i] = (ref[firstPrevCh][blockPos + i] + ref[secondPrevCh][blockPos + i] + 1) >> 1.
· If cc_pred_filter_flag is equal to zero, the final cross-channel prediction sample values pred[i] are set to Clip3(minPredVal, maxPredVal, p[i]) for 0 <= i < blockSize.
· Otherwise (cc_pred_filter_flag is not equal to zero), the following applies:
· If blockPos < fPdL, the extrapolation process to the left from clause 8.3.2 is applied with the input starting position 0, the input array p, the input array size blockSize and the extension size fPdL to obtain the sample values p[−fPdL + i] with 0 <= i < fPdL.
· Otherwise (blockPos >= fPdL) the following applies:
· If cc_pred_mult_hyp_flag is equal to zero, for 0 <= i < fPdL the value ref[firstPrevCh][blockPos −fPdL + i] is assigned to p[−fPdL + i].
· Otherwise (cc_pred_mult_hyp_flag is not equal to zero) , for 0 <= i < fPdL the value 	(ref[firstPrevCh][blockPos −fPdL + i] + ref[secondPrevCh][blockPos −fPdL + i]+ 1) >> 1 is assigned to p[−fPdL + i].
· The extrapolation process to the right from clause 8.3.1 is applied with the input array p, the input array size blockSize and the extension size log2FPdR. The output of this process is assigned to the sample values p[blockSize +i] with 0 <= i < fPdR.
· The final cross-channel prediction sample values pred[i] with 0 <= i < blockSize are set to Clip3(minPredVal, maxPredVal,)
· The extended residual samples resiLeft[i] are set to 0 for 0 <= i < tSize.
· Otherwise (blockPos >= tSize), the following applies:
For 0 <= i < tSize, the previous reconstructed sample value currChTpl[i] in the current channel on the left template is set to refCurr[blockPos − tSize + i], with 0 <= i < tSize.
The array firstPrevChTpl[] of previous reconstructed sample values in the first input channel on the left template is defined as
firstPrevChTpl[i] = ref[firstPrevCh][blockPos − tSize + i], with 0 <= i < tSize.
If cc_pred_mult_hyp_flag is not equal to zero, the array secondPrevChTpl[] of previous reconstructed sample values in the second input channel on the left template is defined as
secondPrevChTpl[i] = ref[secondPrevCh][blockPos − tSize + i], with 0 <= i< tSize.
The intermediate cross-channel prediction signal samples before filtering and extrapolation to the right p[i] with 0 <= i < blockSize + tSize +fPdL are defined as follows:
· If cc_pred_offset_only_flag is equal to one, the following applies:
· The variable sum Diff is defined as follows:
· If cc_pred_mult_hyp_flag is equal to zero, sumDiff is set equal to

· Otherwise (cc_pred_mult_hyp flag is not equal to zero), sumDiff is set equal to

· The variable offset is defined as offset = (sumDiff + (1 << (log2TSize − 1))) >> log2TSize
· If cc_pred_mult_hyp_flag is equal to zero, the following applies:
· If tSize + fPdL <= blockPos, for 0 <= i < blockSize + tSize +fPdL, p[i] is set equal to ref[chIdxFirst][blockPos − tSize − fPdL + i] + offset.
· Otherwise (tSize + fPdL > blockPos), the following applies:
· For fPdL <= i <blockSize + tSize +fPdL, p[i] is set equal to ref[chIdxFirst][blockPos − tSize − fPdL + i] + offset.
· The extrapolation process to the left fom clause 8.3.2 is invoked with the input starting position fPdL, the input array size blockSize + tSize, the input array p and the extension size fPdL to obtain the values p[i] with 0 <= i < fPdL.
· Otherwise (cc_pred_mult_hyp_flag is not equal to zero), the following applies:
· If tSize + fPdL <= blockPos, for 0 <= i < blockSize + tSize +fPdL, p[i] is set equal to ((ref[chIdxFirst][blockPos − tSize − fPdL + i] + ref[chIdxScnd][blockPos − tSize − fPdL + i] +1) >> 1)+ offset.
· Otherwise (tSize + fPdL > blockPos), the following applies:
· For fPdL <= i <blockSize + tSize +fPdL, p[i] is set equal to ((ref[chIdxFirst][blockPos − tSize − fPdL + i] + ref[chIdxScnd][blockPos − tSize − fPdL + i] +1) >> 1)+ offset.
· The extrapolation process to the left fom clause 8.3.2 is invoked with the input starting position fPdL, the input array size blockSize + tSize, the input array p and the extension size fPdL to obtain the values p[i] with 0 <= i < fPdL.
· Otherwise (cc_pred_offset_only flag is not equal to one), if cc_pred_mult_hyp_flag is equal to zero, the following applies:
1. The symmetric 2x2 matrix A with the following entries A[0][0], A[0][1], A[1][0], A[1][1] is defined:
· A[0][0] =
· A[0][1]
·
· A[1][1] = tSize
2. The 2 dimensional vector b with the following entries band bs defined:
· b[0]=
· b[1]=
3. The cross component precision ccShift is set to 16
4. The process of clause 5.11.4.5 is invoked with matrix A, vector b and parameter ccShift as inputs and the output is assigned to the two-dimensional vector v with entries v[0] and v[1].
5. The variable ccShiftOffst is set to ((1 << ccShift) − 1).
6. The following is applied:
· If tSize + fPdL <= blockPos, for 0 <= i < blockSize + tSize +fPdL, p[i] is set equal to (v[0]*ref[chIdxFirst][blockPos − tSize − fPdL + i] + v[1] + ccShiftOffst)) >> ccShift.
· Otherwise (tSize + fPdL > blockPos), the following applies:
· For fPdL <= i <blockSize + tSize +fPdL, p[i] is set equal to (v[0]*ref[chIdxFirst][blockPos − tSize − fPdL + i] + v[1] + ccShiftOffst)) >> ccShift.
· The extrapolation process to the left fom clause 8.3.2 is invoked with the input starting position fPdL, the input array size blockSize + tSize, the input array p and the extension size fPdL to obtain the values p[i] with 0 <= i < fPdL.
· Otherwise (cc_pred_offset_only flag is not equal to one and cgps_cc_pred_mult_hyp_flag is equal to one), the following applies:
· The symmetric 3x3 matric A with the entries A[k][l] with 0 <= k < 3 and 0 <= l < 3 is defined as follows:
· A[0][0] =
· A[0][1] =
· A[0][2] =
· A[1][0] = A[0][1]
· A[1][1] =
· A[1][2] =
· A[2][0] = A[0][2]
· A[2][1] = A[1][2]
· A[2][2] = tSize
· The 3 dimensional vector b with the following entries b[0], b[1] and b[2] is defined as follows:
· b[0] =
· b[1] =
· b[2] =
· The cross component precision ccShift is set to 16.
· The process of clause 5.11.4.5 is invoked with matrix A, vector b and parameter ccShift as inputs and the output is assigned to the three-dimensional vector v with entries v[0], v[1] and v[2].
· The following is applied:
· If tSize + fPdL <= blockPos, for 0 <= i < blockSize + tSize +fPdL p[i] is set equal to (v[0]*ref[chIdxFirst][blockPos − tSize − fPdL + i] + v[1]* ref[chIdxSecond][blockPos − tSize − fPdL + i] + v[2]+ccShiftOffst) >> ccShift.
· Otherwise (tSize + fPdL > blockPos), the following applies:
· For fPdL <= i < blockSize + tSize +fPdL, p[i] is set equal to (v[0]*ref[chIdxFirst][blockPos − tSize − fPdL + i] + v[1]* ref[chIdxSecond][blockPos − tSize − fPdL + i] + v[2] + ccShiftOffst) >> ccShift
· The extrapolation process to the left fom clause 8.4.2 is invoked with the input starting position fPdL, the input array size blockSize + tSize, the input array p and the extension size fPdL to obtain the values p[i] with 0 <= i < fPdL.
· If cc_pred_filter_flag is equal to zero, the following applies:
· For 0 <= i < blockSize, pred[i] is set equal to Clip3(minPredVal, maxPredVal, p[tSize +fPdL + i]).
· For 0 <= i < tSize, resiLeft[i] is set equal to currChTpl[i] − Clip3(minPredVal, maxPredVal, p[fPdL +i]).
· Otherwise (cc_pred_filter_flag is not equal to zero), the following applies:
· The extrapolation process to the right from clause 8.3.1 is invoked with input array size
fPdL + tSize +blockSize, input array p and extrapolation size log2FPdR to obtain the values p[fPdL +tSize + blockSize + k] with 0 <= k < fPdR.
· For 0 <= i < blockSize, pred[i] is set equal to Clip3 (minPredVal, maxPredVal,).
· For 0 <= j < tSize resiLeft[i] is set equal to currChTpl[i] − Clip3(minPredVal, maxPredVal,).
[bookmark: _Ref180693051][bookmark: _Toc202359715][bookmark: _Toc213429784]Block matching prediction decoding process
Input to this process are:
· a variable chIdx specifying the current channel,
· a variable blockPos specifying the position of the first sample of the current block,
· a variable log2BlockSize which determines the size of the current block,
· the array of reconstructed samples of the current channel ref[i] with 0 < = i < blockPos.
· the parameter log2TSize which determines the size of the adjacent left residual samples to be computed.
Output of this process are the array of block matching prediction sample values pred[i] with 0 <= i < (1 << log2BlockSize) and the array of adjacent left residual samples resiLeft[j] with 0 <= j < (1 << log2TSize).
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to − maxPredVal − 1.
The variable blockSize is set to 1 << log2BlockSize
The variable tSize is set to 1 << log2TSize.
If blockPos < blockSize, one sets pred[i] = 0 for all i with 0 <= i < blockSize and resiLef[j] = 0 for all j with 0 <= j < tSize.
Otherwise (blockPos >= blockSize), the following applies:
The variable fPdL which specifies the padding length to the left for the prediction filters of clause 7.3.3.2.2 is set to 3.
The variable log2FPdR which which determines the length to the right for the prediction filters of clause 7.3.3.2.2 is set to 2.
The variable fPdR is set to 1 << log2FPdR.
The variable fSz which specifies the filter size for the filters of clause 7.3.3.2.2 is set as fSz = fPdL + fPdR.
The variable maxBMOffMinusBS is set to Min((1 << 16) − 1, (1 << (Log2MaxBlockSize + 6)).
The variables offsetMinusBSFirst and blockOffsetFirst are derived as follows:
offsetMinusBSFirst = 	
Min(maxBMOffMinusBS, BlockMatchingPredOffsetMinusBlocksSize[chIdx][0])
blockOffsetFirst = Min (blockPos, blockSize + offsetMinusBSFirst).
If bm_pred_mult_hyp_flag is equal to 1, the variables offsetMinusBSScnd and blockOffsetScnd are derived as follows:
offsetMinusBSScnd = 	
Min (maxBMOffMinusBS, BlockMatchingPredOffsetMinusBlocksSize[currCh][1]).
blockOffsetScnd = Min(blockPos, blockSize + offsetMinusBSScnd).
If blockOffsetFirst < blockSize + fPdR or if bm_pred_mult_hyp_flag is equal to 1 and blockOffsetScnd < blockSize + fPdR , the extrapolation process to the right from clause 8.3.1 is invoked with input array size blockPos, input array ref and extension size log2FPdR to obtain the reference sample values ref[i] with blockPos <= i < blockPos + fPdR.
The variable minPos is set to Max(0, blockPos − maxBMOffMinusBS − blockSize).
If blockPos − blockOffsetFirst −fPdL < minPos or if bm_pred_mult_hyp_flag is equal to 1 and 	
blockPos − blockOffsetScnd −fPdL < minPos, the extrapolation process to the left from clause 8.3.2 is invoked with input starting position minPos, input array size blockPos, input array ref and extension size fPdL to obtain the reference sample values ref[minPos − fPdL + i] with 0 <= i < fPdL.
The intermediate prediction sample values of the first hypothesis pFirst[i] with 0 <= i < blockSize are derived as follows:
· If bm_pred_filter_flag[0] is equal to 0, pFirst[i] is set equal to ref[blockPos − blockOffsetFirst + i].
· Otherwise (bm_pred_filter_flag[0] is not equal to 0), pFirst[i] is set equal to

If bm_pred_mult_hyp_flag is equal to 1, the intermediate prediction values of the second hypothesis pScnd[i] with 0 <= i < blockSize are derived as follows:
· If bm_pred_filter_flag[1] is equal to 0, pScnd[i] is set equal to ref[currCh][blockPos − blockOffsetScnd + i].
· Otherwise (bm_pred_filter_flag[1] is not equal to 0), pScnd[i] is set equal to

The extended first left prediction sample values pFirstLeftExt[i] with 0 <= i < tSize are derived as follows:
· If bm_pred_filter_flag[0] is equal to 0, the following applies:
· If blockPos − blockOffsetFirst − tSize < minPos − fPdL, one sets pFirstLeftExt[i] = 0.
· Otherwise (blockPos − blockOffsetFirst − tSize >= minPos − fPdL), 	
pFirstLeftExt[i] is set equal to ref[blockPos − tSize − blockOffsetFirst + i].
· Otherwise (bm_pred_filter_flag[0] is not equal to 0), the following applies:
· If blockPos − blockOffsetFirst − tSize < minPos, pFirstLeftExt[i] is set equal to 0.
· Otherwise (blockPos − blockOffsetFirst − tSize >= minPos),	
pFirstLeftExt[i] is set equal to 6.
If bm_pred_mult_hyp_flag is equal to 1, the extended second left prediction sample values pScndLeftExt[i] with 0 <= i < tSize are derived as follows:
· If bm_pred_filter_flag[1] is equal to 0, the following applies:
· If blockPos − blockOffsetScnd − tSize < minPos − fPdL, one sets pScndLeftExt[i] = 0.
· Otherwise (blockPos − blockOffsetScnd − tSize >= minPos – fPdL),	
pScndLeftExt[i] is set equal to ref[blockPos − tSize − blockOffsetScnd + i].
· Otherwise (bm_pred_filter_flag[1] is not equal to 0), the following applies:
· If blockPos − blockOffsetScnd − tSize < minPos, pScndLeftExt[i] is set equal to 0.
· Otherwise (blockPos − blockOffsetScnd − tSize >= minPos),	
pScndLeftExt[i] is set equal to 6.
The variable diffTpl is derived as follows:
· If bm_pred_add_offset_flag is equal to zero, one sets diffTpl = 0
· Otherwise if blockPos < tSize, diffTpl is set equal to 0.
· Otherwise (bm_pred_add_offset_flag is not equal to zero and blockPos >= tSize), the following applies:
· If bm_pred_mult_hyp_flag is equal to 0,	
diffTpl is set equal to .
· Otherwise (bm_pred_mult_hyp_flag is not equal to 0),	
diffTpl is set equal to
The variable offsetAdd is derived as offsetAd = (diffTpl + (1 << (log2TSize − 1))) >> log2TSize.
The final block matching prediction sample values pred[i] with 0 <= i < blockSize are derived as follows:
· If bm_pred_mult_hyp_flag is equal to 0, pred[i] is set equal to Clip3(minPredVal, maxPredVal, pFirst[i] + offsetAd).
· Oterwise (bm_pred_mult_hyp_flag is not equal to 0),	
pred[i] is set equal to Clip3(minPredVal, maxPredVal, ((pFirst[i] + pSecond[i] + 1) >> 1) + offsetAd).
The final adjacent left residual sample values resiLeft[i] with 0 <= i < tSize are derived as follows:
· If blockPos < tSize, one sets reiLeft[i = 0
· Otherwise (blockPos >= tSize), the following applies:
· If bm_pred_mult_hyp_flag is equal to 0,	
resiLeft[i] is set equal to ref[blockPos tSize + i] − Clip3(minPredVal, maxPredVal, pFirst[i] + offsetAd).
· Otherwise (bm_pred_mult_hyp_flag is not equal to 0),	
resiLeft[i] is set equal to ref[blockPos tSize + i] − Clip3(minPredVal, maxPredVal, ((pFirst[i] + pSecond[i] + 1) >> 1) + offsetAd.
[bookmark: _Ref180849724][bookmark: _Toc202359716][bookmark: _Toc213429785]Block-wise scaling and inverse transformation decoding process
This process specifies the computation of the reconstructed residual sample values res[i] with 0 <= i < blockSize.
The following steps are applied:
· The process of clause 8.4.1 is invoked. The output of this process is assigned to the residual transform coefficients tCoeff[i] with 0 <= i < Log2BlockSize.
· The process of clause 8.4.2 is invoked with the variable blockSize set to (1 << Log2BlockSize) and the residual transform coefficients tCoeffCurr[i] set to tCoeff[i] for 0 <= i < (1 << Log2BlockSize). The output sample values of this process are assigned to the intermediate residual values resImd[i] with 0 <= i < (1 << Log2BlockSize).
[bookmark: _Ref181105932][bookmark: _Toc202359717][bookmark: _Toc213429786]Scaling process for transform coefficient levels
Output of this process are the intermediate reconstructed residual transform coefficients tCoeff[i] with 0 <= i < (1 << Log2BlockSize).
The variable leftShiftTrigTrafo is set to be equal to 32 − BitDepthMax − dct_headroom[Log2BlockSize].
The variable maxCoeffVal is set to be equal to (1 << 31) − 1 and the variable minCoeffVal is set to be equal to −maxCoeffCal − 1.
The values of the variables qScale and qShift are determined as follows:

	qScale = InvQuantScale[CurrBlockQP[ch] & 31]
	qShift = 29 − (CurrBlockQP[ch] >> 5)
	if(qShift < 0) {
		qScale <<= −qShift
		qScale = Min(qScale, (1 << 31) − 1)
		qShift = 0
	}
	downShift = qShift − 8
	if(downShift > 0) {
		addRound = 1 << (downShift − 1)
		qScale = (qScale + addRound) >> downShift
		qShift = 8
	}
The reconstructed residual transform coefficients tCoeff[i] with 0 <= i < (1 << Log2BlockSize) are derived as follows:
· If transform_present_flag is equal is not equal to 1, the following applies:
if (qShift > 0) {
	addRound = 1 << (qShift − 1)
	tCoeff[i] = QuantIndices[i] * qScale +
		(QuantIndices[i] < 0 ? addRound − 1 : addRound) >> qShift
	tCoeff[i] = Clip3(minCoeffVal, maxCoeffVal, tCoeff[i])
} else
	tCoeff[i] = Clip3(minCoeffVal, maxCoeffVal, tCoeff[i] * (qScale << (−qShift)))
· Otherwise (transform_present_flag is equal to 1) the following applies:
· The variable qShift is modified to qShift − leftShiftTrigTrafo + 1
· The variable tCoeff[i] is determined by the following pseudo-code process:
		if(qShift > 0) {
			offset = 1 << (qShift − 1)
			nextState = 0
			for(i = LastScanPos, i >= 0 , i = i − 1) {
				if(QuantIndices[i] != 0) {
					valCurr = (Abs(QuantIndices[i]) << 1) − (nextState & 1)) * qScale)
					valCurr = (valCurr + offset) >> qShift
					tCoeff[i] = QuantIndices[i] < 0 ? Max(minCoeffVal, −valCurr) :
						Min(maxCoeffVal, valCurr)
				} else
					tCoeff[i] = 0
				nextState = QStateTransTabel[nextState][QuantIndices[i] & 1]
			}
		} else {
			nextState = 0
			for(i = LastScanPos, i >= 0 , i = i − 1) {
				if(QuantIndices[i] != 0) {
					offsetCurr = (QuantIndices[i] < 0) ? nextState & 1 : −(nextState & 1)
					valCurr =(QuantIndices[i] << 1) + offsetCurr) * qScale
					tCoeff[i] = Clip3(minCoeffVal, maxCoeffVal, valCurr)
				} else
					tCoeff[i] = 0
				nextState = QStateTransTabel[nextState][QuantIndices[i] & 1]
			}
		}
[bookmark: _Ref181106266][bookmark: _Toc202359718][bookmark: _Toc213429787]Inverse transformation process
Input to this process are a block size bSizeCurr and reconstructed transform coefficients tCoeffCurr[i] with 0 <= i < bSizeCurr. Output of this process are the intermediate residual sample values resImdCurr[i] with 0 <= i < bSizeCurr.
The following is applied
· If transform_present_flag is not equal to 1, the values tCoeffCurr[i] are assigned to the residual samples resImd[i].
· Otherwise (transform_present_flag is equal to 1), the following applies:
· If transform_dst_flag is equal to 1, a DST-II transform process of clause 8.6 is applied where the values tCoeffCurr[i] are assigned to the input of this process. The output of this process is assigned to the residual sample values resImd[i].
· [bookmark: _Toc45876514][bookmark: _Toc45877240][bookmark: _Toc45190651][bookmark: _Toc45192594][bookmark: _Ref180844520][bookmark: _Ref21941623]Otherwise (transform_dst_flag is not equal to 1), the DCT-II transform process of clause 8.6 is invoked, where the values tCoeffCurr[i] are assigned to the input of this process. The output of this process is assigned to the residual sample values resImd[i].
[bookmark: _Ref202357280][bookmark: _Toc202359719][bookmark: _Toc213429788]Backward adaptive prediction
The backward adaptive prediction is based on a normalized least means squared (NLMS) prediction algorithm that operates in the DCT domain and provides both intra-channel and inter-channel prediction. For intra-channel prediction, the NMLS prediction algorithm operates in the negative frequency, that is higher frequencies are used to predict lower frequencies. The intra-channel prediction and inter-channel prediction can be enabled independently through the syntax elements enable_ar_lms and enable_cc_lms, respectively. Furthermore, the DCT spectrum can be split into two equal parts with the syntax element lms_split_flag. In the case that the lms_split_flag syntax element is enabled, the intra-channel and inter-channel prediction can be controlled independently, and there are two syntax elements for both enable_ar_lms and enable_cc_lms, see clause7.3.3.2.7. The prediction coefficients and buffer states for both the intra-channel and inter-channel prediction shall be reset every frame. Furthermore, if bitstream lms_split_flag is enabled, the prediction coefficient and buffer states are reset for both halves of the DCT spectrum.
The DC term shall not be predicted if the syntax element lms_split_flag is disabled, however, the DC term shall be predicted if the syntax element lms_split_flag is enabled.
The NLMS update step is dependent on the DCT data bit-depth as specified in clause 8.4.1
Inputs to this process:
· A flag specifying if the LMS prediction is split (lms_split_flag) (see clause 7.4.3.2.7)
· An array of two flags enabling the LMS across frequency (enable_ar_lms[0] and enable_ar_lms[1]) (see clause 7.4.3.2.7)
· An array of two flags enabling the LMS across channels (enable_cc_lms[0] and enable_cc_lms[1]) (see clause 7.4.3.2.7)
· A variable specifying the length of the transform (blockLength)
· A variable specifying the bit depth of the transform data (signalBitDepth) (see clause 8.4.1)
· A variable specifying the quantizer parameter for the current channel (CurrBlockQP[ch]) (see clause 8.4.1)
· An array of transform data for the previous channels (signal[c][n], with c = 0…Ch - 1 and n = 0...blockLength − 1)
· An array of transform domain residual data (res[n], with n = 0.. blockLength − 1)
Outputs to this process:
· An array of transform data for the current channel (signal[Ch][n], with n = 0...blockLength −1)
if(lms_split_flag == 1)
 numSplits = 2;
else
 numSplits = 1;

for(ns = 0; ns = numSplits; ns++) {
 if(numSplits == 1) {
 startIndex = blockLength − 1;
 stopIndex = −1;
 } else if(ns == 0) {
 startIndex = blockLength − 1;
 stopIndex = (blockLength >> 1) − 1;
 }
 else {
 startIndex = (blockLength >> 1);
 stopIndex = −1;
 }
	
 if(enable_cc_lms[ns] == 1) { /* see clause 7.4.2.2 */
 LMSMaxCCOrder = GetMaxLmsCcOrder(
 cgps_max_order_cc_lms_minus_one, cgps_lms_ar_order_over_four, Log2MaxBlockSize);
 startCh = Ch − LMSMaxCCOrder ;
 startCh = (startCh > 0) ? startCh : 0;
 stopCh = Ch;
 } else {
 startCh = 0;
 stopCh = 0;
 }
	
 if(enable_ar_lms[ns] == 1) {
 /* Set LMSOrder based on cgps_lms_ar_order_over_four see clause 7.4.2.2 */ LMSOrder = GetLmsArOrder(cgps_lms_ar_order_over_four, log2_block_length);

 }
 else{
 LMSOrder = 0;
 }
	
 for(n = 0; n < 64; n ++) {
 predARCoeff[n] = 0;
 predBuffer[n] = 0;
 }
 for(n = 0; n < 32; n ++)
 predICCoeff[n] = 0;
	
 bufferPointer = 0;
 bufferMask = 63;
 energyShift = signalBitDepth − 24;
 energyShift = (energyShift > 0) ? energyShift : 0;
 bufferEnergy = 0;
 for(n = startIndex; n > stopIndex; n −−) {
 coeffMax = (1 << (19 + 5)) − 1;
 coeffMin = 1 − (1 << (19 + 5));
 energyNorm = 0;
 accum = 0;	
 /* Compute inter-channel prediction */
 for(k = startCh; k < stopCh; k++) {
 accum += signal[k][n] * predICCoeff[k];
 normEnergy += (signal[k][n] >> energyShift);
 }
 /* compute intra-channel predition */
 index = bufferPointer − 1;
 index &= BufferMask;
 for(k = 0; k < lms_order; k++) {
 accum += predARCoeff[k] * predBuffer[index];
 index −−;
 index &= bufferMask;
 }
 normEnergy += bufferEnergy;
 accum = (accum + (1 << (19 − 1))) >> 19;
 accum = (accum < INT32_MAX) ? accum : INT32_MAX;
 accum = (accum > INT32_MIN) ? accum : INT32_MIN;
 pred = accum;
		
 if(CurrBlockQP[ch] > 0) {
 res [ch][n] = InverseQuantize(residual[ch][n], CurrBlockQP[ch]); /* See clause 8.4.1 */
 }
 /* Don’t predict DC value lms_split_flag = = 0 */
 if(n == 0 && lms_split_flag = = 0) {
 signal[Ch][n] = res[Ch][n];
 }
 else{
 signal[Ch][n] = res[Ch][n] + pred;
 }
 /* compute update gain */
 for(accum = normEnergy, log2Energy = 0; accum > 0; accum >>= 1, log2Energy ++);
 log2Energy += (energyShift << 1);
 log2Energy >>= 1;
 roundOffset = (log2Energy > 0) ? (1 << (log2Energy − 1)) : 0;
 gain = ((((residual << 19) >> log2Energy) + 2) >> 2);
 gain = (gain > -(1 << 17)) ? gain : −(1 << 17);
 gain = (gain < (1 << 17)) ? gain : (1 << 17);
 /* update inter-channel prediction coeff */
 for(k = startCh; k < stopCh; k++) {
 accum = gain * signal[k][n];
 accum += roundOffset;
 accum >> log2Energy;
 predICCoeff[k] += accum;
 predICCoeff[k] = (predICCoeff[k] > coeffMin) ? predICCoeff[k] : coeffMin;
 predICCoeff[k] = (predICCoeff[k] < coeffMax) ? predICCoeff[k]: coeffMax;
 }
 /* update intra-channel prediction coeff */
 index = bufferPointer − 1;
 index &= bufferMask;
 for(k = 0; k < LMSOrder; k++) {
 accum += gain* predBuffer[index];
 accum += roundOffset;
 accum >> log2Energy;
 predARCoeff [k] += accum;
 predARCoeff[k] = (predARCoeff[k] > coeffMin) ? predARCoeff[k]: coeffMin;
 predARCoeff[k] = (predARCoeff[k] < Coeff_max) ? predARCoeff[k]:Coeff_max;
 index −−;
 pointer &= bufferMask;
 }
 /* update buffer energy */
 index = bufferPointer − LMSOrder;
 index &= bufferMask;
 bufferEnergy −= (predBuffer[index] * predBuffer[index]) >> energyShift;
 bufferEnergy += signal[ch][n] * signal[Ch][n] >> energyShift;
 /* update buffer */
 predBuffer[bufferPointer] = signal[Ch][n];
 bufferPointer ++;
 bufferPointer &= bufferMask;
 }
}
[bookmark: _Toc213429789][bookmark: _Ref198722704][bookmark: _Toc202359720]Inverse integer reversible discrete cosine transform
[bookmark: _Toc213429790]General
The following clauses specify the integer reversible inverse discrete cosine transform. The following constants are defined for this purpose:
· INT_DCT2_MAX_BITS = 31
· INT_DCT2_ROUND_OFFSET = 107374182
[bookmark: _Toc203745318][bookmark: _Ref212731623][bookmark: _Toc213429791][bookmark: _Toc202359726]Inverse integer reversible DCT for two signals (IntDualIDCT)
Inputs to the process are:
· a variable that specifies the base-2 logarithm of the length of the transform
· an array of input signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· an array of input signal for the second channel; sigData1[n], for n = 0..((1 << log2Length) − 1)
Outputs of the process are (this process is in-place):
· a modified array containing the output signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· a modified array containing the output signal for the second channel; sigData1[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength and halfDataLength are set as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The arrays of rotation scales; rotScaleA and rotScaleB are initialized:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */
The following internal scratch arrays for this process are assumed to be available: realVals0[n], imagVals0[n], realVals1[n], and imagVals1[n] with n = 0.. ((1 << log2Length) – 1)
The process for the two-channel inverse integer reversible DCT is as follows:
realVals0[0] = sigData0[0];
realVals0[halfDataLength] = sigData0[halfDataLength];
realVals1[0] = sigData1[0];
realVals1[halfDataLength] = sigData1[halfDataLength];
for(n = 1; n < halfDataLength; n ++) {
 realVals0[n] = sigData0[n];
 imagVals0[n] = -sigData0[dataLength − n];
 realVals1[n] = sigData1[n];
 imagVals1[n] = -sigData1[dataLength − n];
}
for(n = 1; n < halfDataLength; n ++) {
 RotateInverseLift(rotScaleA[n], roatScaleB[n], realVals0[n], imagVals0[n]); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA[n], rotScaleB[n], realVals1[n], imagVals1[n]); /* see clause 8.6.6*/
}
LiftDualRealIFFT(log2Length, realVals0, imagVals0, realVals1, imagVals1); /* see clause 8.6.10 */	
for(n = 0; n < halfDataLength; n ++) {
 sigData0[2 * n] = realVals0[n];
 sigData0[dataLength − 2 * n − 1] = realVals0[halfDataLength + n];
 sigData1[2 * n] = realVals1[n];
 sigData1[Length − 2 * n − 1] = realVals1[halfDataLength + n];
}
[bookmark: _Ref212731712][bookmark: _Toc213429792]Inverse integer reversible DCT for one signal (IntIDCT)
Inputs to the process are:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array of input signal; sigData[n], with n = 0..((1 << log2Length) – 1)
Outputs of the process are (this process is in-place):
· a modified array of signal; sigData[n], with n = 0..((1 << log2Length) – 1)
The variables dataLength and halfDataLength are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The arrays of rotation scales; rotScaleA and rotScaleB are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */

The following internal scratch arrays for this process are assumed to be available: realVals[n] and imagVals[n] with n = 0,…,((1 << log2Length) −1)
The process for the single-channel inverse integer reversible DCT is as follows:
realVals[0] = sigData[0];
realVals[halfDataLength] = sigData[halfDataLength];
for(n = 1; n < halfDataLength; n++) {
 realVals[n] = sigData[n];
 imagVals[n] = −sigData[dataLength − n];
}	
for(n = 1; n < halfDataLength; n++) {
 RotateInverseLift(rotScaleA[n], rotScaleB[n], realVals[n], imagVals[n]); /* see clause 8.6.6*/
}
LiftRealIFFT(log2Length, realVals, imagVals); /* see clause 8.6.11 */	
for(n = 0; n < halfDataLength; n++) {
 sigData[2 * n] = realVals[n];
 sigData[Length − 2 * n − 1] = realVals[halfDataLength + n];
}
[bookmark: _Toc213429793]Inverse integer reversible DST for two signals (IntDualIDST)
Inputs to the process are:
· a variable that specifies the base-2 logarithm of the length of the transform
· an array of input signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· an array of input signal for the second channel; sigData1[n], for n = 0..((1 << log2Length) − 1)
Outputs of the process are (this process is in-place):
· a modified array containing the output signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· a modified array containing the output signal for the second channel; sigData1[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength and halfDataLength are set as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The arrays of rotation scales; rotScaleA and rotScaleB are initialized:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */

The following internal scratch arrays for this process are assumed to be available: realVals0[n], imagVals0[n], realVals1[n], and imagVals1[n] with n = 0.. ((1 << log2Length) −1)
The process for the two-channel inverse integer reversible DCT is as follows:
realVals0[0] = sigData0[0];
realVals0[halfDataLength] = sigData0[halfDataLength];
realVals1[0] = sigData1[0];
realVals1[halfDataLength] = sigData1[halfDataLength];
for(n = 1; n < halfDataLength; n ++) {
 realVals0[n] = sigData0[n];
 imagVals0[n] = -sigData0[dataLength − n];
 realVals1[n] = sigData1[n];
 imagVals1[n] = -sigData1[dataLength − n];
}
for(n = 1; n < halfDataLength; n ++) {
 RotateInverseLift(rotScaleA[n], roatScaleB[n], realVals0[n], imagVals0[n]); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA[n], rotScaleB[n], realVals1[n], imagVals1[n]); /* see clause 8.6.6*/
}
LiftDualRealIFFT(log2Length, realVals0, imagVals0, realVals1, imagVals1); /* see clause 8.6.10 */	
for(n = 0; n < halfDataLength; n ++) {
 sigData0[2 * n] = realVals0[n];
 sigData0[dataLength − 2 * n − 1 = realVals0[halfDataLength + n];
 sigData1[2 * n] = realVals1[n];
 sigData1[Length − 2 * n − 1] = realVals1[halfDataLength + n];
}
[bookmark: _Toc213429794]Inverse integer reversible DST for one signal (IntIDST)

Inputs to the process are:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array of input signal; sigData[n], with n = 0..((1 << log2Length) − 1)
Outputs of the process are (this process is in-place):
· a modified array of signal; sigData[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength and halfDataLength are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The arrays of rotation scales; rotScaleA and rotScaleB are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */

The following internal scratch arrays for this process are assumed to be available: realVals[n] and imagVals[n] with n = 0,…,((1 << log2Length) − 1)
The process for the single-channel inverse integer reversible DCT is as follows:
realVals[0] = sigData[0];
realVals[halfDataLength] = sigData[halfDataLength];
for(n = 1; n < halfDataLength; n++) {
 realVals[n] = sigData[n];
 imagVals[n] = -sigData[dataLength − n];
}	
for(n = 1; n < halfDataLength; n++) {
 RotateInverseLift(rotScaleA[n], rotScaleB[n], realVals[n], imagVals[n]); /* see clause 8.6.6*/
}
LiftRealIFFT(log2Length, realVals, imagVals); /* see clause 8.6.11 */	
for(n = 0; n < halfDataLength; n++) {
 sigData[2 * n] = realVals[n];
 sigData[Length − 2 * n − 1] = realVals[halfDataLength + n];
}
[bookmark: _Toc203745316][bookmark: _Ref211957382][bookmark: _Toc213429795]Lifting factorization for inverse Givens rotations - (RotateInverseLift)
Inputs to the process are:
· a variable A that is the first rotation scale
· a variable B that is the second rotation scale
· a variable x0 that is the first value to be rotated
· a variable x1 that is the second value to be rotated
Outputs to the process are (this process is in-place):
· a modified variable x0 that is the first value after rotation
· a modified variable x1 that is the second value after rotation
The lifting based inverse rotation is specified as follows:

t = A * x1; /* the computation of t, as written, may require at least 64bit precision */
x0 −= (t + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
t = B * x0; /* the computation of t, as written, may require at least 64bit precision */
x1 −= ((t + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
t = A * x1; /* the computation of t, as written, may require at least 64bit precision */
x0 −= ((t + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
[bookmark: _Ref212542156][bookmark: _Toc213429796]Fixed-point fast Fourier transform (FPRadix2FFT)
The multi-dimensional lifting process to compute dual integer reversible inverse DFTs, as described in clause 8.6.8, calls the fixed-point fast Fourier transform specified in this clause. For lossless operation, the DFT must produce the exact same results as the transform specified in this clause.
Inputs to the process:
· the length of the transform in log base 2 (log2FFTLength)
· an array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)
The variables FFTLength, halfFFTLength are initialized as follows:
· FFTLength = 1 << log2FFTLength
· halfFFTLength = FFTLength >> 1

The variables normFFT, minFFTMSB, twiddleReal, and twiddleImag are initialized depending on the input variable log2FFTLength as follows:
· If log2FFTLength is equal to 2, the following applies:
minFFTMSB = 1
normFFT = 1073741824
twiddleReal = TwiddleReal_4 /* specified in Annex B */
twiddleImag = TwiddleImag_4 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 3, the following applies:
minFFTMSB = 2
normFFT = 759250125
twiddleReal = TwiddleReal_8 /* specified in Annex B */
twiddleImag = TwiddleImag_8 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 4, the following applies:
minFFTMSB = 2
normFFT = 536870912
twiddleReal = TwiddleReal_16 /* specified in Annex B */
twiddleImag = TwiddleImag_16 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 5, the following applies:
minFFTMSB = 3
normFFT = 379625062
twiddleReal = TwiddleReal_32 /* specified in Annex B */
twiddleImag = TwiddleImag_32 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 6, the following applies:
minFFTMSB = 3
normFFT = 268435456
twiddleReal = TwiddleReal_64 /* specified in Annex B */
twiddleImag = TwiddleImag_64 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 7, the following applies:
minFFTMSB = 4
normFFT = 189812531
twiddleReal = TwiddleReal_128 /* specified in Annex B */
twiddleImag = TwiddleImag_128 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 8, the following applies:
minFFTMSB = 4
normFFT = 134217728
twiddleReal = TwiddleReal_256 /* specified in Annex B */
twiddleImag = TwiddleImag_256 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 9, the following applies:
minFFTMSB = 5
normFFT = 94906266
twiddleReal = TwiddleReal_512 /* specified in Annex B */
twiddleImag = TwiddleImag_512 /* specified in Annex B */
· Otherwise, if log2FFTLength is equal to 10, the following applies:
minFFTMSB = 5
normFFT = 67108864
twiddleReal = TwiddleReal_1024 /* specified in Annex B */
twiddleImag = TwiddleImag_1024 /* specified in Annex B */

The fixed-point fast Fourier transform is as follows:

/* Compute MSB headroom */
maxVal = 0;
for(n = 0; n < FFTLength; n++) {
 maxVal |= Abs(realVals[n]);
 maxVal |= Abs(imagVals[n]);
}
for(log2MaxVal = 0; maxVal > 0; maxVal >>= 1) {
 log2MaxVal++;
}
	
valShift = INT_DCT2_MAX_BITS − log2MaxValue − minFFTMSB - 1;
valShift = (valShift < 15) ? valShift : 15;
if(valShift > 0) {
 roundOffset = 1 << (valShift − 1);
}else{
 valShift = 0;
 roundOffset = 0;
}
/* Normalize input by approximate square root of FFTLength */
for(n = 0; n < FFTLength; n++) {
 realVals[n] <<= valShift;
 imagVals[n] <<= valShift;	
 accum = (INT64) realVals[n] * normFFT;
 realVals[n] = ((accum + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);		
 accum = (INT64) imagVals[n] * normFFT;
 imagVals[n] = ((accum + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
}	
/* Perform decimation in frequency based FFT */
numFFT = 1;
for(s = halfFFTLength; s > 0; s >>= 1) {
 index = 0;
 for(n = 0; n < numFFT; n ++) {
 index0 = index;
 index1 = index0 + s;
 twdIndex = 0;
 for(m = 0; m < s; m ++) {
 tempVal = realVals[index0];
 realVals[index0] += realVals[index1];
	 realVals[index1] = tempVal − realVals[index1];
	 tempVal = imagVals[index0];
	 imagVals[index0] += imagVals[index1];
	 imagVals[index1] = tempVal − imagVals[index1];	 		
	 if(m > 0) {
 tempVal = realVals[index1];
 /* the computation of accum, as written, may require at least 64bit precision */
	 accum = realVals[index1] * twiddleReal[twdIndex] - imagVals[index1] * twiddleImag[twdIndex];
 realVals[index1] = (accum + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS;
 /* the computation of accum, as written, may require at least 64bit precision */
	 accum = tempVal * twiddleImag[twdIndex] + imagVals[index1] * twiddleReal[twdIndex];
 imagVals[index1] = (accum + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS;
	 }
	 index0 ++;
	 index1 ++;
	 twdIndex += numFFT;
 }
 index += (s << 1);
 }
 numFFT <<= 1;
}
/*Reorder Data */
n = 0;
for(m = 0; m < (FFTLength − 1); m ++)
 if(m < n) {	
 swapVal = realVals[m];
 realVals[m] = realVals[n];
 realVals[n] = swapVal;
 swapVal = imagVals[m];
 imagVals[m] = imagVals[n];
 imagVals[n] = swapVal;
 }
 i = halfFFTLength;
 while(i <= n) {
 n -= i;
 i >>= 1;
 }
 n += i;
}

if(valShift > 0) {
 for(n = 0; n < FFTLength; n ++) {
 realVals[n] += roundOffset;
 real[n] >>= valShift;			
 imagVals[n] += roundOffset;
 imagVals[n] >>= valShift;
 }
}
[bookmark: _Toc203745321][bookmark: _Ref211948319][bookmark: _Ref212552070][bookmark: _Toc213429797]Inverse integer reversible DFT for two complex sequences (IFFTLift)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
Outputs to this process (this process is in-place):
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
The variable dataLength is initialized as follows:
· dataLength = 1 << log2Length
The following internal scratch arrays for this process are assumed to be available: scratchReal[n] and scratchImag[n] with n = 0,…,((1 << log2Length) −–1)
The process for the inverse integer reversible DFT for two complex sequences is as follows:
for(n = 0; n < dataLength; n ++) {
 imagVals1[n] = −imagVals1[n];
}	
for(n = 0; n < dataLength; n ++) {
 realVals0[n] = −realVals0[n];
 imagVals0[n] = −imagVals0[n];
 scratchReal[n] = realVals0[n];
 scratchImag[n] = −imagsVals0[n];
}
FPRadix2FFT(scratchReal , scratchImag); /* see clause 8.6.7 */
for(n = 0; n < dataLength; n ++) {
 realVals1[n] −= scratchReal[n];
 imagVals1[n] += scratchImag[n];
		
 scratchReal[n] = realVals1[n];
 scratchImag[n] = imagVals1[n];
}
FPRadix2FFT(scratchReal, scratchImag); /* see clause 8.6.7 */
for(n = 0; n < dataLength; n ++) {
 realVals0[n] += scratchReal[n];
 imagVals0[n] += scratchImag[n];
 scratchReal[n] = realVals0[n];
 scratchImag[n] = −imagVals0[n];
}
FPRadix2FFT(scratchReal , scratchImag); /* see clause 8.6.7 */
for(n = 0; n < dataLength; n ++) {
 realVals1[n] −= scratchReal[n];
 imagVals1[n] += scratchImag[n];
 swapVal = realVals0[n];
 realVals0[n] = realVals1[n];
 realVals1[n] = swapVal;	
 swapVal = imagVals0[n];
 imagVals0[n] = imagVals1[n];
 imagVals1[n] = swapVal;
}
for(n = 0; n < dataLength; n ++) {
 imagVals1[n] = −imagVals1[n];
}
[bookmark: _Toc203745322][bookmark: _Ref212553253][bookmark: _Toc213429798]Inverse integer reversible DFT for a single complex sequence (IFFTLiftSplit)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals[n], with n = 0..((1 << log2Length) −1)
· an array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) −1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals[n], with n = 0..((1 << log2Length) −1)
· a modified array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) −1)
The variables dataLength, halfDataLength, rotScaleA1, and rotScaleB1 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· rotScaleA1 = -889516852
· rotScaleB1 = 1518500249
The arrays of rotation scales; rotScaleA0 and rotScaleB0 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA0 = A1_16 /* specified in Annex B */
rotScaleB0 = B1_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA0 = A1_32 /* specified in Annex B */
rotScaleB0 = B1_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA0 = A1_64 /* specified in Annex B */
rotScaleB0 = B1_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA0 = A1_128 /* specified in Annex B */
rotScaleB0 = B1_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA0 = A1_256 /* specified in Annex B */
rotScaleB0 = B1_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA0 = A1_512 /* specified in Annex B */
rotScaleB0 = B1_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA0 = A1_1024 /* specified in Annex B */
rotScaleB0 = B1_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA0 = A1_2048 /* specified in Annex B */
rotScaleB0 = B1_2048 /* specified in Annex B */

The following internal scratch arrays for this process are assumed to be available: scratchReal[n] and scratchImag[n] with n = 0,…,((1 << log2Length) − 1)	
The process for the inverse integer reversible DFT for a single complex sequence is as follows:
for(n = 0; n < halfDataLength; n ++) {
 realVal0 = realVals[n];
 imagVal0 = imagVals[n];
 realVal1 = realVals[halfDataLength + n];
 imagVal1 = imagVals[halfDataLength + n];
		
 RotateInverseLift(rotScaleA1 , rotScaleB1 , realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift((rotScaleA1 , rotScaleB1 , imagVal0 , imagVal1); /* see clause 8.6.6*/
		
 RotateInverseLift(rotScaleA0[n] , rotScaleB0[n] , realVal1, imagVal1); /* see clause 8.6.6*/	
 scratchReal[n] = realVal0;
 scratchImag[n] = imagVal0;
 scratchReal[halfDataLength + n] = imagVal1;
 scratchImag[halfDataLength + n] = −realVal1;
}
/* Note: scratchReal[halfDataLength] and scratchImag[halfDataLength] are arrays starting at halfDataLength */	
IFFTLift(log2Length − 1, scratchReal, scratchImag, scratchReal[halfDataLength], scaratchImag[halfDataLength]); /* see clause 8.6.8 */
for(n = 0, k = 0; n < halfDataLength; n ++, k += 2) {
 realVals[k] = scratchReal[n];
 imagVals[k] = scratchImag[n];
 realVals[k + 1] = scratchReal[halfDataLength + n];
 imagVals[k + 1] = scratchImag[halfLength + n];
}
[bookmark: _Toc203745323][bookmark: _Ref211957722][bookmark: _Toc213429799]Inverse integer reversible DFT for two real sequences (LiftDualRealIFFT)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength, halfDataLength, quartDataLength, rotScaleA0, and rotScaleB0 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· quartDataLength = halfDataLength >> 1
· rotScaleA0 = -889516852
· rotScaleB0 = 1518500249
The arrays of rotation scales; rotScaleA1 and rotScaleB1 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA1 = A3_16 /* specified in Annex B */
rotScaleB1 = B3_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA1 = A3_32 /* specified in Annex B */
rotScaleB1 = B3_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA1 = A3_64 /* specified in Annex B */
rotScaleB1 = B3_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA1 = A3_128 /* specified in Annex B */
rotScaleB1 = B3_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA1 = A3_256 /* specified in Annex B */
rotScaleB1 = B3_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA1 = A3_512 /* specified in Annex B */
rotScaleB1 = B3_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA1 = A3_1024 /* specified in Annex B */
rotScaleB1 = B3_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA1 = A3_2048 /* specified in Annex B */
rotScaleB1 = B3_2048 /* specified in Annex B */

The process for the inverse integer invertible DFT for two real sequences is as follows:
for(n = 1; n < quartDataLength; n ++) {
 realVal0 = realVals0[n];
 imagVal0 = imagVals0[n];
 realVal1 = realVals0[halfDataLength − n];
 imagVal1 = − imagVals0[halfDataLength − n];
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1);
		
 realVals0[n] = realVal0;
 imagVals0[n] = imagVal0;
 realVals0[halfDataLength − n] = -realVal1;
 imagVals0[halfDataLength − n] = imagVal1;
		
 realVal0 = realVals1[n];
 imagVal0 = imagVals1[n];
 realVal1 = realVals0[halfDataLength − n];
 imagVal1 = −imagVals0[halfDataLength − n];
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1); /* see clause 8.6.6*/
		
 realVals1[n] = realVal0;
 imagVals1[n] = imagVal0;
 realVals1[halfDataLength − n] = -realVal1;
 imagVals1[halfDataLength − n] = imagVal1;
}
imagVal0[quartDataLength] = −imagVal0[quartDataLength];
imagVals0[0] = −realVals0[halfDataLength];
RotateInverseLift(−rotScalA0, −rotScaleB0, realVals0[0], imagVals0[0]); /* see clause 8.6.6*/
	
imagVal1[quartDataLength] = −imagVal1[quartDataLength];
imagVals1[0] = −realVals1[halfDataLength];
RotateInverseLift(−rotScalA0, −rotScaleB0, realVals1[0], imagVals1[0]); /* see clause 8.6.6*/
	
IFFTLift(log2Length − 1, realVals0, imagVals0, realVals1, imagVals1); /* see clause 8.6.8 */
			
for(n = 0; n < halfDataLength; n ++) {
 imagVals0[halfDataLength + n] = realVals0[n];
 imagVals1[halfDataLength + n] = realVals1[n];
}
for(n = 0, k = 0; n < halfDataLength; n ++, k += 2) {
 realVals0[k] = iImagVals0[halfDataLength + n];
 realVals0[k + 1] = imagVals0[n];
 imagVals0[halfDataLength + n] = 0;
 imagVals0[n] = 0;
 realVals1[k] =I ImagVals1[halfDataLength + n];
 realVals1[k + 1] = imagVals1[n];
 imagVals1[halfDataLength + n] = 0;
 imagVals1[n] = 0;
}
[bookmark: _Ref211958932][bookmark: _Toc213429800]Inverse integer invertible DFT for one real sequence (LiftRealIFFT)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)

The variables dataLength, halfDataLength, quartDataLength, rotScaleA0, and rotScaleB0 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· quartDataLength = halfDataLength >> 1
· rotScaleA0 = −889516852
· rotScaleB0 = 1518500249
The arrays of rotation scales; rotScaleA1 and rotScaleB1 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA1 = A3_16 /* specified in Annex B */
rotScaleB1 = B3_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA1 = A3_32 /* specified in Annex B */
rotScaleB1 = B3_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA1 = A3_64 /* specified in Annex B */
rotScaleB1 = B3_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA1 = A3_128 /* specified in Annex B */
rotScaleB1 = B3_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA1 = A3_256 /* specified in Annex B */
rotScaleB1 = B3_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA1 = A3_512 /* specified in Annex B */
rotScaleB1 = B3_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA1 = A3_1024 /* specified in Annex B */
rotScaleB1 = B3_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA1 = A3_2048 /* specified in Annex B */
rotScaleB1 = B3_2048 /* specified in Annex B */

The process for the inverse integer invertible DFT for one real sequence is as follows:
for(n = 1; n < quartDataLength; n ++) {
 realVal0 = realVals[n];
 imagVal0 = imagVals[n];
 realVal1 = realVals[halfDataLength − n];
 imagVal1 = -imagVals[halfDataLength − n];
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, realVal0, realVal1); /* see clause 8.6.6*/
 RotateInverseLift(rotScaleA0, rotScaleB0, imagVal0, imagVal1); /* see clause 8.6.6*/
		
 realVals[n] = realVal0;
 imagVals[n] = imagVal0;
 realVals[halfDataLength − n] = −realVal1;
 imagVals[halfDataLength − n] = imagVal1;
		
}
imagVal[quartDataLength] = −imagVal[quartDataLength];
imagVals[0] = −realVals[halfDataLength];
RotateInverseLift(−rotScalA0, -rotScaleB0, realVals[0], imagVals[0]); /* see clause 8.6.6*/
	
IFFTLiftSplit(log2Length − 1, realVals, imagVals); /* see clause 8.6.9 */
		
for(n = 0; n < halfDataLength; n ++) {
 imagVals0[halfDataLength + n] = realVals0[n];
}
for(n = 0, k = 0; n < halfDataLength; n ++, k += 2) {
 realVals[k] = iImagVals[halfDataLength + n];
 realVals[k + 1] = imagVals[n];
 imagVals[halfDataLength + n] = 0;
 imagVals[n] = 0;
}
[bookmark: _Toc202359731][bookmark: _Toc213429801]Inverse DCT transformation process for multiple channels
To take advantage of the reduced lifting steps by processing two channels simultaneously, for signals with two or more channels, the channels are grouped into pairs in the order that the channels appear in the signal. If the signal contains an odd number of channels, the last remaining channel uses the single channel processing.

if(EnableDCT = = 1) {
 for(p = 0, n = 0; p < (numChannels >> 1); p++, n += 2) {
 IntDualIDCT(IntDCT2Config, signal[n], signal[n+1]) /* see clause 8.6.2 */
 }
 if(numChannels & 0x1) {
 IntIDCT(IntDCT2Config, signal[numChannels − 1]) /* see clause 8.6.3 */
 }

}
[bookmark: _Ref185597409][bookmark: _Toc202359732][bookmark: _Toc213429802]Mean value correction process

The final step to reproduce the signal waveform is to replace any DC bias in the original signal as specified in the following pseudo-code:

	for(k = 0; k < block_length; k++) {
		signal[ch][k] += MeanValueTrafoBlock;
	}
[bookmark: _Toc202359733][bookmark: _Ref212462961][bookmark: _Ref212644396][bookmark: _Ref212645668][bookmark: _Toc213429803]Sample wise prediction decoding process
[bookmark: _Toc202359734][bookmark: _Toc213429804]Overview
Input to this process are:
· the current channel index currCh,
· the current block position currBlockPos,
· the array of reconstructed samples of previous channels rec[c][i] with 	
Max(currCh − (DepChMask & currCh), 0) <= c < currCh and with 0 <= i < currBlockPos + (1 << Log2BlockSize),
· the array of reconstructed samples of the current channel rec[currCh][i] with 0 <= i < currBlockPos,
· the value maxTemplateSize,
· the array of left residual values resiLeftCurr[j] with 0 <= j < maxTemplateSize,
· the array of reconstructed intermediate residual sample values resImdCurr[i] with 0 <= i < 	
(1 << Log2BlockSize).
Output to this process are the residual sample values res[i] with 0 <= i < (1 << Log2BlockSize). These values are derived as follows:
· If SamplePredMode is equal SPM_OFF, for 0 <= i < (1 << Log2BlockSize) one sets res[i] = resImdCurr[i].
· If SamplePredMode is equal to SPM_DIFFS, the process of clause 8.9.2 is invoked with blockSize set to 	
(1 << Log2BlockSize), resiLeftVal set to resiLeftCurr[maxTemplateSize − 1] and resImd set to resImdCurr .
· If SamplePredMode is equal to SPM_SLOPE, the process of clause 8.9.3 is invoked with blockSize set to 	
(1 << Log2BlockSize), resiLeftValFirst set to resiLeftCurr[maxTemplateSize − 1], resiLeftValSecond set to resiLeftCurr[maxTemplateSize − 2] and resImd set to resImdCurr .
· If SamplePredMode is equal to SPM_HALF_SLOPE, the process of clause 8.9.4 is invoked with blockSize set to (1 << Log2BlockSize), resiLeftValFirst set to resiLeftCurr[maxTemplateSize − 1], resiLeftValSecond set to resiLeftCurr[maxTemplateSize − 2] and resImd set to resImdCurr .
· If SamplePredMode is equal to SPM_LPF, the following applies:
· The variable fltrSzCurrCh is set to 1 << (lpf_num_weights_idx + 1).
· The process from clause 8.9.5 is invoked with fltrSz set to fltrSzCurrCh
to obtain the filter weights for the current channel wghtCurr[k] with 0 <= k < fSCurrCh.
· If lpf_prev_ch_flag is equal 1, the following applies:
· The variable lpfPrevChWeight is set to lpf_prev_ch_weight_sign_flag ? – lpf_prev_ch_weight_abs : lpf_prev_ch_weight_abs.
· The process from clause 8.9.7 is invoked with blockSize set to (1 << Log2BlockSize), fltrSz set to fltrSzCurrCh, prevChScale set to lpfPrevChWeight, partialFilters set to 1 if currBlockPos < fltrSzCurrCh and set to 0 otherwise, w set to wghtCurr, refPrev[l] set to rec[currCh − 1 – lpf_prev_ch_idx][l], where 0 <= l < (1 << Log2BlockSize), resiLeft[k] set to resiLeftCurr[maxTemplateSize − fltrSzCurrCh + k] for 0 <= k < fltrSzCurrCh and resImd set to resImdCurr.
	Otherwise (lpf_prev_ch_flag is not equal to 1), the following applies:
· The process from clause 8.9.6 is invoked with blockSize set to (1 << Log2BlockSize), fltrSz set to fltrSzCurrCh, partialFilters set to 1 if currBlockPos < fltrSzCurrCh and set to 0 otherwise, w set to wghtCurr, resiLeft[k] set to resiLeftCurr[maxTemplateSize − fltrSzCurrCh + k] for 0 <= k < fltrSzCurrCh and resImd set to resImdCurr.
[bookmark: _Ref180768071][bookmark: _Toc202359735][bookmark: _Toc213429805]Sample wise one tap prediction decoding process
Input to this process are:
· a variable blockSize which determines the size of the current block,
· an adjacent left residual value resiLeftVal
· an array of intermediate reconstructed residual samples resImd[j] with 0 <= j < blockSize.
Output of this process are the reconstructed residual samples res[i] with 0 <= i < blockSize.
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to −maxPredVal − 1.
The array of input values q[k] with 0 <= k < blockSize + 1 is initialized with 0.
One sets q[0] = resiLeftVal
The following process is invoked:
	Set j = 1
	do
		q[j] = q[j − 1] + resImd[j − 1]
		j = j+1
	while(j < blockSize + 1)
For 0 <= i < blockSize one sets res[i] =Clip3(minResVal, maxResVal, q[1 + i]).
[bookmark: _Ref180767720][bookmark: _Toc202359736][bookmark: _Toc213429806] Sample wise full slope prediction decoding process
Input to this process are:
· a variable blockSize which determines the size of the current block,
· a directly adjacent left residual value resiLeftValFirst
· a penultimately adjacent left residual value resiLeftValSecond
· an array of intermediate reconstructed residual samples resImd[j] with 0 <= j < blockSize.
Output of this process are the reconstructed residual samples res[i] with 0 <= i < blockSize.
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to −maxPredVal − 1.
The array of input values q[k] with 0 <= k < blockSize + 2 is initialized with 0.
One sets q[0] = resiLeftValSecond and q[1] = resiLeftValFirst.
The following process is invoked:
	Set j = 2.
	do
		q[j] = ((q[j − 1] − q[j − 2]) << 1) + resImd[j − 2].
		j = j+1
	while(j < blockSize + 2)
For 0 <= i < blockSize one sets res[i] =Clip3(minResVal, maxResVal, q[2 + i]).
[bookmark: _Ref180768007][bookmark: _Toc202359737][bookmark: _Toc213429807]Sample wise half slope prediction decoding process
Input to this process are:
· a variable blockSize which determines the size of the current block,
· a directly adjacent left residual value resiLeftValFirst
· a penultimately adjacent left residual value resiLeftValSecond
· an array of intermediate reconstructed residual samples resImd[j] with 0 <= j < blockSize.
Output of this process are the reconstructed residual samples res[i] with 0 <= i < blockSize.
The variable maxPredVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minPredVal is set to −maxPredVal − 1.
The array of input values q[k] with 0 <= k < blockSize + 2 is initialized with 0.
One sets q[0] = resiLeftValSecond and q[1] = resiLeftValFirst.
The following process is invoked:
	Set j = 2.
	do
		q[j] = q[j − 1] + ((q[j − 1] − q[j − 2] +1) >> 1) + resImd[j − 2].
		j = j+1
	while(j < blockSize + 2)
For 0 <= i < blockSize one sets res[i] =Clip3(minResVal, maxResVal, q[2 + i]).
[bookmark: _Ref180773062][bookmark: _Toc202359738][bookmark: _Toc213429808]Filter coefficient decoding process for linear predictive filtering
Input to this process is a filter size fltrSz.
Output of this process are the reconstructed filter coefficients w[k] with 0 <= k < fltrSz.
The variable weightPrec is set to 12.
The intermediate temporal coefficient values tempImdCoeff[k] with 0 <= k < fltrSz are defined as
tempImdCoeff[k] =(32 − Abs(LPFWeightsCurr[k])) << 1.
The temporal coefficient values tempCoeff[k] with 0 <= k < fltrSz are defined as
tempCoeff[k] =((1 << 12) − tempImdCoeff[k]* tempImdCoeff[k])*
(lpf_weight_sign_flag[k] > 0 ? − 1: 1)
The following process is invoked:
	Set a[0] = − (1 << 12)
	Set i = 1
	do
		set j = 1
		do
			b[j] = b[j] – ((tempCoeff[i − 1]*a[i − j] + (1 << 11)) >> 12)
		while(j <= i)
		set j = 1
		do
			a[j] = b[j]
		while (j < i)
	while(i <= fltrSz)
	Set k = 0
	do
		w[k] = a[k + 1]
	while (k < fltrSz)
[bookmark: _Ref180773012][bookmark: _Toc202359740][bookmark: _Toc213429809]Single channel linear predictive filtering prediction decoding process
Input to this process are:
· a variable blockSize which specifies the size of the current block,
· a variable fltrSz which specifies the number of prediction filter coefficients,
· a variable partialFilters which specifies if the prediction for the first samples uses partial filters,
· an array of prediction filter coefficients w[k] with 0 <= k < fltrSz,
· an array of left adjacent residual samples resiLeft[j] with 0 <= j <fltrSz,
· an array of intermediate reconstructed residual samples resImd[j] with 0 <= j < blockSize.
Output of this process are the reconstructed residual samples res[i] with 0 <= i < blockSize.
The variable maxResVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minResVal is set to −maxPredVal − 1.
The array of input values q[k] with 0 <= k < blockSize + fltrSz is initialized with 0.
For 0 <= j < fltrSz one sets q[j] = resiLeft[j].
One sets leftShiftFltr = 12.
One sets offsetLeftShift = 1 << (leftShiftFltr − 1).
If the variable partialFilters is equal to 1, the following process is invoked:
	Set j = fltrSz
	do
		The process from clause 8.9.5 is invoked with fltrSz set to j − fltrSz to obtain the filter weights for the current channel wghtCurr[k] with 0 <= k < j − fltrSz.
		q[j] = ((() + offsetLeftShift)) >> leftShiftFltr)+ resImd[j − fltrSz].
		j = j+1
	while(j < (fltrSz << 1))
Otherwise (partialFilters is equal to 0), set j = fltrSz.
Then, the following process is invoked:
	do
		q[j] = ((() + offsetLeftShift)) >> leftShiftFltr)+ resImd[j − fltrSz].
		j = j+1
	while(j < blockSize + fltrSz)
For 0 <= i < blockSize one sets res[i] =Clip3(minResVal, maxResVal, q[fltrSz + i]).
[bookmark: _Ref180772273][bookmark: _Toc202359741][bookmark: _Toc213429810]Multi channel linear predictive filtering prediction decoding process
Input to this process are:
· a variable blockSize which specifies the size of the current block,
· a variable fltrSz which specifies the number of prediction filter coefficients,
· a variable prevChScale, which specifies the scaling factor for the sample values of a previous channel,
· a variable partialFilters which specifies if the prediction for the first samples uses partial filters,
· an array of prediction filter coefficients for the current channel w[k] with 0 <= k < fltrSz,
· an array of reconstructed sample values of a previous channel refPrev[l], where
0 <= l < blockSize.
· an array of left adjacent residual samples resiLeft[j] with 0 <= j < fltSz,
· an array of intermediate reconstructed residual samples resImd[j] with 0 <= j < blockSize.
Output of this process are the reconstructed residual samples res[i] with 0 <= i < blockSize.
The variable maxResVal is set to (1 << (BitDepthMax − 1)) − 1.
The variable minResVal is set to −maxResVal − 1.
The array of input values q[k] with 0 <= k < blockSize + fltrSz is initialized with 0.
For 0 <= j < fltrSz one sets q[j] = resiLeft[j].
One sets leftShiftFltr = 12.
One sets offsetLeftShift = 1 << (leftShiftFltr − 1).
One sets scaleShift = 10.
One sets offsetScaleShift = 1 << (scaleShift − 1).
If the variable partialFilters is equal to 1, the following process is invoked:
	Set j = fltrSz
	do
		The process from clause 8.9.5 is invoked with fltrSz set to j − fltrSz to obtain the filter weights for the current channel wghtCurr[k] with 0 <= k < j − fltrSz.
		q[j] = ((() + offsetLeftShift)) >> leftShiftFltr)+ resImd[j − fltrSz].
		j = j+1
	while(j < (fltrSz << 1))
Otherwise (partialFilters is equal to 0), set j = fltrSz.
Then, the following process is invoked:
	Set j = fltrSz
	do
		q[j] = ((() +offsetLeftShift) >> leftShiftFltr) + resImd[j − fltrSz].
		j = j + 1
	while(j < blockSize + fltrSz)
	Set k = fltrSz
	do
	q[k] += Clip3(minResVal, maxResVal,(+ offsetScaleShift) >> scaleShift).
	k = k+1
while(k < blockSize + fltrSz)
[bookmark: _Toc39248497][bookmark: _Toc39248676][bookmark: _Toc31037406]For 0 <= i < blockSize, res[i] is set equal to Clip3(minResVal, maxResVal, q[fltrSz + i]).
[bookmark: _Ref212641958][bookmark: _Toc213429811]Deblocking process
The time-domain deblocking process is the last operational step of the block-wise and channel-wise decoding process.
It is applied only when transform_present_flag associated with the given block and channel index currCh is equal to 1 and currBlockPos > 0 and when parameter cgps_deblocking_mode associated with the given channel group is greater than 0. Otherwise, all four steps below are bypassed and the reconstructed sample values rec[currCh] left unchanged.

Input to this process are:
· the current channel index currCh,
· the current block size blockSize,
the reconstructed sample values rec[currCh][i] with –4 <= i < blockSize.
Output to this process are the deblocked newly reconstructed sample values rec[currCh][i] with 0 <= i < blockSize.

The variable maxVal is set to (1 << (BitDepthMax − 1)) − 1 and the variable minVal is set to −maxVal − 1.
The deblocking process utilizes a three-step blocking detection algorithm, which is followed by the actual deblocking.
When transform_present_flag equals 1 and currBlockPos >= 4, the variable thresh is defined as the output tCoeff[0] resulting from invoking clause 8.4.1 on QuantIndices[0] = 1 with Log2BlockSize = 0 and transform_present_flag = 0, scaled by 1 << Max(0, BitDepthMax – 12), and the following steps are applied to deblock sample values rec[currCh]:
· Step 1: linear fitting via fixed-point linear regression, on the four channel waveform samples on each side of the left boundary of the currently decoded block. Using each of the two linear models, the sample value between the first sample of the current and last sample of the previous block is estimated, and difference value valDiff is calculated. If valDiff ≠ 0 and |valDiff·2| is smaller than input bit depth dependent threshold thresh, proceed to step 2, otherwise abort.
The linear fit is applied by invoking the linear extrapolation process of clause 8.3.1 twice, first with array p = {rec[currCh][–4], rec[currCh][–3], rec[currCh][–2], rec[currCh][–1]}, szArr = 4 and szExt = 0, yielding slope, offset and meanValExtr of the left boundary side, and then with array p = {rec[currCh][3], rec[currCh][2], rec[currCh][1], rec[currCh][0]}, szArr = 4 and szExt = 0, yielding slope, offset and meanValExtr of the right boundary side. valDiff is set to the difference between the two meanValExtr values (first minus second value).

· Step 2: evaluation of each of the two linear models on the four samples on the corresponding side of the current block's left boundary and calculation of the 2 fitting errors (sum of absolute distance-weighted differences between each line value and its associated actual sample value). The evaluation is performed separately for each side, with scale = 4 – cgps_deblocking_mode and respective slope, offset and array p associated with that boundary side, as defined in step 1:
fitting error = 0;
for(ix = −15, i = 0; i < 4; ix += 10, i += 1) {
	val = Clip3(− (231−1), (231−1), (offset + slope ix) >> 9);
	fitting error += (scale << i) | val − p[i] |;
}
If the product of both fitting error values is greater than or equal to zero, both errors are scaled by 2. Then, if both of the two errors are smaller than thresh, proceed to step 3, otherwise abort.

· Step 3: calculation of L1 norm of vector rec[currCh][i], yielding value sumAbsIn, and of a 1st-order high-pass filtered version of vector rec[currCh][i], yielding sumAbsHP, as follows:
samAbsIn = L1norm(rec[currCh][i]),
sumAbsHP = L1norm(rec[currCh][i] – rec[currCh][i – 1]),		 0 < i < blockSize,
where L1norm(x) = sum(| x |) and the values resulting for i < 1 are excluded in the summations. Value sumAbsHP is then modified as follows: sumAbsHP = max(sumAbsIn, sumAbsHP · 16).
If, for each fitting error of step 2, error sumAbsHP < thresh sumAbsIn (current block signal is spectrally sufficiently low-pass to justify a deblocking), proceed to step 4, otherwise abort.

· Step 4: execution of deblocking algorithm in-place on the first 4 reconstructed samples of the currently decoded block, by adding a fading (away from boundary) ramp signal using valDiff:
rec[currCh][j] = Clip3(minVal, maxVal, rec[currCh][j] + ((valDiff (7 – 2 j) + 4) >> 3)), 0 <= j < 4.

[bookmark: _Toc21960987][bookmark: _Toc21961155][bookmark: _Toc348981919][bookmark: _Toc348981922][bookmark: _Toc348981991][bookmark: _Ref15113096][bookmark: _Toc202359742][bookmark: _Toc213429812]Parsing process
[bookmark: _Toc202359743][bookmark: _Toc213429813]General
Inputs to this process are bits from the stream packet syntax structure.
Outputs of this process are syntax element values.
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to ev(k,m,n), ue(v), se(v), ae(ctxSet), aep() or aet() (see clauses 9.2, 9.3, and 9.5).
[bookmark: _Ref181551056][bookmark: _Toc202359744][bookmark: _Toc213429814]Parsing process for escaped values
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to ev(k,m,n).
Inputs to this process are bits from the stream packet syntax structure and the variables k, m, n.
Outputs of this process are syntax element values.
Syntax elements coded as ev(k,m,n) are escaped-coded values that are coded with k bits, k + m bits, or k + m + n bits. The parsing process for escaped values is specified as follows:
val = read_bits(k)
if(val = = (1 << k) − 1) {									(62)
	addVal = read_bits(m)
	val += addVal
	if(addVal = = (1 << m) − 1) {
		addVal = read_bits(n)
		val += addVal
	}
}
where the value returned from read_bits() is interpreted as a binary representation of an unsigned integer with most significant bit written first.
The value of a syntax element coded as ev(k,m,n) is set equal to val.
[bookmark: _Ref522195041][bookmark: _Toc202359745][bookmark: _Toc213429815]Parsing process for k-th order Exp-Golomb codes
[bookmark: _Toc415475948][bookmark: _Toc423599223][bookmark: _Toc423601727][bookmark: _Toc501130216][bookmark: _Toc503777920][bookmark: _Ref45664694][bookmark: _Toc202359746][bookmark: _Toc213429816]General
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to ue(v) or se(v).
Inputs to this process are bits from the bitstream.
Outputs of this process are syntax element values.
Syntax elements coded as ue(v) or se(v) are Exp-Golomb-coded with order k equal to 0. The parsing process for these syntax elements begins with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is specified as follows:
leadingZeroBits = −1
for(b = 0; !b; leadingZeroBits ++)	(63)
	b = read_bits(1)
The variable codeNum is then assigned as follows:
codeNum = (2leadingZeroBits − 1) * 2k + read_bits(leadingZeroBits + k)	(64)
where the value returned from read_bits(leadingZeroBits) is interpreted as a binary representation of an unsigned integer with most significant bit written first.
Table 9‑1 illustrates the structure of the 0-th order Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The "prefix" bits are those bits that are parsed for the computation of leadingZeroBits, and are shown as either 0 or 1 in the bit string column of Table 9‑1. The "suffix" bits are those bits that are parsed in the computation of codeNum and are shown as xi in Table 9‑1, with i in the range of 0 to leadingZeroBits − 1, inclusive. Each xi is equal to either 0 or 1.
[bookmark: _Ref24091501][bookmark: _Ref289853906][bookmark: _Toc77680783][bookmark: _Toc118289132][bookmark: _Toc246350717][bookmark: _Toc287363941][bookmark: _Toc415476457][bookmark: _Toc423602503][bookmark: _Toc423602677][bookmark: _Toc501130577][bookmark: _Toc503770585][bookmark: _Toc181199099]Table 9‑1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)
	Bit string form
	Range of codeNum

	1
	0

	0 1 x0
	1..2

	0 0 1 x1 x0
	3..6

	0 0 0 1 x2 x1 x0
	7..14

	0 0 0 0 1 x3 x2 x1 x0
	15..30

	0 0 0 0 0 1 x4 x3 x2 x1 x0
	31..62

	...
	...

Table 9‑2 illustrates explicitly the assignment of bit strings to codeNum values.
[bookmark: _Ref19418112][bookmark: _Toc16578098][bookmark: _Toc17563188][bookmark: _Toc77680784][bookmark: _Toc118289133][bookmark: _Toc246350718][bookmark: _Toc287363942][bookmark: _Toc415476458][bookmark: _Toc423602504][bookmark: _Toc423602678][bookmark: _Toc501130578][bookmark: _Toc503770586][bookmark: _Toc181199100]Table 9‑2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)
	Bit string
	codeNum

	1
	0

	0 1 0
	1

	0 1 1
	2

	0 0 1 0 0
	3

	0 0 1 0 1
	4

	0 0 1 1 0
	5

	0 0 1 1 1
	6

	0 0 0 1 0 0 0
	7

	0 0 0 1 0 0 1
	8

	0 0 0 1 0 1 0
	9

	...
	...

[bookmark: _Toc328598990][bookmark: _Toc328663636][bookmark: _Toc328753505][bookmark: _Toc328598993][bookmark: _Toc328663639][bookmark: _Toc328753508][bookmark: _Toc328598996][bookmark: _Toc328663642][bookmark: _Toc328753511][bookmark: _Toc328599001][bookmark: _Toc328663647][bookmark: _Toc328753516][bookmark: _Toc328599003][bookmark: _Toc328663649][bookmark: _Toc328753518][bookmark: _Toc328599006][bookmark: _Toc328663652][bookmark: _Toc328753521][bookmark: _Toc328599008][bookmark: _Toc328663654][bookmark: _Toc328753523][bookmark: _Toc16577839][bookmark: _Toc20134382][bookmark: _Ref24094007][bookmark: _Ref33182036][bookmark: _Toc77680543][bookmark: _Toc118289134][bookmark: _Toc226456731][bookmark: _Toc248045366][bookmark: _Toc287363848][bookmark: _Toc311217283][bookmark: _Toc317198831][bookmark: _Toc415475949][bookmark: _Toc423599224][bookmark: _Toc423601728][bookmark: _Toc501130217][bookmark: _Toc503777921][bookmark: _Ref522195066]Depending on the descriptor, the value of a syntax element is derived as follows:
· If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.
· Otherwise (the syntax element is coded as se(v)), the value of the syntax element is derived by invoking the mapping process for signed Exp-Golomb codes as specified in clause 9.3.2 with codeNum as input.
[bookmark: _Ref522196280][bookmark: _Toc202359747][bookmark: _Toc213429817]Mapping process for signed Exp-Golomb codes
Input to this process is codeNum as specified in clause 9.3.1.
Output of this process is a value of a syntax element coded as se(v).
The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order and representing the positive value for a given absolute value with the lower codeNum. Table 9‑3 provides the assignment rule.
[bookmark: _Ref328664225][bookmark: _Toc415476459][bookmark: _Toc423602505][bookmark: _Toc423602679][bookmark: _Toc501130579][bookmark: _Toc503770587][bookmark: _Toc181199101][bookmark: _Toc22727479][bookmark: _Toc22728252][bookmark: _Toc22728986][bookmark: _Toc22790490][bookmark: _Toc22727483][bookmark: _Toc22728256][bookmark: _Toc22728990][bookmark: _Toc22790494][bookmark: _Toc22006965][bookmark: _Toc22033244][bookmark: _Ref24214586]Table 9‑3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)
	codeNum
	syntax element value

	0
	0

	1
	1

	2
	−1

	3
	2

	4
	−2

	5
	3

	6
	−3

	k
	(−1)k + 1 * Ceil(k ÷ 2)

[bookmark: _Toc14054318][bookmark: _Toc14054319][bookmark: _Toc14054320][bookmark: _Toc14054321][bookmark: _Toc14054322][bookmark: _Toc14054323][bookmark: _Toc14054324][bookmark: _Toc14054325][bookmark: _Toc14054326][bookmark: _Toc14054327][bookmark: _Toc14054328][bookmark: _Toc14054329][bookmark: _Toc14054330][bookmark: _Toc14054331][bookmark: _Ref211004506][bookmark: _Toc213429818][bookmark: _Ref522195046][bookmark: _Toc202359748]Parsing process for un-truncated Rice (UTR) codes
This process is invoked when the descriptor of a syntax element in the syntax tables is equal to utr(c).
Inputs to this process are bits from the bitstream.
Output of this process is a value of a syntax element coded as utr(c).
Syntax elements coded as utr(c) are un-truncated Rice (UTR)-coded with “c” denoting the cRiceParam parameter. The parsing process for these syntax elements begins with reading the prefix bits starting at the current location in the bitstream up to and including the first zero bit. The prefixVal value is specified as follows:
prefixVal = 0
while(read_bits(1) = = 1)	(65)
	prefixVal ++
Next, the parsing process continues with reading the suffix bits as follows:
suffixVal = read_bits(cRiceParam)	(66)
Finally, the value symbolVal is derived as follows:
symbolVal = suffixVal + (prefixVal << cRiceParam).	(67)
The value of a syntax element coded as utr(c) is set equal to symbolVal.
[bookmark: _Ref213064086][bookmark: _Ref213064178][bookmark: _Ref213064189][bookmark: _Ref213064198][bookmark: _Ref213251662][bookmark: _Toc213429819]CABAC parsing process for frame data
[bookmark: _Toc202359749][bookmark: _Toc213429820]General
Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.
The initialization process as specified in clause 9.5.2 is invoked when starting the parsing of the general frame data syntax specified in clause 7.3.3.1.
The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as specified in clause 9.5.3.
The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as described in clause 9.5.4.
[bookmark: _Toc349676302][bookmark: _Toc45876539][bookmark: _Toc45877265][bookmark: _Toc534510533][bookmark: _Toc534510624][bookmark: _Ref534654349][bookmark: _Toc202359750][bookmark: _Toc213429821]Initialization process
[bookmark: _Toc351408834]General
Outputs of this process are initialized CABAC internal variables.
Each channel group maintains a decoding engine and associated context variables. The context variables of the arithmetic decoding engine associated with the active channel group are initialized as follows:
[bookmark: _Hlk96679403][bookmark: _Hlk3312927]–	The initialization process for context variables is invoked as specified in clause 9.5.2.2.
The decoding engine of each channel group maintains registers ivlCurrRange and ivlOffset both in 16 bit register precision. The registers ivlCurrRange and ivlOffset of the decoding engine associated with the active channel group are initialized by invoking the initialization process for the arithmetic decoding engine as specified in clause 9.5.2.3.
[bookmark: _Toc349676304][bookmark: _Ref350088073][bookmark: _Ref350088186][bookmark: _Toc351408835]Initialization process for context variables
Outputs of this process are the initialized CABAC context variables of the decoding engine associated with the active channel group, indexed by:
· ctxSet as specified by the descriptor ae(ctxSet) of the associated syntax element,
· ctxTable and ctxIdx.
For each context variable, the three variables pBinCount, pStateIdx0 and pStateIdx1 are initialized as follows:
· Variable pBinCount is set to 63.
· Table 9‑5 to Table 9‑6 contain the values of the 12 bit variable initValue used in the initialization of context variables that are assigned to all syntax elements where the descriptor in the syntax tables of clause 7.3.3 is equal to ae(ctxSet).
· From the 12 bit table entry initValue, the two 2 bit variables qpPosProb0 and log2qpRange and the two 4 bit variables probStart and probEnd are derived as follows:
qpPosProb0 = (2 << (initValue & 3)) − 2
log2qpRange = ((initValue >> 2) & 3) + 3
probStart = ((initValue >> 4) & 15) * 8
probEnd = ((initValue >> 8) & 15) * 8	(68)
· The variables slopeMul and valAdd, used in the initialization of context variables, are derived from probStart, probEnd and log2qpRange as follows:
slopeMul = probEnd − probStart
valAdd = ((1 << log2qpRange) >> 1	(69)
· The two values assigned to pStateIdx0 and pStateIdx1 for the initialization are derived from cpgs_indep_init_block_qp. Given the variables m and n, the initialization is specified as follows:
currQP = (cgps_qp >> 2) − qpPosProb0
preCtxState = (currQP * slopeMul + (probStart << log2qpRange) + add) >> log2qpRange	(70)
· The two values assigned to pStateIdx0 and pStateIdx1 for the initialization are derived as follows:
pStateIdx0 = Clip3(32, 992, preCtxState << 3) − 512
pStateIdx1 = Clip3(256, 7936, preCtxState << 6) − 4096	(71)
NOTE – The variables pStateIdx0 and pStateIdx1 correspond to the probability state indices further described in clause 9.5.4.3.
Table 9‑4 lists the range of ctxIdx values for which initialization is needed for each of the three initialization types, specified by the variable initType. It also lists the table number that includes the values of initValue needed for the initialization for each value of ctxIdx. The derivation of initType depends on the value of the cgps_ctx_init_flag syntax element and on the value of the if_ctx_init_mode syntax element. The variable initType is derived as follows:
if(!cgps_ctx_init_flag)
	initType = 0
else if(if_ctx_init_mode = = 0)
	initType = 1	(72)
else
	initType = 2

	[bookmark: _Ref2783045][bookmark: _Toc181199102][bookmark: _Ref311228054][bookmark: _Toc317198837][bookmark: _Toc351408838]Table 9‑4 – Association of ctxIdx and syntax elements for each initializationType
in the initialization process

	Syntax structure
	Syntax element
	ctxTable
	initType

	
	
	
	0
	1
	2

	general_frame_‌data()
	block_split_log2
	Table XX

	0..8
	9..17
	18..26

	prediction_trafo_‌data_block()
	block_matching_or_cross_channel_
pred_flag
	Table XX
	0
	
	

	
	cross_channel_pred_flag
	Table XX
	0
	
	

	
	block_pred_mode
	Table XX
	0
	
	

	
	block_abs_delta_qp
	Table XX
	0..7
	
	

	
	zlsb_present_flag
	Table XX
	0
	
	

	
	transform_present_flag
	Table XX
	0
	
	

	
	lms_flag
	Table XX
	0..1
	
	

	
	lms_split_flag
	Table XX
	0
	
	

	
	enable_ar_lms[]
	Table XX
	0..1
	
	

	
	enable_cc_lms[]
	Table XX
	0..1
	
	

	cross_channel_‌prediction_data()
	cc_pred_offset_only_flag
	Table XX
	0
	
	

	
	cc_pred_filter_flag
	Table XX
	0
	
	

	
	cc_pred_filter_idx
	Table XX
	0
	
	

	
	cc_pred_mult_hyp_flag
	Table XX
	0
	
	

	
	cc_pred_abs_chd_greater0_flag[]
	Table XX
	0
	
	

	
	cc_pred_abs_chd_minus1[]
	Table XX
	0..15
	
	

	block_matching_‌prediction_data()
	bm_pred_mult_hyp_flag
	Table XX
	0
	
	

	
	bm_pred_add_offset_flag
	Table XX
	0
	
	

	
	bm_pred_filter_flag[]
	Table XX
	0
	
	

	
	bm_pred_filter_idx[]
	Table XX
	0
	
	

	
	bm_pred_off_pred_prev_ch_flag[]
	Table XX
	0
	
	

	
	bm_pred_abs_offd_greater0_flag[]
	Table XX
	0
	
	

	
	bm_pred_abs_offd_minus1[]
	Table XX
	0..15
	
	

	sample_pred_‌mode()
	spred_lpf_or_diff_flag
	Table XX
	0
	
	

	
	spred_lpf_flag
	Table XX
	0.
	
	

	
	spred_rem_mode_idx
	Table XX
	0.
	
	

	linear_predictive_‌filtering_data()
	lpf_prev_ch_flag
	Table XX
	0
	
	

	
	lpf_delta_coding_flag
	Table XX
	0
	
	

	
	lpf_num_weights_idx
	Table XX
	0..9
	
	

	
	abs_lpf_weight_greater0_flag[]
	Table XX
	0
	
	

	
	abs_lpf_weight_minus1[]
	Table XX
	0
	
	

	quant_res_sample_‌data()
	abs_tskip_coeff_gt0_flag[]
	Table XXX
	0
	
	

	
	abs_tskip_coeff_offset[]
	Table XXX
	0..3
	
	

	
	abs_tskip_coeff_rem_prefix[]
	Table XXX
	0..7
	
	

	
	abs_tskip_coeff_rem_eg0_suffix[]
	Table XXX
	0..30
	
	

	
	last_pos_index_gt0_flag
	Table XXX
	0
	
	

	
	last_pos_index_rem
	Table XXX
	0..14
	
	

	
	abs_trafo_coeff_gt0_flag[]
	Table XXX
	0..53
	
	

	
	abs_trafo_parity_flag[]
	Table XXX
	0
	
	

	
	abs_trafo_coeff_offset[]
	Table XXX
	0..8
	
	

	
	abs_trafo_coeff_remainder[]
	Table XXX
	0..30
	31..61
	62..92

	mean_value_trafo_‌block()
	mean_value_sig_flag
	Table XXX
	0
	
	

[bookmark: _Ref15250776][bookmark: _Toc181199103]Table 9‑5 – Specification of initValue for ctxIdx of block_split_log2
	Initialization variable
	ctxIdx of block_split_log2

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	initValue
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	
	
	
	
	

	initValue
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Add init tables later.
[bookmark: _Ref15251212][bookmark: _Toc181199104]Table 9‑6 – Specification of initValue for ctxIdx of abs_trafo_coeff_remainder
	Initialization variable
	ctxIdx of abs_trafo_coeff_remainder

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	initValue
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Toc349939174][bookmark: _Ref2813121]Initialization process for the arithmetic decoding engine
Outputs of this process are the initialized decoding engine registers ivlCurrRange and ivlOffset of the decoding engine associated with the active channel group, both in 16 bit register precision.
The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and ivlOffset. In the initialization procedure of the arithmetic decoding process, ivlCurrRange is set equal to 510 and ivlOffset is set equal to the value returned from read_bits(9) interpreted as a 9 bit binary representation of an unsigned integer with the most significant bit written first.
The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511.
NOTE – The description of the arithmetic decoding engine in this Specification utilizes the 16-bit register precision. However, a minimum register precision of 9 bits is required for storing the values of the variables ivlCurrRange and ivlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in clause 9.5.4.3. The arithmetic decoding process for a binary decision (DecodeDecision) as specified in clause 9.5.4.3.2 and the decoding process for a binary decision before termination (DecodeTerminate) as specified in clause 9.5.4.3.5 require a minimum register precision of 9 bits for the variables ivlCurrRange and ivlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in clause 9.5.4.3.4 requires a minimum register precision of 10 bits for the variable ivlOffset and a minimum register precision of 9 bits for the variable ivlCurrRange.
[bookmark: _Toc45190673][bookmark: _Toc45192616][bookmark: _Ref531794831][bookmark: _Toc202359751][bookmark: _Toc213429822]Binarization process
General
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element.
Table 9‑7 specifies the type of binarization process associated with each syntax element and corresponding inputs.
[bookmark: _Ref24979544][bookmark: _Toc27218362]The specification of the truncated Rice (TR) binarization process, the un-truncated Rice binarization process (UTR), the truncated binary (TB) binarization process, the k-th order Exp-Golomb (EGk) binarization process, the limited k-th order Exp-Golomb (LEGk) binarization process, and the fixed-length (FL) binarization process are given in clauses 0 through 9.5.3.7, respectively.
	[bookmark: _Ref348982529][bookmark: _Ref348982525][bookmark: _Toc415476494][bookmark: _Toc423602544][bookmark: _Toc423602718][bookmark: _Toc501130619][bookmark: _Toc503770627][bookmark: _Toc181199105][bookmark: _Ref36263687][bookmark: _Ref36264235][bookmark: _Toc77680555][bookmark: _Toc226456744][bookmark: _Toc248045379][bookmark: _Toc259021489][bookmark: _Toc311219994][bookmark: _Toc317198839][bookmark: _Ref325473970][bookmark: _Ref328759133]Table 9‑7 – Syntax elements and associated binarizations

	Syntax structure
	Syntax element
	Binarization

	
	
	Process
	Input parameters

	general_frame_‌data()
	end_of_frame_sequence_flag
	FL
	cMax = 1

	
	end_of_truncated_frame_sequence_
flag
	FL
	cMax = 1

	
	end_of_frame_one_bit
	FL
	cMax = 1

	
	block_split_log2
	TR
	cMax = MaxSplitDepth, cRiceParam = 0

	prediction_trafo_‌data_block ()
	
	
	

	
	block_matching_or_cross_channel_
pred_flag
	FL
	cMax = 1

	
	cross_channel_pred_flag
	FL
	cMax = 1

	
	block_pred_mode
	FL
	cMax =2

	
	block_abs_delta_qp
	LEG0
	maxPreExtLen = cgps_max_abs_delta_qp_idx

	
	block_delta_qp_sign_flag
	FL
	cMax = 1

	
	zlsb_present_flag
	FL
	cMax = 1

	
	num_zlsb_minus1
	EG0
	-

	
	transform_present_flag
	FL
	cMax = 1

	
	transform_dst_flag
	FL
	cMax = 1

	
	lms_flag
	FL
	cMax = 1

	
	lms_split_flag
	FL
	cMax = 1

	
	enable_ar_lms[]
	FL
	cMax = 1

	
	enable_cc_lms[]
	FL
	cMax = 1

	cross_channel_‌prediction_data()
	cc_pred_offset_only_flag
	FL
	cMax = 1

	
	cc_pred_filter_flag
	FL
	cMax = 1

	
	cc_pred_filter_idx
	FL
	cMax = 1

	
	cc_pred_mult_hyp_flag
	FL
	cMax = 1

	
	cc_pred_abs_chd_greater0_flag[]
	FL
	cMax = 1

	
	cc_pred_abs_chd_minus1[]
	LEG0
	maxPreExtLen = 15

	
	cc_pred_chd_sign_flag[]
	FL
	cMax = 1

	block_matching_‌prediction_data()
	bm_pred_mult_hyp_flag
	FL
	cMax = 1

	
	bm_pred_add_offset_flag
	FL
	cMax = 1

	
	bm_pred_filter_flag[]
	FL
	cMax = 1

	
	bm_pred_filter_idx[]
	FL
	cMax = 1

	
	bm_pred_off_pred_prev_ch_flag[]
	FL
	cMax = 1

	
	bm_pred_abs_offd_greater0_flag[]
	FL
	cMax = 1

	
	bm_pred_abs_offd_minus1[]
	LEG0
	maxPreExtLen = 15

	
	bm_pred_offd_sign_flag[]
	FL
	cMax = 1

	sample_pred_mode()
	spred_lpf_or_diff_flag
	FL
	cMax = 1

	
	spred_lpf_flag
	FL
	cMax = 1

	
	spred_rem_mode_idx
	FL
	cMax = 2

	linear_predictive_‌filtering_data()
	lpf_prev_ch_flag
	FL
	cMax = 1

	
	lpf_prev_ch_idx
	EG0
	-

	
	lpf_prev_ch_weight_abs
	EG0
	-

	
	lpf_prev_ch_weight_sign_flag
	FL
	cMax = 1

	
	lpf_delta_coding_flag
	FL
	cMax = 1

	
	lpf_num_weights_idx
	TR
	cMax = 6, cRiceParam = 1

	
	abs_lpf_weight_greater0_flag[]
	FL
	cMax = 1

	
	abs_lpf_weight_minus1[]
	9.5.3.8
	lpf_delta_coding_flag , filter coefficient index i, number of filter weights LPFNumWeightsCurr

	
	lpf_weight_sign_flag[]
	FL
	cMax = 1

	quant_res_sample_‌data()
	coeff_bypass_value[]
	FL
	cMax = (1 << IntBitDepth) − 1

	
	abs_tskip_coeff_gt0_flag[]
	FL
	cMax = 1

	
	abs_tskip_coeff_offset[]
	TR
	cMax = NumTSkipGtxFlags, cRiceParam = 0

	
	abs_tskip_coeff_rem_prefix[]
	TR
	cMax = MaxTSkipRemPrefix, cRiceParam = 0

	
	abs_tskip_coeff_rem_fl_suffix[]
	FL
	cMax = TSkipRiceParameter

	
	abs_tskip_coeff_rem_eg0_suffix[]
	EG0
	-

	
	tskip_coeff_sign_flag[]
	FL
	cMax = 1

	
	last_pos_index_gt0_flag
	FL
	cMax = 1

	
	last_pos_index_rem
	LEG0
	maxPreExtLen = Log2BlockSize − Log2SbbSize − 1

	
	last_pos_index_sign
	FL
	cMax = 1

	
	abs_trafo_coeff_gt0_flag[]
	FL
	cMax = 1

	
	abs_trafo_parity_flag[]
	FL
	cMax = 1

	
	abs_trafo_coeff_offset[]
	TR
	cMax = NumTCoeffGtxFlags, cRiceParam = 0

	
	abs_trafo_coeff_remainder[]
	EG0
	-

	
	trafo_coeff_sign_flag[]
	FL
	cMax = 1

	mean_value_trafo_‌block
	mean_value_sig_flag
	FL
	cMax = 1

	
	mean_value_abs_rem
	EG0
	-

	
	mean_value_sign_flag
	FL
	cMax = 1

[bookmark: _Ref288484869][bookmark: _Toc311219996][bookmark: _Toc317198841][bookmark: _Toc415475960][bookmark: _Toc423599235][bookmark: _Toc423601739][bookmark: _Ref521414246]
[bookmark: _Ref185618591]Untruncated Rice binarization process
Input to this process is a request for a Untruncated Rice (UTR) binarization and cRiceParam > 0.
Output of this process is the UTR binarization associating each value symbolVal with a corresponding bin string.
A UTR bin string is a concatenation of a prefix bin string and, when present, a suffix bin string.
For the derivation of the prefix bin string, the following applies:
· The prefix value of symbolVal, prefixVal, is derived as follows:
prefixVal = symbolVal >> cRiceParam		(73)
· The prefix of the TR bin string is specified as follows:
· The prefix bin string is a bit string of length prefixVal + 1 indexed by binIdx. The bins for binIdx less than prefixVal are equal to 1. The bin with binIdx equal to prefixVal is equal to 0. Table 9‑8 illustrates the bin strings of this unary binarization for prefixVal.
The suffix of the TR bin string is present and it is derived as follows:
· The suffix value suffixVal is derived as follows:
suffixVal = symbolVal − (prefixVal << cRiceParam)	(74)
· The suffix of the UTR bin string is specified by invoking the fixed-length (FL) binarization process as specified in clause 9.5.3.7 for suffixVal with a cMax value equal to (1 << cRiceParam) − 1.

Truncated Rice binarization process
Input to this process is a request for a truncated Rice (TR) binarization, cMax and cRiceParam.
Output of this process is the TR binarization associating each value symbolVal with a corresponding bin string.
A TR bin string is a concatenation of a prefix bin string and, when present, a suffix bin string.
For the derivation of the prefix bin string, the following applies:
· The prefix value of symbolVal, prefixVal, is derived as follows:
prefixVal = symbolVal >> cRiceParam		(75)
· The prefix of the TR bin string is specified as follows:
· If prefixVal is less than cMax >> cRiceParam, the prefix bin string is a bit string of length prefixVal + 1 indexed by binIdx. The bins for binIdx less than prefixVal are equal to 1. The bin with binIdx equal to prefixVal is equal to 0. Table 9‑8 illustrates the bin strings of this unary binarization for prefixVal.
· Otherwise, the bin string is a bit string of length cMax >> cRiceParam with all bins being equal to 1.
[bookmark: _Ref348966321][bookmark: _Toc415476495][bookmark: _Toc423602545][bookmark: _Toc423602719][bookmark: _Toc501130620][bookmark: _Toc503770628][bookmark: _Toc181199106]Table 9‑8 – Bin string of the unary binarization (informative)
	prefixVal
	Bin string

	0
	0
	
	
	
	
	

	1
	1
	0
	
	
	
	

	2
	1
	1
	0
	
	
	

	3
	1
	1
	1
	0
	
	

	4
	1
	1
	1
	1
	0
	

	5
	1
	1
	1
	1
	1
	0

	...
	
	
	
	
	
	

	binIdx
	0
	1
	2
	3
	4
	5

When cMax is greater than symbolVal and cRiceParam is greater than 0, the suffix of the TR bin string is present and it is derived as follows:
· The suffix value suffixVal is derived as follows:
suffixVal = symbolVal − (prefixVal << cRiceParam)	(76)
· The suffix of the TR bin string is specified by invoking the fixed-length (FL) binarization process as specified in clause 9.5.3.7 for suffixVal with a cMax value equal to (1 << cRiceParam) − 1.
NOTE – For the input parameter cRiceParam = 0, the TR binarization is exactly a truncated unary binarization and it is always invoked with a cMax value equal to the largest possible value of the syntax element being decoded.
[bookmark: _Ref14184188][bookmark: _Ref290293381][bookmark: _Toc311219997][bookmark: _Toc317198842][bookmark: _Toc415475961][bookmark: _Toc423599236][bookmark: _Toc423601740][bookmark: _Ref289359037][bookmark: _Ref397945857][bookmark: _Toc415475963][bookmark: _Toc423599238][bookmark: _Toc423601742]Truncated binary (TB) binarization process
Input to this process is a request for a TB binarization for a syntax element with value synVal and cMax. Output of this process is the TB binarization of the syntax element.The bin string of the TB binarization process of a syntax element synVal is specified as follows:
n = cMax + 1
k = Floor(Log2(n))		(77)
u = (1 << (k + 1)) − n
· If synVal is less than u, the TB bin string is derived by invoking the FL binarization process specified in clause 9.5.3.7 for synVal with a cMax value equal to (1 << k) − 1.
· Otherwise (synVal is greater than or equal to u), the TB bin string is derived by invoking the FL binarization process specified in clause 9.5.3.7 for (synVal + u) with a cMax value equal to (1 << (k + 1)) − 1.
[bookmark: _Ref522203422]k-th order Exp-Golomb binarization process
Inputs to this process is a request for a k-th order Exp-Golomb (EGk) binarization.
Output of this process is the EGk binarization associating each value symbolVal with a corresponding bin string.
The bin string of the EGk binarization process for each value symbolVal is specified as follows, where each call of the function put(X), with X being equal to 0 or 1, adds the binary value X at the end of the bin string:
absV = Abs(symbolVal)
stopLoop = 0
do
	if(absV >= (1 << k)) {
		put(1)
		absV = absV − (1 << k)
		k++
	} else {
		put(0)		(78)
		while(k− −)
			put((absV >> k) & 1)
		stopLoop = 1
	}
while(!stopLoop)
NOTE – The specification for the k-th order Exp-Golomb (EGk) code uses 1s and 0s in reverse meaning for the unary part of the Exp-Golomb code of k-th order as specified in clause 9.3.
[bookmark: _Ref2795896]Limited k-th order Exp-Golomb binarization process
Inputs to this process is a request for a limited k-th order Exp-Golomb (EGk) binarization, the order k, the variables maxPreExtLen and truncSuffixLen.
Output of this process is the limited EGk binarization associating each value symbolVal with a corresponding bin string.
When truncSuffixLen is not specified as input to this process, the value of truncSuffixLen is inferred to be equal to maxPreExtLen + k.
The bin string of the limited EGk binarization process for each value symbolVal is specified as follows, where each call of the function put(X), with X being equal to 0 or 1, adds the binary value X at the end of the bin string:
codeValue = symbolVal >> k
preExtLen = 0
while((preExtLen < maxPreExtLen) && (codeValue > ((2 << preExtLen) − 2))) {
	preExtLen++
	put(1)
}
if(preExtLen = = maxPreExtLen) 		(79)
	escapeLength = truncSuffixLen
else {
	escapeLength = preExtLen + k
	put(0)
}
symbolVal = symbolVal − (((1 << preExtLen) − 1) << k)
while((escapeLength− −) > 0)
	put((symbolVal >> escapeLength) & 1)
[bookmark: _Ref521414259]Fixed-length binarization process
Inputs to this process are a request for a fixed-length (FL) binarization and cMax.
Output of this process is the FL binarization associating each value symbolVal with a corresponding bin string.
[bookmark: _Ref329430368][bookmark: _Toc415475966][bookmark: _Toc423599241][bookmark: _Toc423601745][bookmark: _Ref349671779][bookmark: _Ref349671851][bookmark: _Ref414882139][bookmark: _Ref414882152][bookmark: _Toc415475968][bookmark: _Toc423599243][bookmark: _Toc423601747]FL binarization is constructed by using the fixedLength‑bit unsigned integer bin string of the symbol value symbolVal, where fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binIdx = 0 relates to the most significant bit with increasing values of binIdx towards the least significant bit.
[bookmark: _Ref179651888][bookmark: _Ref523930566]Binarization process for abs_lpf_weight_minus1
Input to this process is a request for the binarization of abs_lpf_weight_minus1[], the number of
filter coefficients LPFNumWeightsCurr, the filter coefficient index i and the syntax element lpf_delta_coding_flag.
Output of this process is a binarization of abs_lpf_weight_minus1[i].
The variable cMax is derived as follows:
· If lpf_delta_coding_flag is equal to 0, cMax is set equal to 32.
· Otherwise (lpf_delta_coding_flag is not equal to 0), cMax is set equal to 64.
The variable cRiceParam is derived as
	cRiceParam = Max(2, 5 − ((i + 3) >> 1)) − 1.
The binarization of abs_lpf_weight_minus1[i] is specified by invoking the TR binarization process as specified in clause 0 with the variables cMax and cRiceParam as inputs.
[bookmark: _Ref2702112][bookmark: _Toc202359752][bookmark: _Toc213429823]Decoding process flow
General
[bookmark: _Ref531795941]Inputs to this process are:
–	all bin strings of the binarization of the requested syntax element as specified in clause 9.5.3,
–	the descriptor of the requested syntax element.
Output of this process is the value of the syntax element.
This process specifies how each bin of a bin string is parsed for each syntax element. After parsing each bin, the resulting bin string is compared to all bin strings of the binarization of the syntax element and the following applies:
–	If the bin string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
–	Otherwise (the bin string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin.
The parsing of each bin is specified by the following two ordered steps:
1.	–	If the descriptor of the requested syntax element is ae(ctxSet), the derivation process for ctxTable, ctxIdx, and bypassFlag as specified in clause 9.5.4.2 is invoked with binIdx as input and ctxTable, ctxIdx and bypassFlag as outputs.
	–	Otherwise, if the descriptor of the requested syntax element is aet(), the variables ctxTable, ctxIdx, and bypassFlag are set to 0.
	–	Otherwise (the descriptor of the requested syntax element is aep()), the variables ctxTable and ctxIdx are set to 0 and bypassFlag is set to 1.
2.	The arithmetic decoding process as specified in clause 9.5.4.3 is invoked with ctxTable, ctxIdx, and bypassFlag as inputs and the value of the bin as output.
[bookmark: _Ref531947415]Derivation process for ctxTable, ctxIdx and bypassFlag
General
[bookmark: _Ref331179653]Input to this process is the position of the current bin within the bin string, binIdx.
[bookmark: _Ref24886394][bookmark: _Ref24886390][bookmark: _Toc22893632]Outputs of this process are ctxTable, ctxIdx and bypassFlag.
The values of ctxTable, ctxIdx and bypassFlag are derived as follows based on the entries for binIdx of the corresponding syntax element in Table 9‑9:
· If the entry in Table 9‑9 is not equal to "bypass" and not equal to "na", the following applies:
· ctxTable is specified in Table 9‑4
· The variable ctxInc is specified by the corresponding entry in Table 9‑9 and when more than one value is listed in Table 9‑9 for a binIdx, the assignment process for ctxInc for that binIdx is further specified in the clauses given in parenthesis.
· The variable ctxIdxOffset set equal to the smallest value of ctxIdx is specified in Table 9‑4 for the current value of initType and the current syntax element.
· ctxIdx is set equal to the sum of ctxInc and ctxIdxOffset.
· bypassFlag is set equal to 0.
· Otherwise, if the entry in Table 9‑9 is equal to "bypass", the following applies:
· ctxTable is set equal to 0.
· ctxIdx is set equal to 0.
· bypassFlag is set equal to 1.
· Otherwise (the entry in Table 9‑9 is equal to "na"), the values of binIdx do not occur for the corresponding syntax element.
	[bookmark: _Ref348982591][bookmark: _Toc415476499][bookmark: _Toc423602549][bookmark: _Toc423602723][bookmark: _Toc501130624][bookmark: _Toc510795549][bookmark: _Toc181199107][bookmark: _Ref531859973]Table 9‑9 – Assignment of ctxInc to syntax elements with context coded bins

	Syntax element
	binIdx

	
	0
	1
	2
	3
	4
	>= 5

	block_split_log2
	Min(binIdx, 8)

	block_matching_or_cross_channel_
pred_flag
	0
	na
	na
	na
	na
	na

	cross_channel_pred_flag
	0
	na
	na
	na
	na
	na

	block_pred_mode
	0
	bypass
	na
	na
	na
	na

	block_abs_delta_qp
	Min(binIdx, 7)

	zlsb_present_flag
	0
	na
	na
	na
	na
	na

	transform_present_flag
	0
	na
	na
	na
	na
	na

	lms_flag
	0..1
(clause 9.5.4.2.2)
	na
	na
	na
	na
	na

	lms_split_flag
	0
	na
	na
	na
	na
	na

	enable_ar_lms[i]
	i
	na
	na
	na
	na
	na

	enable_cc_lms[i]
	i
	na
	na
	na
	na
	na

	cc_pred_offset_only_flag
	0
	na
	na
	na
	na
	na

	cc_pred_filter_flag
	0
	na
	na
	na
	na
	na

	cc_pred_filter_idx
	0
	na
	na
	na
	na
	na

	cc_pred_mult_hyp_flag
	0
	na
	na
	na
	na
	na

	cc_pred_abs_chd_greater0_flag[]
	0
	na
	na
	na
	na
	na

	cc_pred_abs_chd_minus1[]
(if the bin with binIdx is part of the prefix code of the limited EG0 binarization)
	Min(binIdx, 15)

	cc_pred_abs_chd_minus1[]
(if the bin with binIdx is part of the fixed-length suffix code of the limited EG0 binarization)
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	bm_pred_mult_hyp_flag
	0
	na
	na
	na
	na
	na

	bm_pred_add_offset_flag
	0
	nan
	nan
	nan
	nan
	nan

	bm_pred_filter_flag[]
	0
	na
	na
	na
	na
	na

	bm_pred_filter_idx[]
	0
	na
	na
	na
	na
	na

	bm_pred_off_pred_prev_ch_flag[]
	0
	na
	na
	na
	na
	na

	bm_pred_abs_offd_greater0_flag[]
	0
	na
	na
	na
	na
	na

	bm_pred_abs_offd_minus1[]
(if the bin with binIdx is part of the prefix code of the limited EG0 binarization)
	Min(binIdx, 15)

	bm_pred_abs_offd_minus1[]
(if the bin with binIdx is part of the fixed-length suffix code of the limited EG0 binarization)
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	spred_lpf_or_diff_flag
	0
	Na
	na
	na
	na
	na

	spred_lpf_flag
	0
	Na
	na
	na
	na
	na

	spred_rem_mode_idx
	0
	bypass
	na
	na
	na
	na

	lpf_prev_ch_flag
	0
	na
	na
	na
	na
	na

	lpf_delta_coding_flag
	0
	na
	na
	na
	na
	na

	lpf_num_weights_idx
	0
	1 if bin at index 0 is equal to 1, otherwise bypass
	bypass
	bypass
	na
	na

	abs_lpf_weight_greater0_flag[]
	0
	na
	na
	na
	na
	na

	abs_lpf_weight_minus1[]
(if the bin with binIdx is part of the fixed length suffix code of the Truncated Rice binarization)
	Min(binIdx, 9)

	abs_lpf_weight_minus1[]
(if the bin with binIdx is part of the fixed length suffix code of the Truncated Rice binarization)
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	abs_tskip_coeff_gt0_flag[]
	0
	na
	na
	na
	na
	na

	abs_tskip_coeff_offset[]
	Min(binIdx, NumTSkipGtxFlags)

	abs_tskip_coeff_rem_prefix[]
	Min(binIdx, MaxTSkipRemPrefix)

	abs_tskip_coeff_rem_eg0_suffix[]
(if the bin with binIdx is part of the unary prefix code of the EG0 binarization)
	Min(binIdx, 30)

	abs_tskip_coeff_rem_eg0_suffix[]
(if the bin with binIdx is part of the fixed-length suffiox code of the EG0 binarization)
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	last_pos_index_gt0_flag
	0
	na
	na
	na
	na
	Na

	last_pos_index_rem
(if the bin with binIdx is part of the unary prefix code of the limited EG0 binarization)s
	Min(binIdx, 14)

	abs_trafo_coeff_gt0_flag[]
	0..53
(clause 9.5.4.2.3)
	na
	na
	na
	na
	na

	abs_trafo_parity_flag
	0
	na
	na
	na
	na
	na

	abs_trafo_coeff_offset[]
	0..8
(clause 9.5.4.2.4)

	abs_trafo_coeff_remainder[]
(if the bin with binIdx is part of the unary prefix code of the EG0 binarization)
	Min(binIdx, 30)

	abs_trafo_coeff_remainder[]
(if the bin with binIdx is part of the fixed-length suffiox code of the EG0 binarization)
	bypass
	bypass
	bypass
	bypass
	bypass
	bypass

	mean_value_sig_flag
	0
	na
	na
	na
	na
	na

[bookmark: _Ref179034410][bookmark: _Ref202358959]Derivation process of ctxInc for the syntax element lms_flag
Output of this process is the variable ctxInc.
If block_matching_or_cross_channel_pred_flag is equal to 1 and cross_channel_pred_flag is equal to 0, ctxInc is set equal to 0. Otherwise (block_matching_or_cross_channel_pred_flag is equal to 0 or cross_channel_pred_flag is equal to 1), ctxInc is set equal to 1.
[bookmark: _Ref202358958]Derivation process of ctxInc for the syntax element abs_trafo_coeff_gt0_flag
Inputs to this process is the location k of the current quantization index.
Output of this process is the variable ctxInc.
The variable templateClass is derived as templateClass = Min (2, TemplateSum).
The variable posClass is derived as specified by the following pseudo-code:
posThresholds[] = { 0, 1, 2, 3, 7, 11, 15, 23 }	(80)
posClass = 0
for(n = 0; n < 8 ; n = n + 1)
	if(k > posThresholds[n])
		posClass += 1
The variable ctxInc is derived by
ctxInc = 27 * (QState & 1) + 3 * posClass + templateClass	(81)
[bookmark: _Ref179034714]Derivation process of ctxInc for the syntax element abs_trafo_coeff_offset
Inputs is the location k of the current quantization index.
Output of this process is the variable ctxInc.
The variable posClass is derived as specified by the following pseudo-code:
posThresholds[] = { 0, 1, 2, 3, 7, 11, 15, 23 }	(82)
posClass = 0
for(n = 0; n < 8 ; n = n + 1)
	if(k > posThresholds[n])
		posClass += 1
The variable ctxInc is set equal to posClass.
[bookmark: _Ref24877878][bookmark: _Toc77680576][bookmark: _Toc226456766][bookmark: _Toc248045388][bookmark: _Toc287363858][bookmark: _Toc311220006][bookmark: _Toc317198850][bookmark: _Toc415475972][bookmark: _Toc423599247][bookmark: _Toc423601751]Arithmetic decoding process
[bookmark: _Ref26277728]General
Inputs to this process are:
–	the variables ctxTable, ctxIdx, and bypassFlag, as derived in clause 9.5.4.2,
–	the state variables ivlCurrRange and ivlOffset of the arithmetic decoding engine associated with the active channel group.
Output of this process is the value of the bin.
The decoding of the value of a bin is specified as follows:
–	If bypassFlag is equal to 1, DecodeBypass() as specified in clause 9.5.4.3.4 is invoked.
–	Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0, and ctxIdx is equal to 0, DecodeTerminate() as specified in clause 9.5.4.3.5 is invoked.
–	Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision(ctxSet, ctxTable, ctxIdx) as specified in clause 9.5.4.3.2 is invoked where ctxSet is from the descriptor ae(ctxSet) of the requested syntax element.
NOTE – Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and p(1) = 1 − p(0) of a binary decision (0, 1), an initially given code sub-interval with the range ivlCurrRange would be subdivided into two sub-intervals having range p(0) * ivlCurrRange and ivlCurrRange − p(0) * ivlCurrRange, respectively. Depending on the decision, which has been observed, the corresponding sub-interval would be chosen as the new code interval, and a binary code string pointing into that interval would represent the sequence of observed binary decisions. It is useful to distinguish between the most probable symbol (MPS) and the least probable symbol (LPS), so that the binary decisions have to be identified as either MPS or LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS (valMps), which is either 0 or 1. The arithmetic core engine in this Specification has the following two distinct properties:
–	The range ivlCurrRange representing the state of the coding engine and the probability estimate are quantized to reduced-precision values to allow for a reduced-precision multiplication to determine the product ivlCurrRange and the probability estimate.
–	For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a separate simplified encoding and decoding bypass process is used.
[bookmark: _Ref33021086][bookmark: _Toc77680577][bookmark: _Toc226456767]Arithmetic decoding process for a binary decision
General
Inputs to this process are:
–	the variables ctxSet, ctxTable, and ctxIdx,
–	the variables ivlCurrRange and ivlOffset of the arithmetic decoding engine associated with the active channel group.
Outputs of this process are the decoded value binVal, and the updated variables ivlCurrRange and ivlOffset.
1. The derivation process for ivlLpsRange and valMps as specified in clause 9.5.4.3.2.2 is invoked with ctxSet, ctxTable, and ctxIdx as input and ivlCurrRange and valMps as outputs.
2. The variable ivlCurrRange is set equal to ivlCurrRange − ivlLpsRange and the following applies:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 − valMps, ivlOffset is decremented by ivlCurrRange, and ivlCurrRange is set equal to ivlLpsRange.
–	Otherwise, the variable binVal is set equal to valMps.
The state transition process as specified in clause 9.5.4.3.2.2 is invoked with binVal and the context variable associated with ctxSet, ctxTable, and ctxIdx as input. Depending on the current value of ivlCurrRange, renormalization is performed as specified in clause 9.5.4.3.3.
[bookmark: _Ref209452974][bookmark: _Ref34033801][bookmark: _Toc77680578][bookmark: _Toc226456768]Derivation process for ivlLpsRange and valMps
Inputs to this process are:
· the variables ctxSet, ctxTable, and ctxIdx,
· the variable ivlCurrRange of the arithmetic coding engine associated with the active channel group.
Outputs of this process are the variables ivlLpsRange and valMps.
The values of the variables ivlLpsRange and valMps are derived as follows:
–	Given the current value of ivlCurrRange, the variable qRangeIdx is derived as follows:
qRangeIdx = (ivlCurrRange − 256) >> 5
–	Given qRangeIdx, and the variables pStateIdx0 and pStateIdx1 associated with ctxSet, ctxTable and ctxIdx, the variables valMps and ivlLpsRange are derived as follows:
rangeTabLps[][] =
{
 { 128, 142, 156, 171, 185, 199, 213, 228 }, { 112, 125, 137, 150, 162, 175, 187, 200 },
 { 97, 108, 119, 130, 141, 152, 163, 174 }, { 84, 93, 103, 112, 121, 131, 140, 150 },
 { 74, 82, 90, 99, 107, 115, 123, 132 }, { 65, 72, 79, 87, 94, 101, 108, 116 },
 { 57, 63, 70, 76, 82, 89, 95, 102 }, { 50, 56, 61, 67, 73, 78, 84, 90 },
 { 45, 50, 55, 60, 65, 70, 75, 80 }, { 39, 43, 48, 52, 56, 61, 65, 70 },
 { 34, 38, 42, 46, 50, 54, 58, 62 }, { 30, 33, 37, 40, 43, 47, 50, 54 },
 { 27, 30, 33, 36, 39, 42, 45, 48 }, { 23, 26, 28, 31, 34, 36, 39, 42 },
 { 20, 22, 24, 27, 29, 31, 33, 36 }, { 18, 20, 22, 24, 26, 28, 30, 32 },
 { 15, 17, 19, 21, 22, 24, 26, 28 }, { 14, 16, 17, 19, 21, 22, 24, 26 },
 { 12, 13, 15, 16, 17, 19, 20, 22 }, { 11, 12, 13, 15, 16, 17, 18, 20 },
 { 10, 11, 12, 13, 14, 15, 16, 18 }, { 9, 10, 11, 12, 13, 14, 15, 16 },
 { 7, 8, 9, 10, 11, 12, 13, 14 }, { 7, 8, 9, 10, 11, 12, 13, 14 },
 { 5, 6, 6, 7, 8, 8, 9, 10 }, { 5, 6, 6, 7, 8, 8, 9, 10 },
 { 4, 5, 5, 6, 6, 7, 7, 8 }, { 4, 5, 5, 6, 6, 7, 7, 8 },
 { 3, 3, 4, 4, 4, 5, 5, 6 }, { 3, 3, 4, 4, 4, 5, 5, 6 },
 { 2, 2, 2, 3, 3, 3, 3, 4 }, { 2, 2, 2, 3, 3, 3, 3, 4 }
}
pState = (pStateIdx1 + 8 * pStateIdx0) >> 8
valMps = pState >= 0 ? 1 : 0
ivlLpsRange = rangeTabLps[Abs(pState)][qRangeIdx]
State transition process
Inputs to this process are the decoded value binVal and the current context variable.
Outputs of this process are the updated pBinCount , pStateIdx0, and pStateIdx1 associated with the current context variable.
Depending on the decoded value binVal, the update of the three variables pBinCount, pStateIdx0, and pStateIdx1 associated with the current context variable is derived as follows:
transitionTable[] =
{
 157, 143, 129, 115, 101, 87, 73, 59, 45, 35, 29, 23, 17, 13, 9, 5,
	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0
}
signVal = 2 * binVal − 1
if(pBinCount > 0) {
	pStateIdx0 += signVal * (transitionTable[16 + ((signVal * pStateIdx0) >> 5)] << 1)
	pStateIdx1 = pStateIdx0 << 3
	pBinCount− −
} else {
	pStateIdx0 += signVal * transitionTable[16 + ((signVal * pStateIdx0) >> 5)]
	pStateIdx1 += signVal * transitionTable[16 + ((signVal * pStateIdx1) >> 8)]
}
[bookmark: _Ref34033995][bookmark: _Toc77680579][bookmark: _Toc226456769]Renormalization process in the arithmetic decoding engine
Inputs to this process are bits from the stream packet associated with the current frame data syntax structure of clause 7.3.3 and the variables ivlCurrRange and ivlOffset of the decoding engine associated with the active channel group.
Outputs of this process are the updated variables ivlCurrRange and ivlOffset.
A flowchart of the renormalization is shown in Figure 1. The current value of ivlCurrRange is first compared to 256 and further steps are specified as follows:
–	If ivlCurrRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;
–	Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop, the value of ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits(1).
The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon completion of this process.
[image: A close up of text on a black background

Description automatically generated]
[bookmark: _Ref24992828][bookmark: _Toc22893568][bookmark: _Toc77680702][bookmark: _Toc118289170][bookmark: _Toc246350658][bookmark: _Toc287363905][bookmark: _Toc317198632][bookmark: _Toc351408982][bookmark: _Toc198667300][bookmark: _Toc198669132][bookmark: _Toc213429849]Figure 1 – Flowchart of renormalization
[bookmark: _Toc33078912][bookmark: _Ref350088480]Bypass decoding process for binary decisions
Inputs to this process are bits from the stream packet associated with the current frame data syntax structure of clause 7.3.3 and the variables ivlCurrRange and ivlOffset of the decoding engine associated with the active channel group.
Outputs of this process are the updated variable ivlOffset and the decoded value binVal.
The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 2 shows a flowchart of the corresponding process.
First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits(1). Then, the value of ivlOffset is compared to the value of ivlCurrRange and further steps are specified as follows:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivlOffset is decremented by ivlCurrRange.
–	Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0.
The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon completion of this process.
[image: A close up of a logo

Description automatically generated]
[bookmark: _Ref30325108][bookmark: _Toc27218280][bookmark: _Toc77680703][bookmark: _Toc118289171][bookmark: _Toc246350659][bookmark: _Toc287363906][bookmark: _Toc317198633][bookmark: _Toc351408983][bookmark: _Toc198667301][bookmark: _Toc198669133][bookmark: _Toc213429850]Figure 2 – Flowchart of bypass decoding process
[bookmark: _Ref350088372]Decoding process for binary decisions before termination
Inputs to this process are bits from the stream packet associated with the current frame data syntax structure of clause 7.3.3 and the variables ivlCurrRange and ivlOffset of the decoding engine associated with the active channel group.
Outputs of this process are the updated variables ivlCurrRange and ivlOffset, and the decoded value binVal.
This decoding process applies to decoding of end_of_frame_sequence_flag, end_of_truncated_frame_sequence_flag, and end_of_frame_one_bit corresponding to ctxTable equal to 0 and ctxIdx equal to 0. Figure 3 shows the flowchart of the corresponding decoding process, which is specified as follows:
First, the value of ivlCurrRange is decremented by 2. Then, the value of ivlOffset is compared to the value of ivlCurrRange and further steps are specified as follows:
–	If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, no renormalization is carried out, and CABAC decoding is terminated. The last bit inserted in register ivlOffset is equal to 1. When decoding end_of_slice_one_bit, this last bit inserted in register ivlOffset is interpreted as stop_one_bit. When decoding end_of_tile_one_bit or end_of_subset_one_bit, this last bit inserted in register ivlOffset is interpreted as byte_alignment_bit_equal_to_one.
–	Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 and renormalization is performed as specified in clause 9.5.4.3.3.
NOTE – This procedure could also be implemented using DecodeDecision(ctxTable, ctxIdx, bypassFlag) with ctxTable = 0, ctxIdx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, 7 more bits would be read by DecodeDecision(ctxTable, ctxIdx, bypassFlag) and a decoding process would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.
[image: A screenshot of a cell phone

Description automatically generated]
[bookmark: _Ref198714928][bookmark: _Ref30325200][bookmark: _Toc27218281][bookmark: _Toc77680704][bookmark: _Toc118289172][bookmark: _Toc246350660][bookmark: _Toc287363907][bookmark: _Toc317198634][bookmark: _Toc351408984][bookmark: _Toc198667302][bookmark: _Toc198669134][bookmark: _Toc213429851]Figure 3 – Flowchart of decoding a decision before termination
[bookmark: _Toc213429824]Encoder processes
[bookmark: _Toc213429825][bookmark: _Ref209110374]General
An encoder that conforms to this Specification shall produce bitstreams that conform to the syntax and semantics and associated constraints specified clauses 6 to 9 and, for each of the encoding modes that the encoder selects in the bitstream, shall produce results that are the same as those produced using the operations specified for this mode in clauses 10.2 to 10.5. The decision on which coding modes are selected and the way search processes are performed (e.g. for block matching to select offset vectors) is left to the implementer. Additionally, an encoder that conforms to this Specification shall not exceed the quantization rounding error constraint specified in clause 10.6 and shall conform to the high-level syntax packet handling constraints specified in clause 10.7.
[bookmark: _Ref209513074][bookmark: _Toc213429826]Backward adaptive prediction in the encoder
The backward adaptive prediction in the encoder is very similar to the decoder backward adaptive predictive structure found in clause 8.5. While the core normalized least-mean squares (NLMS) algorithm is normatively specified, the selection of the values of the control parameters (lms_split_flag, enable_ar_lms[0], enable_cc_lms[0], enable_ar_lms[1], enable_cc_lms[1]), and the quantization process are up to the encoder implementation and not normatively specified.
Inputs to this process:
· A flag specifying if the LMS prediction is split (lms_split_flag) (see clause 7.4.3.2.7)
· An array of 2 flags enabling the LMS across frequency (enable_ar_lms[0] and enable_ar_lms[1]) (see clause 7.4.3.2.7)
· An array of 2 flags enabling the LMS across channels (enable_cc_lms[0] and enable_cc_lms[1]) (see clause 7.4.3.2.7)
· A variable specifying the length of the transform (blockLength)
· A variable specifying the bit depth of the transform data (signalBitDepth) (see clause 8.4.1)
· A variable specifying the quantizer parameter for the current channel (CurrBlockQP[ch]) (see clause 8.4.1)
· An array of transform data for the previous channels and the current channel (signal[c][n], with c = 0…Ch and n = 0...blockLength − 1)
Outputs to this process:	
An array of transform domain residual data (res[n], with n = 0.. blockLength − 1)
if(lms_split_flag = = 1)
 numSplits = 2;
else
 numSplits = 1;

for(ns = 0; ns = numSplits; ns++) {
 if(numSplits = = 1) {
 startIndex = blockLength − 1;
 stopIndex = −1;
 } else if(ns = = 0) {
 startIndex = blockLength − 1;
 stopIndex = (blockLength >> 1) − 1;
 }
 else {
 startIndex = (blockLength >> 1);
 stopIndex = −1;
 }
	
 if(enable_cc_lms[ns] = = 1) {
 /* see clause 7.4.2.2 */
 LMSMaxCCOrder = GetMaxLmsCcOrder(
 cgps_max_order_cc_lms_minus_one, cgps_lms_ar_order_over_four, Log2MaxBlockSize);
 startCh = Ch − 32;
 startCh =(startCh > 0) ? startCh : 0;
 stopCh = Ch;
 } else {
 startCh = 0;
 stopCh = 0;
 }
	
 if(enable_ar_lms[ns] = = 1) {
 /* Set LMSOrder based on cgps_lms_ar_order_over_four see clause 7.4.2.2 */

 LMSOrder = GetLmsArOrder(cgps_lms_ar_order_over_four, log2_block_length);
 }
 else{
 LMSOrder = 0;
 }
	
 for(n = 0; n < 64; n ++) {
 predARCoeff[n] = 0;
 predBuffer[n] = 0;
 }
 for(n = 0; n < 32; n ++)
 predICCoeff[n] = 0;
	
 bufferPointer = 0;
 bufferMask = 63;
 energyShift = signalBitDepth − 24;
 energyShift = (energyShift > 0) ? energyShift : 0;
 bufferEnergy = 0;
 for(n = startIndex; n > stopIndex; n −−) {
 coeffMax = (1 << (19 + 5)) − 1;
 coeffMin = 1 − (1 << (19 + 5));
 energyNorm = 0;
 accum = 0;	
 /* Compute inter-channel prediction */
 for(k = startCh; k < stopCh; k++) {
 accum += signal[k][n] * predICCoeff [k];
 normEnergy += (signal[k][n] >> energyShift);
 }
 /* compute intra-channel predition */
 index = bufferPointer − 1;
 index &= BufferMask;
 for(k = 0; k < lms_order; k++) {
 accum += predARCoeff[k] * predBuffer[index];
 index −−;
 index &= bufferMask;
 }
 normEnergy += bufferEnergy;
 accum = (accum + (1 << (19 − 1))) >> 19;
 accum = (accum < INT32_MAX) ? accum : INT32_MAX;
 accum = (accum > INT32_MIN) ? accum : INT32_MIN;
 pred = accum;

 /* Don’t predict DC value lms_split_flag == 0 */
 if(n == 0 && lms_split_flag = = 0) {
 signal[Ch][n] = signal[Ch][n];
 }
 else{
 signal[Ch][n] = signal [Ch][n] − pred;
 }
 /* Quantize */
 if(CurrBlockQP[Ch] > 0) {
 res [ch][n] = Quantize(residual[Ch][n], CurrBlockQP[Ch]);
 invQRes = InverseQuantize (res[Ch][n], CurrBlockQP[Ch]);
 if(n == 0) {
 signal[Ch][n] = invQRes;
 } else {
 signal[Ch][n] = invQRes + pred;
 }
 }
 /* compute update gain */
 for(accum = normEnergy, log2Energy = 0; accum > 0; accum >>= 1, log2Energy ++);
 log2Energy += (energyShift << 1);
 log2Energy >>= 1;
 roundOffset = (log2Energy > 0) ? (1 << (log2Energy − 1)) : 0;
 gain = ((((residual << 19) >> log2Energy) + 2) >> 2);
 gain = (gain > −(1 << 17)) ? gain : −(1 << 17);
 gain = (gain < (1 << 17)) ? gain : (1 << 17);
 /* update inter-channel prediction coeff */
 for(k = startCh; k < stopCh; k++) {
 accum = gain * signal[k][n];
 accum += roundOffset;
 accum >> log2Energy;
 predICCoeff[k] += accum;
 predICCoeff[k] = (predICCoeff[k] > coeffMin) ? predICCoeff[k] : coeffMin;
 predICCoeff[k] = (predICCoeff[k] < coeffMax) ? predICCoeff[k]: coeffMax;
 }
 /* update intra-channel prediction coeff */
 index = bufferPointer − 1;
 index &= bufferMask;
 for(k = 0; k < LMSOrder; k++) {
 accum += gain * predBuffer[index];
 accum += roundOffset;
 accum >> log2Energy;
 predARCoeff [k] += accum;
 predARCoeff[k] = (predARCoeff[k] > coeffMin) ? predARCoeff[k]: coeffMin;
 predARCoeff[k] = (predARCoeff[k] < Coeff_max) ? predARCoeff[k]:Coeff_max;
 index −− ;
 pointer &= bufferMask;
 }
 /* update buffer energy */
 index = bufferPointer − LMSOrder;
 index &= bufferMask;
 bufferEnergy −= (predBuffer[index] * predBuffer[index]) >> energyShift;
 bufferEnergy += signal[ch][n] * signal[ch][n] >> energyShift;
 /* update buffer */
 predBuffer[bufferPointer] = signal[ch][n];
 bufferPointer ++;
 bufferPointer &= bufferMask;
 }
}
[bookmark: _Toc213429827]Integer reversible discrete cosine transform (IntDCT)
[bookmark: _Toc213429828]Integer reversible DCT for two signals (IntDualDCT)
Inputs to the process are:
· a variable that specifies the base-2 logarithm of the length of the transform
· an array of input signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· an array of input signal for the second channel; sigData2[n], for n = 0..((1 << log2Length) − 1)
Outputs of the process are (this process is in-place):
· a modified array containing the output signal for the first channel; sigData0[n], for n = 0..((1 << log2Length) − 1)
· a modified array containing the output signal for the second channel; sigData2[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength and halfDataLength are set as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The arrays of rotation scales; rotScaleA and rotScaleB are initialized:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */
The following internal scratch arrays for this process are assumed to be available: realVal0[n], imagVal0[n], realVal1[n], and imagVal1[n] with n = 0..((1 << log2Length) − 1)
The process for the two-channel integer reversible DCT is as follows:
for(n = 0; n < halfDataLength; n++) {
 realVals0[n] = sigData0[2 * n];
 imagVals0[n] = 0;
 realVals0[halfDataLength + n] = sigData0[dataLength − 2 * n − 1];
 imagVals0[halfDataLength + n] = 0;
 realVals1[n] = sigData1[2 * n];
 imagVals1[n] = 0;
 realVals1[halfDataLength + n] = sigData1[dataLength − 2 * n − 1];
 imagVals1[halDatafLength + n] = 0;
}
	
LiftDualRealFFT(log2Length, realVals0, imagVals0, realVals1, imagVals1); /* see clause 10.3.6 */
	
for(n = 1; n < HalfLength; n ++) {
 RotateLift(rotScaleA[n], rotScaleB[n], realVals0[n], imagVals0[n]); /* see clause 10.3.3 */
 RotateLift(rotScaleA[n], rotScaleB[n], realVals1[n], imagVals1[n]); /* see clause 10.3.3 */
}
	
for(n = 0; n < halfDataLength + 1; n ++) {
 sigData0[n] = realVals0[n];
 sigData0[n] = realVals1[n];
}
for(n = halfDataLength + 1; n < dataLength; n ++) {
 sigData0[n] = −imagVals0[dataLength − n];
 sigData1[n] = −imagVals1[dataLength − n];
}
[bookmark: _Toc213429829]Integer reversible DCT for one signal (IntDCT)
Inputs to the process are:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array of input signal; sigData[n], with n = 0,…,((1 << log2Length) − 1)
Outputs of the process are (this process is in-place):
· a modified array of signal; sigData[n], with n = 0,…,((1 << log2Length) − 1)
The variables dataLength and halfDataLength are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
The following internal scratch arrays for this process are assumed to be available: realVals[n] and imagVal[s n] with n = 0,…,((1 << log2Length) − 1)

The arrays of rotation scales; rotScaleA and rotScaleB are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA = A4_16 /* specified in Annex B */
rotScaleB = B4_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA = A4_32 /* specified in Annex B */
rotScaleB = B4_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA = A4_64 /* specified in Annex B */
rotScaleB = B4_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA = A4_128 /* specified in Annex B */
rotScaleB = B4_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA = A4_256 /* specified in Annex B */
rotScaleB = B4_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA = A4_512 /* specified in Annex B */
rotScaleB = B4_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA = A4_1024 /* specified in Annex B */
rotScaleB = B4_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA = A4_2048 /* specified in Annex B */
rotScaleB = B4_2048 /* specified in Annex B */

The process for the single-channel integer reversible DCT is as follows:

for(n = 0; n < halfDataLength; n++) {
 realVals[n] = sigData[2 * n];
 imagVals[n] = 0;
 realVals[halfDataLength + n] = sigData[dataLength − 2 * n − 1];
 imagVals[halfDataLength + n] = 0;
}
	
LiftRealFFT(log2Length, realVals, imagVals); /* see clause 10.3.7 */
	
for(n = 1; n < halfDataLength; n++) {
 RotateLift(rotScaleA[n], rotScaleB[n], realVals[n], imagVals[n]); /* see clause 10.3.3 */
}
	
for(n = 0; n < halfDataLength + 1; n++) {
 sigData[n] = realVals[n];
}
for(n = halfDataLength + 1; n < dataLength; n++) {
 sigData[n] = −imagVals[dataLength − n];
}
[bookmark: _Ref212555813][bookmark: _Toc213429830]Lifting factorization for Givens rotations - (RotateLift)
Inputs to the process are:
· a variable A that is the first rotation scale
· a variable B that is the second rotation scale
· a variable x0 that is the first value to be rotated
· a variable x1 that is the second value to be rotated
Outputs to the process are (this process is in-place):
· a modified variable x0 that is the first value after rotation
· a modified variable x1 that is the second value after rotation
The lifting based inverse rotation is specified as follows:

t = A * x1; /* the computation of t, as written, may require at least 64bit precision */
x0 += (t + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
t = B * x0; /* the computation of t, as written, may require at least 64bit precision */
x1 += ((t + INT_DCT2_ROUND_OFFSET) >> INT_DCT2_MAX_BITS);
t = A * x1; /* the computation of t, as written, may require at least 64bit precision */
[bookmark: _Ref212730757][bookmark: _Toc213429831]Integer reversible DFT for two complex sequences (FFTLift)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
Outputs to this process (this process is in-place):
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
The variable dataLength is initialized as follows:
· dataLength = 1 << log2Length
The following internal scratch arrays for this process are assumed to be available: scratchReal[n] and scratchImag[n] with n = 0..((1 << log2Length) − 1)

The process for the integer reversible DFT for two complex sequences is as follows:

for(n = 0; n < dataLength; n++) {
 imagVals1[n] = -imagVals1[n];
}
	
for(n = 0; n < dataLength; n++) {
 swapVal = realVals0[n];
 realVals0[n] = realVals1[n];
 realVals1[n] = swapVal;
 swapVal = imagVals0[n];
 imagVals0[n] = imagVals1[n];
 imagVals1[n] = swapVal;
 scratchReal[n] = realVals0[n];
 scratchImag[n] = -imagVals0[n];
}
FPRadix2FFT(log2Length, scratchReal, scratchImag); /* see clause 8.6.7 */	
for(n = 0; n < dataLength; n++) {
 realVals1[n] += scratchReal[n];
 imagVals2[n] −= scratchImag[n]; //conj inv(A)
 scratchReal[n] = realVals1[n];
 scratchImag[n] = imagVals1[n];
}	
FPRadix2FFT(log2Length, scratchReal, scratchImag); /* see clause 8.6.7 */
for(n = 0; n < dataLength; n++) {
 realVals0[n] −= scratchReal[n];
 imagVals0[n] −= scratchImag[n];
 scratchReal[n] = realVal0[n];
 scratchImag[n] = -imagVals0[n];
}
FPRadix2FFT(log2Length, scratchReal, scratchImag); /* see clause 8.6.7 */
for(n = 0; n < dataLength; n++) {
 realVals1[n] += scratchReal[n];
 imagVals1[n] −= scratchImag[n];
 realVals0[n] = -realVals0[n];
 imagVals0[n] = −imagVals0[n];
}
for(n = 0; n < dataLength; n++) {
 imagVals1[n] = −imagVals1[n];
}
[bookmark: _Ref212730844][bookmark: _Toc213429832]Integer reversible DFT for a single complex sequence (FFTLiftSplit)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength, halfDataLength, rotScaleA1, and rotScaleB1 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· rotScaleA1 = −889516852
· rotScaleB1 = 1518500249
The arrays of rotation scales; rotScaleA0 and rotScaleB0 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA0 = A1_16 /* specified in Annex B */
rotScaleB0 = B1_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA0 = A1_32 /* specified in Annex B */
rotScaleB0 = B1_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA0 = A1_64 /* specified in Annex B */
rotScaleB0 = B1_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA0 = A1_128 /* specified in Annex B */
rotScaleB0 = B1_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA0 = A1_256 /* specified in Annex B */
rotScaleB0 = B1_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA0 = A1_512 /* specified in Annex B */
rotScaleB0 = B1_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA0 = A1_1024 /* specified in Annex B */
rotScaleB0 = B1_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA0 = A1_2048 /* specified in Annex B */
rotScaleB0 = B1_2048 /* specified in Annex B */

The following internal scratch arrays for this process are assumed to be available: scratchReal[n] and scratchImag[n] with n = 0,…,((1 << log2Length) − 1)	
The process for the integer reversible DFT for a single complex sequence is as follows:
for(n = 0, k = 0; n < halfDataLength; n++, k += 2) {
 scratchReal[n] = realVals[k];
 scratchImag[n] = imagVals[k];
 scratchReal[n + halfDataLength] = realVals[k + 1];
 scratchImag[n + halfDataLength] = imagVals[k + 1];
}
/* Note: scratchReal[halfDataLength] and scratchImag[halfDataLength] are arrays starting at halfDataLength */	
FFTLift(log2Length − 1, scratchReal, scratchImag, scratchReal[halfDataLength], scratchImag[halfDataLength]); /* see clause 10.3.4 */
for(n = 0; n < halfDataLength; n++) {	
 realVal1 = -scratchImag[n + halfDataLength];
 imagVal1 = scratchReal[n + halfDataLength];
 RotateLift(rotScaleA0[n], rotScaleB0[n], realVal1, imagVal1); /* see clause 10.3.3 */
		
 realVal0 = scratchReal[n];
 imagVal0 = scratchImag[n];
		
 RotateLift(rotScaleA1, rotScaleB1, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(rotScaleA1, rotScaleB1, imagVal0, imagVal1); /* see clause 10.3.3 */
 realVals[n] = realVal0;
 imagVals[n] = imagVal0;
 realVals[halfDataLength + n] = realVal1;
 imagVals[halfDataLength + n] = imagVal2;
}
[bookmark: _Ref212730558][bookmark: _Toc213429833]Integer reversible DFT for two real sequences (LiftDualRealFFT)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· an array containing real values realVals1[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals1[n], with n = 0..((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing real values realVals0[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals0[n], with n = 0..((1 << log2Length) − 1)
The variables dataLength, halfDataLength, quartDataLength, rotScaleA0, and rotScaleB0 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· quartDataLength = halfDataLength >> 1
· rotScaleA0 = −889516852
· rotScaleB0 = 1518500249
The arrays of rotation scales; rotScaleA1 and rotScaleB1 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA1 = A3_16 /* specified in Annex B */
rotScaleB1 = B3_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA1 = A3_32 /* specified in Annex B */
rotScaleB1 = B3_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA1 = A3_64 /* specified in Annex B */
rotScaleB1 = B3_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA1 = A3_128 /* specified in Annex B */
rotScaleB1 = B3_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA1 = A3_256 /* specified in Annex B */
rotScaleB1 = B3_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA1 = A3_512 /* specified in Annex B */
rotScaleB1 = B3_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA1 = A3_1024 /* specified in Annex B */
rotScaleB1 = B3_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA1 = A3_2048 /* specified in Annex B */
rotScaleB1 = B3_2048 /* specified in Annex B */

The process for the integer invertible DFT for two real sequences is as follows:

for(n = 0, k = 0; n < halfDataLength; n++, k += 2) {
 realVals0[n] = realVals0[k];
 imagVals0[n] = realVals0[k + 1];
 realVals1[n] = realVals1[k];
 imagVals1[n] = realVals1[k + 1];
}
FFTLift(log2Length − 1, realVals0, imagVals0, realVals1, imagVals1); /* see clause 10.3.4 */
for(n = 1; n < quartDataLength; n++) {
 realVal0 = realVals0[n];
 imagVal0 = imagVals0[n];
 realVal1 = realVals0[halfDataLength − n];
 imagVal1 = −imagVals0[halfLength − n];
 RotateLift(−rotScaleA0, -rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, -rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 RotateLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, -rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, -rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 realVals0[n] = realVal0;
 imagVal0[n] = imagVal0;
 realVals0[halfDataLength − n] = -realVal1;
 imagVals0[halfDataLength − n] = imagVal1;
		
 realVal0 = realVals1[n];
 imagVal0 = imagVals1[n];
 realVal1 = realVals1[halfDataLength − n];
 imagVal1 = −imagVals1[halfLength − n];
 RotateLift(−rotScaleA0, −rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, −rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 RotateLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, −rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, −rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 realVals1[n] = realVal0;
 imagVal1[n] = imagVal0;
 realVals1[halfDataLength − n] = −realVal1;
 imagVals1[halfDataLength − n] = imagVal1;
}
imagVals0[quartDataLength] = −imagVals0[quartDataLength];
imagVals1[quartDataLength] = −imagVals1[quartDataLength];
imagVals0[0] = −imagVals0[0];
RotateLift(rotScaleA0, rotSacleB0, realVals0[0], imagVals0[0]); /* see clause 10.3.3 */
imagVals1[0] = −imagVals1[0];
RotateLift(rotScaleA0, rotSacleB0, realVals1[0], imagVals1[0]); /* see clause 10.3.3 */
realVasl0[halfDataLength] = imagVals0[0];
imagVals0[halfDataLength] = 0;
imagVals0[0] = 0;
realVals1[halfDataLength] = imagVals1[0];
imagVals1[halfDataLength] = 0;
imagVals1[0] = 0;
[bookmark: _Ref212730593][bookmark: _Toc213429834]Integer invertible DFT for one real sequence (LiftReaFFT)
Inputs to this process:
· a variable that specifies the length of the transform in log base 2 (log2Length)
· an array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· an array containing imaginary values imagVals[n], with n = 0…((1 << log2Length) − 1)
Outputs of this process (the process is in-place):
· a modified array containing real values realVals[n], with n = 0..((1 << log2Length) − 1)
· a modified array containing imaginary values imagVals[n], with n = 0..((1 << log2Length) − 1)

The variables dataLength, halfDataLength, quartDataLength, rotScaleA0, and rotScaleB0 are initialized as follows:
· dataLength = 1 << log2Length
· halfDataLength = dataLength >> 1
· quartDataLength = halfDataLength >> 1
· rotScaleA0 = −889516852
· rotScaleB0 = 1518500249
The arrays of rotation scales; rotScaleA1 and rotScaleB1 are initialized depending on the length of the transform as follows:
· If log2Length is equal to 4, the following applies:
rotScaleA1 = A3_16 /* specified in Annex B */
rotScaleB1 = B3_16 /* specified in Annex B */
· Otherwise, if log2Length is equal to 5, the following applies:
rotScaleA1 = A3_32 /* specified in Annex B */
rotScaleB1 = B3_32 /* specified in Annex B */
· Otherwise, if log2Length is equal to 6, the following applies:
rotScaleA1 = A3_64 /* specified in Annex B */
rotScaleB1 = B3_64 /* specified in Annex B */
· Otherwise, if log2Length is equal to 7, the following applies:
rotScaleA1 = A3_128 /* specified in Annex B */
rotScaleB1 = B3_128 /* specified in Annex B */
· Otherwise, if log2Length is equal to 8, the following applies:
rotScaleA1 = A3_256 /* specified in Annex B */
rotScaleB1 = B3_256 /* specified in Annex B */
· Otherwise, if log2Length is equal to 9, the following applies:
rotScaleA1 = A3_512 /* specified in Annex B */
rotScaleB1 = B3_512 /* specified in Annex B */
· Otherwise, if log2Length is equal to 10, the following applies:
rotScaleA1 = A3_1024 /* specified in Annex B */
rotScaleB1 = B3_1024 /* specified in Annex B */
· Otherwise, the following applies:
rotScaleA1 = A3_2048 /* specified in Annex B */
rotScaleB1 = B3_2048 /* specified in Annex B */

The process for the integer invertible DFT for one real sequence is as follows:
for(n = 0, k = 0; n < halfDataLength; n++, k += 2) {
 realVals[n] = realVals[k];
 imagVals[n] = realVals[k + 1];
}
LiftSplitFFT(log2Length −1, realVals, imagVals); /* see clause 10.3.5*/
for(n = 1; n < quarterDataLength; n++) {
 realVal0 = realVals[n];
 imagVal0 = imagVals[n];
 realVal1 = realVals[halfDataLength − n];
 imagVal1 = −imagVals[halfDataLength − n];
 RotateLift(−rotScaleA0, −rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, −rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 RotateLift(rotScaleA1[n], rotScaleB1[n], realVal1, imagVal1); /* see clause 10.3.3 */	
 RotateLift(−rotScaleA0, −rotScaleB0, realVal0, realVal1); /* see clause 10.3.3 */
 RotateLift(−rotScaleA0, −rotScaleB0, imagVal0, imagVal1); /* see clause 10.3.3 */
 realVals[n] = realVal0;
 imagVals[n] = imagVal0;
 realValsl[halfDataLength − n] = −realVal1;
 imagVals[halfLength − n] = imagVal1;
}
imagVals[quartDataLength] = −imagVals[quartDataLength];
imagVals[0] = −imagVals[0];
RotateLift(rotScaleA0, rotScaleB0, realVals[0], imagVals[0]); /* see clause 10.3.3 */
realVals[halfDataLength] = imagVals[0];
imagVals[halfDataLength] = 0;
imagVals[0] = 0;
[bookmark: _Toc213429835]Arithmetic encoding process
[bookmark: _Toc213429836]General
Inputs to this process are decisions that are to be encoded and written.
Outputs of this process are bits that are written to the stream packet associated with the current frame data syntax structure of clause 7.3.3.1
This clause describes an arithmetic encoding engine that matches the arithmetic decoding engine described in clause 9.5.4.3. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures are called in the same order. Each channel group maintains a state of the arithmetic encoding engine. The state of the arithmetic encoding engine of a channel group is represented by a value of the variable ivlLow pointing to the lower end of a sub-interval and a value of the variable ivlCurrRange specifying the corresponding range of that sub-interval.
[bookmark: _Toc213429837]Initialization process for the arithmetic encoding engine
This process is invoked before encoding a general frame data syntax structure as specified in clause7.3.3.1.
Outputs of this process are the values ivlLow, ivlCurrRange, firstBitFlag, and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
In the initialization procedure of the encoder, ivlLow is set equal to 0 and ivlCurrRange is set equal to 510. Furthermore, firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0.
NOTE – The minimum register precision required for storing the values of the variables ivlLow and ivlCurrRange after invocation of any of the arithmetic encoding processes specified in clauses 10.4.3, 10.4.5‎, and 10.4.6 is 10 bits and 9 bits, respectively. The encoding process for a binary decision as specified in clause 10.4.3 and the encoding process for a binary decision before termination as specified in clause 10.4.6 require a minimum register precision of 10 bits for the variable ivlLow and a minimum register precision of 9 bits for the variable ivlCurrRange. The bypass encoding process for binary decisions as specified in clause 10.4.5 requires a minimum register precision of 11 bits for the variable ivlLow and a minimum register precision of 9 bits for the variable ivlCurrRange. The precision required for the counter bitsOutstanding is expected to be sufficiently large to prevent overflow of the related register.
[bookmark: _Ref208844482][bookmark: _Toc213429838]Encoding process for a binary decision
Inputs to this process are:
· the context index ctxIdx, the variables ctxSet and ctxTable, and the value of binVal to be encoded,
· the variables ivlCurrRange and ivlLow of the arithmetic encoding engine associated with the active channel group.
Outputs of this process are the variables ivlCurrRange and ivlLow.
The derivation process for ivlLpsRange and valMps as specified in clause 9.5.4.3.2.2 is invoked with ctxSet, ctxTable, and ctxIdx as input and ivlCurrRange and valMps as outputs.
The value of binVal is compared to valMps. When binVal is different from valMps, ivlCurrRange is added to ivlLow and ivlCurrRange is set equal to the value ivlLpsRange.
The state transition as specified in clause 9.5.4.3.2.2 is invoked with binVal and the context variable associated with ctxSet, ctxTable, and ctxIdx as input.
Depending on the current value of ivlCurrRange, renormalization is performed as specified in clause 10.4.4‎.
[bookmark: _Ref209453624][bookmark: _Toc213429839]Renormalization process in the arithmetic encoding engine
Inputs to this process are the variables ivlCurrRange, ivlLow, firstBitFlag and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
Outputs of this process are_
· zero or more bits written to the stream packet associated with the current frame data syntax structure of clause7.3.3.1,
· the updated variables ivlCurrRange, ivlLow, firstBitFlag and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
Renormalization in the encoder is illustrated in Figure 10‑1.
[image: A screenshot of a computer code

AI-generated content may be incorrect.]
[bookmark: _Ref23226697][bookmark: _Toc27218284][bookmark: _Toc77680706][bookmark: _Toc118289175][bookmark: _Toc246350662][bookmark: _Toc287363909][bookmark: _Toc317198636][bookmark: _Toc415476411][bookmark: _Toc423602734][bookmark: _Toc423603370][bookmark: _Toc501130531][bookmark: _Toc173332628][bookmark: _Toc213429852]Figure 10‑1 – Flowchart of renormalization in the encoder

The PutBit() procedure described in Figure 10‑2 provides carry over control. It uses the function WriteBits(B, N) that writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the encoding process.
[image: A diagram of a computer program

AI-generated content may be incorrect.]
[bookmark: _Ref23226714][bookmark: _Toc27218285][bookmark: _Toc77680707][bookmark: _Toc118289176][bookmark: _Toc246350663][bookmark: _Toc287363910][bookmark: _Toc317198637][bookmark: _Toc415476412][bookmark: _Toc423602735][bookmark: _Toc423603371][bookmark: _Toc501130532][bookmark: _Toc173332629][bookmark: _Toc213429853]Figure 10‑2 – Flowchart of PutBit(B)

[bookmark: _Ref208844498][bookmark: _Toc213429840]Bypass encoding process for binary decisions
Inputs to this process are the variables binVal, ivlLow, ivlCurrRange, and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
Output of this process are:
· a bit written to the stream packet associated with the current frame data syntax structure of clause7.3.3.1,
· the updated variables ivlLow and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
This encoding process applies to all binary decisions with bypassFlag equal to 1.
Renormalization is included in the specification of this bypass encoding process as given in Figure 10‑3.
[image: A screenshot of a computer code

AI-generated content may be incorrect.]
[bookmark: _Ref23226797][bookmark: _Toc27218287][bookmark: _Toc77680708][bookmark: _Toc118289177][bookmark: _Toc246350664][bookmark: _Toc287363911][bookmark: _Toc317198638][bookmark: _Toc415476413][bookmark: _Toc423602736][bookmark: _Toc423603372][bookmark: _Toc501130533][bookmark: _Toc173332630][bookmark: _Toc213429854]Figure 10‑3 – Flowchart of encoding bypass

[bookmark: _Ref208844513][bookmark: _Toc213429841]Encoding process for a binary decision before termination
Inputs to this process are the variables binVal, ivlCurrRange, ivlLow and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
Outputs of this process are:
· zero or more bits written to the stream packet associated with the current frame data syntax structure of clause7.3.3.1,
· the updated variables ivlLow, ivlCurrRange and bitsOutstanding of the arithmetic encoding engine associated with the active channel group.
This encoding routine shown in Figure 10‑4 applies to encoding of syntax elements end_of_frame_sequence_flag, end_of_truncated_frame_sequence_flag, and end_of_frame_one_bit.
[image: A computer screen shot of a computer

AI-generated content may be incorrect.]
[bookmark: _Ref23226823][bookmark: _Toc27218288][bookmark: _Toc77680709][bookmark: _Toc118289178][bookmark: _Toc246350665][bookmark: _Toc287363912][bookmark: _Toc317198639][bookmark: _Toc415476414][bookmark: _Toc423602737][bookmark: _Toc423603373][bookmark: _Toc501130534][bookmark: _Toc173332631][bookmark: _Toc213429855]Figure 10‑4 – Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in Figure 10‑5 is applied. In this flushing procedure, the last bit written by WriteBits(B, N) is equal to 1. This last bit is interpreted as stop_one_bit.
[image: A screenshot of a cell phone

AI-generated content may be incorrect.]
[bookmark: _Ref30353505][bookmark: _Ref49877221][bookmark: _Toc77680710][bookmark: _Toc118289179][bookmark: _Toc246350666][bookmark: _Toc287363913][bookmark: _Toc317198640][bookmark: _Toc415476415][bookmark: _Toc423602738][bookmark: _Toc423603374][bookmark: _Toc501130535][bookmark: _Toc173332632][bookmark: _Toc213429856]Figure 10‑5 – Flowchart of flushing at termination
[bookmark: _Ref212147230][bookmark: _Toc213429842]Prediction
The encoder shall calculate block-wise predictions as specified in clause 8.3.
The encoder shall calculate sample-wise predictions as specified in clause8.9.
[bookmark: _Ref212149173][bookmark: _Toc213429843]Quantization rounding error
Depending on whether quantization is done in the transform or sample domain, an encoder is required to limit the maximum absolute error in the transform domain or sample domain, respectively.
Let blockSize be a variable that is set equal to 1 << Log2BlockSize.
Let orgSamples[k], with 0 <= k < blockSize, be the original samples of a block of samples and let qntIndices[k], with 0 <= k < blockSize, be the quantization indexes that an encoder writes into the bitstream for the block of samples.
The variable maxAllowedQuantError is derived by invoking the derivation process for the maximum allowed quantization error with the current channel ch as input as specified in clause 10.6.1.
The variable maxQuantError is derived by invoking the derivation process for the maximum quantization error as specified in clause 10.6.2 with orgSamples and qntIndices as input.
It is a requirement of encoder conformance that the encoder selects quantization indices qntIndices in a way that the obtained value of maxQuantError shall be less than or equal to maxAllowedQuantError.
NOTE – The conformance of an encoder with this constraint can be tested by encoding a series of sample values with the encoder under test and then partially decoding it as specified using a verified conforming reference decoder, then subtracting the reference decoder’s prediction signal from the original sample values, processing the difference with the specified forward transform process when so indicated, and measuring the difference between the true residual signal and the reconstructed approximation that has been signalled by the encoder under test to determine whether this difference is within the specified tolerance.
[bookmark: _Ref212645069][bookmark: _Toc213429844]Derivation process for the maximum allowed quantization error
Input to the process is:
· a variable ch specifying the current channel.
Output of this process is:
· a variable maxAllowedQuantError specifying the maximum allowed quantization error.
The variable maxAllowedQuantError is derived as follows:
· If CurrBlockQP[ch] is equal to 0. maxAllowedQuantError is set to 0.
· Otherwise, the following applies:
· Let qScale and qShift be the variables that are derived in the scaling process for transform coefficient levels as specified in clause 8.4.1.
· When TransformMode is equal to TM_DCT, the variable qShift is modified to
qShift = qShift − 1.
· The variable maxAllowedQuantError is set equal to
maxAllowedQuantError = (12 * qScale) >> (qShift + 3).
[bookmark: _Ref212645111][bookmark: _Toc213429845]Derivation process for the maximum quantization error
Inputs to the process are:
· a variable blockSize specifying the size of the current block of samples,
· an array orgSamples of size blockSize specifying the original samples for a block,
· an array qntIndices of size blockSize specifying the quantization indexes for a block.
Output of this process is:
· a variable maxQuantError specifying the maximum absolute quantization error.
The variable maxQuantError is derived as follows:
· The derivation process for original coefficients as specified in clause 10.6.2.1 is invoked with blockSize and orgSamples as input and the output is assigned to the array orgCoeffs.
· The derivation process for reconstructed coefficients as specified in clause 10.6.2.2 is invoked with blockSize and qntIndices as input and the output is assigned to the array recCoeffs.
· The variable maxQuantError is derived as specified by the following pseudo-code:
maxQuantError = 0
for(k = 0; k < blockSize; k ++) {
	quantError = abs(orgCoeffs[k] − recCoeffs[k])
	maxQuantError = Max(maxQuantError, quantError)
}
[bookmark: _Ref212645334]Derivation process for original coefficients
Inputs to the process are:
· a variable blockSize specifying the size of the current block of samples,
· an array orgSamples of size blockSize specifying the original samples.
Output of this process is:
· an array orgCoeffs of size blockSize specifying original coefficients.
The array orgCoeffs is derived as follows:
· The array prdSamples[k], with 0 <= k < blockSize, is derived by invoking the block-wise prediction process as specified in clause 8.5 and the output is assigned to prdSamples.
· The array resSamples[k], with 0 <= k < blockSize, is derived by setting each sample resSamples[k], with 0 <= k < blockSize, equal to orgSamples[k] − prdSamples[k].
· Depending on TransformMode, the array orgCoeffs is derived as follows:
· If TransformMode is equal to TM_OFF, each sample orgCoeffs[k], with 0 <= k < blockSize, is set equal to resSamples[k].
· Otherwise (TransformMode is not equal to TM_OFF), the forward transform process as specified in clause X.X is invoked with resSamples as input and the output is assigned to orgCoeffs.
[bookmark: _Ref212645573]Derivation process for reconstructed coefficients
Inputs to the process are:
· a variable blockSize specifying the size of the current block of samples,
· an array qntIndexes of size blockSize specifying the quantization indices,
· syntax elements specifying the prediction and transform parameters.
Output of this process is:
· an array recCoeffs of size blockSize specifying reconstructed coefficients.
The array recCoeffs is derived as follows:
· The array tCoeffs[k], with 0 <= k < blockSize, is derived by invoking the scaling process for transform coefficient levels as specified in clause 8.4.1 with QuantIndices being set equal to qntIndices and the output is assigned to tCoeffs.
· Depending on TransformMode and lms_flag, the array recCoeffs is derived as follows:
· If lms_flag is equal to 1, the backward adaptive (LMS prediction) process of clause 8.5 is applied and the output is assigned to recCoeffs.
· Otherwise, if TransformMode is equal to TM_OFF, the sample-wise prediction process as specified in clause 8.9 is invoked and the output is assigned to recCoeffs.
· Otherwise (TransformMode is not equal to TM_OFF and lms_flag is equal to 0), each value recCoeffs[k], with 0 <= k < blockSize, is set equal to tCoeff[k].
[bookmark: _Ref209110386][bookmark: _Toc213429846]Handling of high level syntax packets at the encoder
An encoder generating a single CWS shall have all the packets specified with the same non-zero stream_packet_label as the WPS packet. However, certain HLS packets may not necessarily be referencing to a particular wps_waveform_parameter_set_id and therefore, may have zero valued stream_packet_label. For example, an encoding TIMESTAMP may choose to have a zero valued stream_packet_label, indicating that the packet is valid for all sub-streams. For a single CWS, this is a valid assignment and will not have a differentiating effect.
Generating a multiplexed bitstream consisting of more than one CWS shall
· fulfil at least one of the following options:
· A unique non-zero stream_packet_label is assigned to each CWS, or
· A single non-zero stream_packet_label is assigned to all CWSs but ensuring unique values of wps_waveform_parameter_set_ids in WPS packets
· provide the mapping of value zero to a unique non-zero value of stream_packet_label. Such cases may occur when, e.g., existing bitstreams are being multiplexed.
Generating the following HLS packets to be added into the bitstream can be done while processing an input signal (e.g., during the encoding) or by processing an existing conformance bitstream.
TIMESTAMP packets handle the timing information and the usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.6 and 7.4.2.6, respectively.
SEGMENT payload packets handle the carriage of segment payload and the corresponding metadata such as specific features within a segment and distortion measures. The usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.7, 7.3.2.8, 7.3.2.9 and 7.4.2.7, 7.4.2.8, 7.4.2.9, respectively.
FEATURE set packets maintain the list of identified features of a waveform and the usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.10 and 7.4.2.10, respectively.
CONFIG set packets provide various parameters to facilitate easier, proper interpretation and interaction with the signal and bitstream. The usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.11, 7.3.2.12 and 7.4.2.11, 7.4.2.12, respectively.
UUID_U and UUID_S packets handle the user and stream identification, respectively. The usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.14, 7.3.2.15, 7.3.2.16 and 7.4.2.14, 7.4.2.15, 7.4.2.16, respectively.
AUTH_START and AUTH_SIG packets handle the authentication mechanism and the usage at the encoder shall conform to the specified syntax and semantics in clause 7.3.2.17, 7.3.2.18 and 7.4.2.17, 7.4.2.18, respectively.

[bookmark: _Toc248045396][bookmark: _Toc287363866][bookmark: _Toc311220014][bookmark: _Ref317066814][bookmark: _Ref317108738][bookmark: _Ref317175123][bookmark: _Toc317198860][bookmark: _Ref326743138][bookmark: _Ref326743143][bookmark: _Ref326744721][bookmark: _Ref326744728][bookmark: _Ref326744750][bookmark: _Ref326744777][bookmark: _Ref328578411][bookmark: _Ref328588397][bookmark: _Ref328588432][bookmark: _Ref330057515][bookmark: _Ref330876718][bookmark: _Ref331117731][bookmark: _Ref342408005][bookmark: _Toc358292182][bookmark: _Ref5666649][bookmark: _Ref5827960][bookmark: _Ref5834849][bookmark: _Ref5834978][bookmark: _Ref14038577][bookmark: _Ref15113233][bookmark: _Ref21860223][bookmark: _Ref21930922][bookmark: _Ref44094017][bookmark: _Toc98410227][bookmark: _Toc98410777][bookmark: _Toc98417231][bookmark: _Toc23248830][bookmark: _Toc202359754][bookmark: _Toc213429847]

Inverse quantization tables
[bookmark: _Ref185409547]Table B.1 – Inverse quantization scale and shift parameters
	i
	InvQuantScale[i]
	InvQuantShift [i]

	i
	InvQuantScale[i]
	InvQuantShift[i]

	0
	0x40000000
	30
	512
	0x40000000
	14

	1
	0x20B361A6
	29
	513
	0x20B361A6
	13

	2
	0x216AB0DA
	29
	514
	0x216AB0DA
	13

	3
	0x222603A0
	29
	515
	0x222603A0
	13

	4
	0x22E57079
	29
	516
	0x22E57079
	13

	5
	0x23A90E63
	29
	517
	0x23A90E63
	13

	6
	0x2470F4DD
	29
	518
	0x2470F4DD
	13

	7
	0x253D3BEA
	29
	519
	0x253D3BEA
	13

	8
	0x260DFC14
	29
	520
	0x260DFC14
	13

	9
	0x26E34E6E
	29
	521
	0x26E34E6E
	13

	10
	0x27BD4C98
	29
	522
	0x27BD4C98
	13

	11
	0x289C10C1
	29
	523
	0x289C10C1
	13

	12
	0x297FB5AA
	29
	524
	0x297FB5AA
	13

	13
	0x2A6856AD
	29
	525
	0x2A6856AD
	13

	14
	0x2B560FBB
	29
	526
	0x2B560FBB
	13

	15
	0x2C48FD60
	29
	527
	0x2C48FD60
	13

	16
	0x2D413CCD
	29
	528
	0x2D413CCD
	13

	17
	0x2E3EEBD2
	29
	529
	0x2E3EEBD2
	13

	18
	0x2F4228E8
	29
	530
	0x2F4228E8
	13

	19
	0x304B1333
	29
	531
	0x304B1333
	13

	20
	0x3159CA84
	29
	532
	0x3159CA84
	13

	21
	0x326E6F62
	29
	533
	0x326E6F62
	13

	22
	0x33892305
	29
	534
	0x33892305
	13

	23
	0x34AA0764
	29
	535
	0x34AA0764
	13

	24
	0x35D13F33
	29
	536
	0x35D13F33
	13

	25
	0x36FEEDE6
	29
	537
	0x36FEEDE6
	13

	26
	0x383337BB
	29
	538
	0x383337BB
	13

	27
	0x396E41BA
	29
	539
	0x396E41BA
	13

	28
	0x3AB031BA
	29
	540
	0x3AB031BA
	13

	29
	0x3BF92E67
	29
	541
	0x3BF92E67
	13

	30
	0x3D495F45
	29
	542
	0x3D495F45
	13

	31
	0x3EA0ECB7
	29
	543
	0x3EA0ECB7
	13

	32
	0x40000000
	29
	544
	0x40000000
	13

	33
	0x20B361A6
	28
	545
	0x20B361A6
	12

	34
	0x216AB0DA
	28
	546
	0x216AB0DA
	12

	35
	0x222603A0
	28
	547
	0x222603A0
	12

	36
	0x22E57079
	28
	548
	0x22E57079
	12

	37
	0x23A90E63
	28
	549
	0x23A90E63
	12

	38
	0x2470F4DD
	28
	550
	0x2470F4DD
	12

	39
	0x253D3BEA
	28
	551
	0x253D3BEA
	12

	40
	0x260DFC14
	28
	552
	0x260DFC14
	12

	41
	0x26E34E6E
	28
	553
	0x26E34E6E
	12

	42
	0x27BD4C98
	28
	554
	0x27BD4C98
	12

	43
	0x289C10C1
	28
	555
	0x289C10C1
	12

	44
	0x297FB5AA
	28
	556
	0x297FB5AA
	12

	45
	0x2A6856AD
	28
	557
	0x2A6856AD
	12

	46
	0x2B560FBB
	28
	558
	0x2B560FBB
	12

	47
	0x2C48FD60
	28
	559
	0x2C48FD60
	12

	48
	0x2D413CCD
	28
	560
	0x2D413CCD
	12

	49
	0x2E3EEBD2
	28
	561
	0x2E3EEBD2
	12

	50
	0x2F4228E8
	28
	562
	0x2F4228E8
	12

	51
	0x304B1333
	28
	563
	0x304B1333
	12

	52
	0x3159CA84
	28
	564
	0x3159CA84
	12

	53
	0x326E6F62
	28
	565
	0x326E6F62
	12

	54
	0x33892305
	28
	566
	0x33892305
	12

	55
	0x34AA0764
	28
	567
	0x34AA0764
	12

	56
	0x35D13F33
	28
	568
	0x35D13F33
	12

	57
	0x36FEEDE6
	28
	569
	0x36FEEDE6
	12

	58
	0x383337BB
	28
	570
	0x383337BB
	12

	59
	0x396E41BA
	28
	571
	0x396E41BA
	12

	60
	0x3AB031BA
	28
	572
	0x3AB031BA
	12

	61
	0x3BF92E67
	28
	573
	0x3BF92E67
	12

	62
	0x3D495F45
	28
	574
	0x3D495F45
	12

	63
	0x3EA0ECB7
	28
	575
	0x3EA0ECB7
	12

	64
	0x40000000
	28
	576
	0x40000000
	12

	65
	0x20B361A6
	27
	577
	0x20B361A6
	11

	66
	0x216AB0DA
	27
	578
	0x216AB0DA
	11

	67
	0x222603A0
	27
	579
	0x222603A0
	11

	68
	0x22E57079
	27
	580
	0x22E57079
	11

	69
	0x23A90E63
	27
	581
	0x23A90E63
	11

	70
	0x2470F4DD
	27
	582
	0x2470F4DD
	11

	71
	0x253D3BEA
	27
	583
	0x253D3BEA
	11

	72
	0x260DFC14
	27
	584
	0x260DFC14
	11

	73
	0x26E34E6E
	27
	585
	0x26E34E6E
	11

	74
	0x27BD4C98
	27
	586
	0x27BD4C98
	11

	75
	0x289C10C1
	27
	587
	0x289C10C1
	11

	76
	0x297FB5AA
	27
	588
	0x297FB5AA
	11

	77
	0x2A6856AD
	27
	589
	0x2A6856AD
	11

	78
	0x2B560FBB
	27
	590
	0x2B560FBB
	11

	79
	0x2C48FD60
	27
	591
	0x2C48FD60
	11

	80
	0x2D413CCD
	27
	592
	0x2D413CCD
	11

	81
	0x2E3EEBD2
	27
	593
	0x2E3EEBD2
	11

	82
	0x2F4228E8
	27
	594
	0x2F4228E8
	11

	83
	0x304B1333
	27
	595
	0x304B1333
	11

	84
	0x3159CA84
	27
	596
	0x3159CA84
	11

	85
	0x326E6F62
	27
	597
	0x326E6F62
	11

	86
	0x33892305
	27
	598
	0x33892305
	11

	87
	0x34AA0764
	27
	599
	0x34AA0764
	11

	88
	0x35D13F33
	27
	600
	0x35D13F33
	11

	89
	0x36FEEDE6
	27
	601
	0x36FEEDE6
	11

	90
	0x383337BB
	27
	602
	0x383337BB
	11

	91
	0x396E41BA
	27
	603
	0x396E41BA
	11

	92
	0x3AB031BA
	27
	604
	0x3AB031BA
	11

	93
	0x3BF92E67
	27
	605
	0x3BF92E67
	11

	94
	0x3D495F45
	27
	606
	0x3D495F45
	11

	95
	0x3EA0ECB7
	27
	607
	0x3EA0ECB7
	11

	96
	0x40000000
	27
	608
	0x40000000
	11

	97
	0x20B361A6
	26
	609
	0x20B361A6
	10

	98
	0x216AB0DA
	26
	610
	0x216AB0DA
	10

	99
	0x222603A0
	26
	611
	0x222603A0
	10

	100
	0x22E57079
	26
	612
	0x22E57079
	10

	101
	0x23A90E63
	26
	613
	0x23A90E63
	10

	102
	0x2470F4DD
	26
	614
	0x2470F4DD
	10

	103
	0x253D3BEA
	26
	615
	0x253D3BEA
	10

	104
	0x260DFC14
	26
	616
	0x260DFC14
	10

	105
	0x26E34E6E
	26
	617
	0x26E34E6E
	10

	106
	0x27BD4C98
	26
	618
	0x27BD4C98
	10

	107
	0x289C10C1
	26
	619
	0x289C10C1
	10

	108
	0x297FB5AA
	26
	620
	0x297FB5AA
	10

	109
	0x2A6856AD
	26
	621
	0x2A6856AD
	10

	110
	0x2B560FBB
	26
	622
	0x2B560FBB
	10

	111
	0x2C48FD60
	26
	623
	0x2C48FD60
	10

	112
	0x2D413CCD
	26
	624
	0x2D413CCD
	10

	113
	0x2E3EEBD2
	26
	625
	0x2E3EEBD2
	10

	114
	0x2F4228E8
	26
	626
	0x2F4228E8
	10

	115
	0x304B1333
	26
	627
	0x304B1333
	10

	116
	0x3159CA84
	26
	628
	0x3159CA84
	10

	117
	0x326E6F62
	26
	629
	0x326E6F62
	10

	118
	0x33892305
	26
	630
	0x33892305
	10

	119
	0x34AA0764
	26
	631
	0x34AA0764
	10

	120
	0x35D13F33
	26
	632
	0x35D13F33
	10

	121
	0x36FEEDE6
	26
	633
	0x36FEEDE6
	10

	122
	0x383337BB
	26
	634
	0x383337BB
	10

	123
	0x396E41BA
	26
	635
	0x396E41BA
	10

	124
	0x3AB031BA
	26
	636
	0x3AB031BA
	10

	125
	0x3BF92E67
	26
	637
	0x3BF92E67
	10

	126
	0x3D495F45
	26
	638
	0x3D495F45
	10

	127
	0x3EA0ECB7
	26
	639
	0x3EA0ECB7
	10

	128
	0x40000000
	26
	640
	0x40000000
	10

	129
	0x20B361A6
	25
	641
	0x20B361A6
	9

	130
	0x216AB0DA
	25
	642
	0x216AB0DA
	9

	131
	0x222603A0
	25
	643
	0x222603A0
	9

	132
	0x22E57079
	25
	644
	0x22E57079
	9

	133
	0x23A90E63
	25
	645
	0x23A90E63
	9

	134
	0x2470F4DD
	25
	646
	0x2470F4DD
	9

	135
	0x253D3BEA
	25
	647
	0x253D3BEA
	9

	136
	0x260DFC14
	25
	648
	0x260DFC14
	9

	137
	0x26E34E6E
	25
	649
	0x26E34E6E
	9

	138
	0x27BD4C98
	25
	650
	0x27BD4C98
	9

	139
	0x289C10C1
	25
	651
	0x289C10C1
	9

	140
	0x297FB5AA
	25
	652
	0x297FB5AA
	9

	141
	0x2A6856AD
	25
	653
	0x2A6856AD
	9

	142
	0x2B560FBB
	25
	654
	0x2B560FBB
	9

	143
	0x2C48FD60
	25
	655
	0x2C48FD60
	9

	144
	0x2D413CCD
	25
	656
	0x2D413CCD
	9

	145
	0x2E3EEBD2
	25
	657
	0x2E3EEBD2
	9

	146
	0x2F4228E8
	25
	658
	0x2F4228E8
	9

	147
	0x304B1333
	25
	659
	0x304B1333
	9

	148
	0x3159CA84
	25
	660
	0x3159CA84
	9

	149
	0x326E6F62
	25
	661
	0x326E6F62
	9

	150
	0x33892305
	25
	662
	0x33892305
	9

	151
	0x34AA0764
	25
	663
	0x34AA0764
	9

	152
	0x35D13F33
	25
	664
	0x35D13F33
	9

	153
	0x36FEEDE6
	25
	665
	0x36FEEDE6
	9

	154
	0x383337BB
	25
	666
	0x383337BB
	9

	155
	0x396E41BA
	25
	667
	0x396E41BA
	9

	156
	0x3AB031BA
	25
	668
	0x3AB031BA
	9

	157
	0x3BF92E67
	25
	669
	0x3BF92E67
	9

	158
	0x3D495F45
	25
	670
	0x3D495F45
	9

	159
	0x3EA0ECB7
	25
	671
	0x3EA0ECB7
	9

	160
	0x40000000
	25
	672
	0x40000000
	9

	161
	0x20B361A6
	24
	673
	0x20B361A6
	8

	162
	0x216AB0DA
	24
	674
	0x216AB0DA
	8

	163
	0x222603A0
	24
	675
	0x222603A0
	8

	164
	0x22E57079
	24
	676
	0x22E57079
	8

	165
	0x23A90E63
	24
	677
	0x23A90E63
	8

	166
	0x2470F4DD
	24
	678
	0x2470F4DD
	8

	167
	0x253D3BEA
	24
	679
	0x253D3BEA
	8

	168
	0x260DFC14
	24
	680
	0x260DFC14
	8

	169
	0x26E34E6E
	24
	681
	0x26E34E6E
	8

	170
	0x27BD4C98
	24
	682
	0x27BD4C98
	8

	171
	0x289C10C1
	24
	683
	0x289C10C1
	8

	172
	0x297FB5AA
	24
	684
	0x297FB5AA
	8

	173
	0x2A6856AD
	24
	685
	0x2A6856AD
	8

	174
	0x2B560FBB
	24
	686
	0x2B560FBB
	8

	175
	0x2C48FD60
	24
	687
	0x2C48FD60
	8

	176
	0x2D413CCD
	24
	688
	0x2D413CCD
	8

	177
	0x2E3EEBD2
	24
	689
	0x2E3EEBD2
	8

	178
	0x2F4228E8
	24
	690
	0x2F4228E8
	8

	179
	0x304B1333
	24
	691
	0x304B1333
	8

	180
	0x3159CA84
	24
	692
	0x3159CA84
	8

	181
	0x326E6F62
	24
	693
	0x326E6F62
	8

	182
	0x33892305
	24
	694
	0x33892305
	8

	183
	0x34AA0764
	24
	695
	0x34AA0764
	8

	184
	0x35D13F33
	24
	696
	0x35D13F33
	8

	185
	0x36FEEDE6
	24
	697
	0x36FEEDE6
	8

	186
	0x383337BB
	24
	698
	0x383337BB
	8

	187
	0x396E41BA
	24
	699
	0x396E41BA
	8

	188
	0x3AB031BA
	24
	700
	0x3AB031BA
	8

	189
	0x3BF92E67
	24
	701
	0x3BF92E67
	8

	190
	0x3D495F45
	24
	702
	0x3D495F45
	8

	191
	0x3EA0ECB7
	24
	703
	0x3EA0ECB7
	8

	192
	0x40000000
	24
	704
	0x40000000
	8

	193
	0x20B361A6
	23
	705
	0x20B361A6
	7

	194
	0x216AB0DA
	23
	706
	0x216AB0DA
	7

	195
	0x222603A0
	23
	707
	0x222603A0
	7

	196
	0x22E57079
	23
	708
	0x22E57079
	7

	197
	0x23A90E63
	23
	709
	0x23A90E63
	7

	198
	0x2470F4DD
	23
	710
	0x2470F4DD
	7

	199
	0x253D3BEA
	23
	711
	0x253D3BEA
	7

	200
	0x260DFC14
	23
	712
	0x260DFC14
	7

	201
	0x26E34E6E
	23
	713
	0x26E34E6E
	7

	202
	0x27BD4C98
	23
	714
	0x27BD4C98
	7

	203
	0x289C10C1
	23
	715
	0x289C10C1
	7

	204
	0x297FB5AA
	23
	716
	0x297FB5AA
	7

	205
	0x2A6856AD
	23
	717
	0x2A6856AD
	7

	206
	0x2B560FBB
	23
	718
	0x2B560FBB
	7

	207
	0x2C48FD60
	23
	719
	0x2C48FD60
	7

	208
	0x2D413CCD
	23
	720
	0x2D413CCD
	7

	209
	0x2E3EEBD2
	23
	721
	0x2E3EEBD2
	7

	210
	0x2F4228E8
	23
	722
	0x2F4228E8
	7

	211
	0x304B1333
	23
	723
	0x304B1333
	7

	212
	0x3159CA84
	23
	724
	0x3159CA84
	7

	213
	0x326E6F62
	23
	725
	0x326E6F62
	7

	214
	0x33892305
	23
	726
	0x33892305
	7

	215
	0x34AA0764
	23
	727
	0x34AA0764
	7

	216
	0x35D13F33
	23
	728
	0x35D13F33
	7

	217
	0x36FEEDE6
	23
	729
	0x36FEEDE6
	7

	218
	0x383337BB
	23
	730
	0x383337BB
	7

	219
	0x396E41BA
	23
	731
	0x396E41BA
	7

	220
	0x3AB031BA
	23
	732
	0x3AB031BA
	7

	221
	0x3BF92E67
	23
	733
	0x3BF92E67
	7

	222
	0x3D495F45
	23
	734
	0x3D495F45
	7

	223
	0x3EA0ECB7
	23
	735
	0x3EA0ECB7
	7

	224
	0x40000000
	23
	736
	0x40000000
	7

	225
	0x20B361A6
	22
	737
	0x20B361A6
	6

	226
	0x216AB0DA
	22
	738
	0x216AB0DA
	6

	227
	0x222603A0
	22
	739
	0x222603A0
	6

	228
	0x22E57079
	22
	740
	0x22E57079
	6

	229
	0x23A90E63
	22
	741
	0x23A90E63
	6

	230
	0x2470F4DD
	22
	742
	0x2470F4DD
	6

	231
	0x253D3BEA
	22
	743
	0x253D3BEA
	6

	232
	0x260DFC14
	22
	744
	0x260DFC14
	6

	233
	0x26E34E6E
	22
	745
	0x26E34E6E
	6

	234
	0x27BD4C98
	22
	746
	0x27BD4C98
	6

	235
	0x289C10C1
	22
	747
	0x289C10C1
	6

	236
	0x297FB5AA
	22
	748
	0x297FB5AA
	6

	237
	0x2A6856AD
	22
	749
	0x2A6856AD
	6

	238
	0x2B560FBB
	22
	750
	0x2B560FBB
	6

	239
	0x2C48FD60
	22
	751
	0x2C48FD60
	6

	240
	0x2D413CCD
	22
	752
	0x2D413CCD
	6

	241
	0x2E3EEBD2
	22
	753
	0x2E3EEBD2
	6

	242
	0x2F4228E8
	22
	754
	0x2F4228E8
	6

	243
	0x304B1333
	22
	755
	0x304B1333
	6

	244
	0x3159CA84
	22
	756
	0x3159CA84
	6

	245
	0x326E6F62
	22
	757
	0x326E6F62
	6

	246
	0x33892305
	22
	758
	0x33892305
	6

	247
	0x34AA0764
	22
	759
	0x34AA0764
	6

	248
	0x35D13F33
	22
	760
	0x35D13F33
	6

	249
	0x36FEEDE6
	22
	761
	0x36FEEDE6
	6

	250
	0x383337BB
	22
	762
	0x383337BB
	6

	251
	0x396E41BA
	22
	763
	0x396E41BA
	6

	252
	0x3AB031BA
	22
	764
	0x3AB031BA
	6

	253
	0x3BF92E67
	22
	765
	0x3BF92E67
	6

	254
	0x3D495F45
	22
	766
	0x3D495F45
	6

	255
	0x3EA0ECB7
	22
	767
	0x3EA0ECB7
	6

	256
	0x40000000
	22
	768
	0x40000000
	6

	257
	0x20B361A6
	21
	769
	0x20B361A6
	5

	258
	0x216AB0DA
	21
	770
	0x216AB0DA
	5

	259
	0x222603A0
	21
	771
	0x222603A0
	5

	260
	0x22E57079
	21
	772
	0x22E57079
	5

	261
	0x23A90E63
	21
	773
	0x23A90E63
	5

	262
	0x2470F4DD
	21
	774
	0x2470F4DD
	5

	263
	0x253D3BEA
	21
	775
	0x253D3BEA
	5

	264
	0x260DFC14
	21
	776
	0x260DFC14
	5

	265
	0x26E34E6E
	21
	777
	0x26E34E6E
	5

	266
	0x27BD4C98
	21
	778
	0x27BD4C98
	5

	267
	0x289C10C1
	21
	779
	0x289C10C1
	5

	268
	0x297FB5AA
	21
	780
	0x297FB5AA
	5

	269
	0x2A6856AD
	21
	781
	0x2A6856AD
	5

	270
	0x2B560FBB
	21
	782
	0x2B560FBB
	5

	271
	0x2C48FD60
	21
	783
	0x2C48FD60
	5

	272
	0x2D413CCD
	21
	784
	0x2D413CCD
	5

	273
	0x2E3EEBD2
	21
	785
	0x2E3EEBD2
	5

	274
	0x2F4228E8
	21
	786
	0x2F4228E8
	5

	275
	0x304B1333
	21
	787
	0x304B1333
	5

	276
	0x3159CA84
	21
	788
	0x3159CA84
	5

	277
	0x326E6F62
	21
	789
	0x326E6F62
	5

	278
	0x33892305
	21
	790
	0x33892305
	5

	279
	0x34AA0764
	21
	791
	0x34AA0764
	5

	280
	0x35D13F33
	21
	792
	0x35D13F33
	5

	281
	0x36FEEDE6
	21
	793
	0x36FEEDE6
	5

	282
	0x383337BB
	21
	794
	0x383337BB
	5

	283
	0x396E41BA
	21
	795
	0x396E41BA
	5

	284
	0x3AB031BA
	21
	796
	0x3AB031BA
	5

	285
	0x3BF92E67
	21
	797
	0x3BF92E67
	5

	286
	0x3D495F45
	21
	798
	0x3D495F45
	5

	287
	0x3EA0ECB7
	21
	799
	0x3EA0ECB7
	5

	288
	0x40000000
	21
	800
	0x40000000
	5

	289
	0x20B361A6
	20
	801
	0x20B361A6
	4

	290
	0x216AB0DA
	20
	802
	0x216AB0DA
	4

	291
	0x222603A0
	20
	803
	0x222603A0
	4

	292
	0x22E57079
	20
	804
	0x22E57079
	4

	293
	0x23A90E63
	20
	805
	0x23A90E63
	4

	294
	0x2470F4DD
	20
	806
	0x2470F4DD
	4

	295
	0x253D3BEA
	20
	807
	0x253D3BEA
	4

	296
	0x260DFC14
	20
	808
	0x260DFC14
	4

	297
	0x26E34E6E
	20
	809
	0x26E34E6E
	4

	298
	0x27BD4C98
	20
	810
	0x27BD4C98
	4

	299
	0x289C10C1
	20
	811
	0x289C10C1
	4

	300
	0x297FB5AA
	20
	812
	0x297FB5AA
	4

	301
	0x2A6856AD
	20
	813
	0x2A6856AD
	4

	302
	0x2B560FBB
	20
	814
	0x2B560FBB
	4

	303
	0x2C48FD60
	20
	815
	0x2C48FD60
	4

	304
	0x2D413CCD
	20
	816
	0x2D413CCD
	4

	305
	0x2E3EEBD2
	20
	817
	0x2E3EEBD2
	4

	306
	0x2F4228E8
	20
	818
	0x2F4228E8
	4

	307
	0x304B1333
	20
	819
	0x304B1333
	4

	308
	0x3159CA84
	20
	820
	0x3159CA84
	4

	309
	0x326E6F62
	20
	821
	0x326E6F62
	4

	310
	0x33892305
	20
	822
	0x33892305
	4

	311
	0x34AA0764
	20
	823
	0x34AA0764
	4

	312
	0x35D13F33
	20
	824
	0x35D13F33
	4

	313
	0x36FEEDE6
	20
	825
	0x36FEEDE6
	4

	314
	0x383337BB
	20
	826
	0x383337BB
	4

	315
	0x396E41BA
	20
	827
	0x396E41BA
	4

	316
	0x3AB031BA
	20
	828
	0x3AB031BA
	4

	317
	0x3BF92E67
	20
	829
	0x3BF92E67
	4

	318
	0x3D495F45
	20
	830
	0x3D495F45
	4

	319
	0x3EA0ECB7
	20
	831
	0x3EA0ECB7
	4

	320
	0x40000000
	20
	832
	0x40000000
	4

	321
	0x20B361A6
	19
	833
	0x20B361A6
	3

	322
	0x216AB0DA
	19
	834
	0x216AB0DA
	3

	323
	0x222603A0
	19
	835
	0x222603A0
	3

	324
	0x22E57079
	19
	836
	0x22E57079
	3

	325
	0x23A90E63
	19
	837
	0x23A90E63
	3

	326
	0x2470F4DD
	19
	838
	0x2470F4DD
	3

	327
	0x253D3BEA
	19
	839
	0x253D3BEA
	3

	328
	0x260DFC14
	19
	840
	0x260DFC14
	3

	329
	0x26E34E6E
	19
	841
	0x26E34E6E
	3

	330
	0x27BD4C98
	19
	842
	0x27BD4C98
	3

	331
	0x289C10C1
	19
	843
	0x289C10C1
	3

	332
	0x297FB5AA
	19
	844
	0x297FB5AA
	3

	333
	0x2A6856AD
	19
	845
	0x2A6856AD
	3

	334
	0x2B560FBB
	19
	846
	0x2B560FBB
	3

	335
	0x2C48FD60
	19
	847
	0x2C48FD60
	3

	336
	0x2D413CCD
	19
	848
	0x2D413CCD
	3

	337
	0x2E3EEBD2
	19
	849
	0x2E3EEBD2
	3

	338
	0x2F4228E8
	19
	850
	0x2F4228E8
	3

	339
	0x304B1333
	19
	851
	0x304B1333
	3

	340
	0x3159CA84
	19
	852
	0x3159CA84
	3

	341
	0x326E6F62
	19
	853
	0x326E6F62
	3

	342
	0x33892305
	19
	854
	0x33892305
	3

	343
	0x34AA0764
	19
	855
	0x34AA0764
	3

	344
	0x35D13F33
	19
	856
	0x35D13F33
	3

	345
	0x36FEEDE6
	19
	857
	0x36FEEDE6
	3

	346
	0x383337BB
	19
	858
	0x383337BB
	3

	347
	0x396E41BA
	19
	859
	0x396E41BA
	3

	348
	0x3AB031BA
	19
	860
	0x3AB031BA
	3

	349
	0x3BF92E67
	19
	861
	0x3BF92E67
	3

	350
	0x3D495F45
	19
	862
	0x3D495F45
	3

	351
	0x3EA0ECB7
	19
	863
	0x3EA0ECB7
	3

	352
	0x40000000
	19
	864
	0x40000000
	3

	353
	0x20B361A6
	18
	865
	0x20B361A6
	2

	354
	0x216AB0DA
	18
	866
	0x216AB0DA
	2

	355
	0x222603A0
	18
	867
	0x222603A0
	2

	356
	0x22E57079
	18
	868
	0x22E57079
	2

	357
	0x23A90E63
	18
	869
	0x23A90E63
	2

	358
	0x2470F4DD
	18
	870
	0x2470F4DD
	2

	359
	0x253D3BEA
	18
	871
	0x253D3BEA
	2

	360
	0x260DFC14
	18
	872
	0x260DFC14
	2

	361
	0x26E34E6E
	18
	873
	0x26E34E6E
	2

	362
	0x27BD4C98
	18
	874
	0x27BD4C98
	2

	363
	0x289C10C1
	18
	875
	0x289C10C1
	2

	364
	0x297FB5AA
	18
	876
	0x297FB5AA
	2

	365
	0x2A6856AD
	18
	877
	0x2A6856AD
	2

	366
	0x2B560FBB
	18
	878
	0x2B560FBB
	2

	367
	0x2C48FD60
	18
	879
	0x2C48FD60
	2

	368
	0x2D413CCD
	18
	880
	0x2D413CCD
	2

	369
	0x2E3EEBD2
	18
	881
	0x2E3EEBD2
	2

	370
	0x2F4228E8
	18
	882
	0x2F4228E8
	2

	371
	0x304B1333
	18
	883
	0x304B1333
	2

	372
	0x3159CA84
	18
	884
	0x3159CA84
	2

	373
	0x326E6F62
	18
	885
	0x326E6F62
	2

	374
	0x33892305
	18
	886
	0x33892305
	2

	375
	0x34AA0764
	18
	887
	0x34AA0764
	2

	376
	0x35D13F33
	18
	888
	0x35D13F33
	2

	377
	0x36FEEDE6
	18
	889
	0x36FEEDE6
	2

	378
	0x383337BB
	18
	890
	0x383337BB
	2

	379
	0x396E41BA
	18
	891
	0x396E41BA
	2

	380
	0x3AB031BA
	18
	892
	0x3AB031BA
	2

	381
	0x3BF92E67
	18
	893
	0x3BF92E67
	2

	382
	0x3D495F45
	18
	894
	0x3D495F45
	2

	383
	0x3EA0ECB7
	18
	895
	0x3EA0ECB7
	2

	384
	0x40000000
	18
	896
	0x40000000
	2

	385
	0x20B361A6
	17
	897
	0x20B361A6
	1

	386
	0x216AB0DA
	17
	898
	0x216AB0DA
	1

	387
	0x222603A0
	17
	899
	0x222603A0
	1

	388
	0x22E57079
	17
	900
	0x22E57079
	1

	389
	0x23A90E63
	17
	901
	0x23A90E63
	1

	390
	0x2470F4DD
	17
	902
	0x2470F4DD
	1

	391
	0x253D3BEA
	17
	903
	0x253D3BEA
	1

	392
	0x260DFC14
	17
	904
	0x260DFC14
	1

	393
	0x26E34E6E
	17
	905
	0x26E34E6E
	1

	394
	0x27BD4C98
	17
	906
	0x27BD4C98
	1

	395
	0x289C10C1
	17
	907
	0x289C10C1
	1

	396
	0x297FB5AA
	17
	908
	0x297FB5AA
	1

	397
	0x2A6856AD
	17
	909
	0x2A6856AD
	1

	398
	0x2B560FBB
	17
	910
	0x2B560FBB
	1

	399
	0x2C48FD60
	17
	911
	0x2C48FD60
	1

	400
	0x2D413CCD
	17
	912
	0x2D413CCD
	1

	401
	0x2E3EEBD2
	17
	913
	0x2E3EEBD2
	1

	402
	0x2F4228E8
	17
	914
	0x2F4228E8
	1

	403
	0x304B1333
	17
	915
	0x304B1333
	1

	404
	0x3159CA84
	17
	916
	0x3159CA84
	1

	405
	0x326E6F62
	17
	917
	0x326E6F62
	1

	406
	0x33892305
	17
	918
	0x33892305
	1

	407
	0x34AA0764
	17
	919
	0x34AA0764
	1

	408
	0x35D13F33
	17
	920
	0x35D13F33
	1

	409
	0x36FEEDE6
	17
	921
	0x36FEEDE6
	1

	410
	0x383337BB
	17
	922
	0x383337BB
	1

	411
	0x396E41BA
	17
	923
	0x396E41BA
	1

	412
	0x3AB031BA
	17
	924
	0x3AB031BA
	1

	413
	0x3BF92E67
	17
	925
	0x3BF92E67
	1

	414
	0x3D495F45
	17
	926
	0x3D495F45
	1

	415
	0x3EA0ECB7
	17
	927
	0x3EA0ECB7
	1

	416
	0x40000000
	17
	928
	0x40000000
	1

	417
	0x20B361A6
	16
	929
	0x20B361A6
	0

	418
	0x216AB0DA
	16
	930
	0x216AB0DA
	0

	419
	0x222603A0
	16
	931
	0x222603A0
	0

	420
	0x22E57079
	16
	932
	0x22E57079
	0

	421
	0x23A90E63
	16
	933
	0x23A90E63
	0

	422
	0x2470F4DD
	16
	934
	0x2470F4DD
	0

	423
	0x253D3BEA
	16
	935
	0x253D3BEA
	0

	424
	0x260DFC14
	16
	936
	0x260DFC14
	0

	425
	0x26E34E6E
	16
	937
	0x26E34E6E
	0

	426
	0x27BD4C98
	16
	938
	0x27BD4C98
	0

	427
	0x289C10C1
	16
	939
	0x289C10C1
	0

	428
	0x297FB5AA
	16
	940
	0x297FB5AA
	0

	429
	0x2A6856AD
	16
	941
	0x2A6856AD
	0

	430
	0x2B560FBB
	16
	942
	0x2B560FBB
	0

	431
	0x2C48FD60
	16
	943
	0x2C48FD60
	0

	432
	0x2D413CCD
	16
	944
	0x2D413CCD
	0

	433
	0x2E3EEBD2
	16
	945
	0x2E3EEBD2
	0

	434
	0x2F4228E8
	16
	946
	0x2F4228E8
	0

	435
	0x304B1333
	16
	947
	0x304B1333
	0

	436
	0x3159CA84
	16
	948
	0x3159CA84
	0

	437
	0x326E6F62
	16
	949
	0x326E6F62
	0

	438
	0x33892305
	16
	950
	0x33892305
	0

	439
	0x34AA0764
	16
	951
	0x34AA0764
	0

	440
	0x35D13F33
	16
	952
	0x35D13F33
	0

	441
	0x36FEEDE6
	16
	953
	0x36FEEDE6
	0

	442
	0x383337BB
	16
	954
	0x383337BB
	0

	443
	0x396E41BA
	16
	955
	0x396E41BA
	0

	444
	0x3AB031BA
	16
	956
	0x3AB031BA
	0

	445
	0x3BF92E67
	16
	957
	0x3BF92E67
	0

	446
	0x3D495F45
	16
	958
	0x3D495F45
	0

	447
	0x3EA0ECB7
	16
	959
	0x3EA0ECB7
	0

	448
	0x40000000
	16
	960
	0x40000000
	0

	449
	0x20B361A6
	15
	961
	0x4166C34C
	0

	450
	0x216AB0DA
	15
	962
	0x42D561B4
	0

	451
	0x222603A0
	15
	963
	0x444C0740
	0

	452
	0x22E57079
	15
	964
	0x45CAE0F2
	0

	453
	0x23A90E63
	15
	965
	0x47521CC6
	0

	454
	0x2470F4DD
	15
	966
	0x48E1E9BA
	0

	455
	0x253D3BEA
	15
	967
	0x4A7A77D4
	0

	456
	0x260DFC14
	15
	968
	0x4C1BF829
	0

	457
	0x26E34E6E
	15
	969
	0x4DC69CDD
	0

	458
	0x27BD4C98
	15
	970
	0x4F7A9930
	0

	459
	0x289C10C1
	15
	971
	0x51382182
	0

	460
	0x297FB5AA
	15
	972
	0x52FF6B55
	0

	461
	0x2A6856AD
	15
	973
	0x54D0AD5A
	0

	462
	0x2B560FBB
	15
	974
	0x56AC1F75
	0

	463
	0x2C48FD60
	15
	975
	0x5891FAC1
	0

	464
	0x2D413CCD
	15
	976
	0x5A82799A
	0

	465
	0x2E3EEBD2
	15
	977
	0x5C7DD7A4
	0

	466
	0x2F4228E8
	15
	978
	0x5E8451D0
	0

	467
	0x304B1333
	15
	979
	0x60962665
	0

	468
	0x3159CA84
	15
	980
	0x62B39509
	0

	469
	0x326E6F62
	15
	981
	0x64DCDEC3
	0

	470
	0x33892305
	15
	982
	0x6712460B
	0

	471
	0x34AA0764
	15
	983
	0x69540EC9
	0

	472
	0x35D13F33
	15
	984
	0x6BA27E65
	0

	473
	0x36FEEDE6
	15
	985
	0x6DFDDBCC
	0

	474
	0x383337BB
	15
	986
	0x70666F76
	0

	475
	0x396E41BA
	15
	987
	0x72DC8374
	0

	476
	0x3AB031BA
	15
	988
	0x75606374
	0

	477
	0x3BF92E67
	15
	989
	0x77F25CCE
	0

	478
	0x3D495F45
	15
	990
	0x7A92BE8B
	0

	479
	0x3EA0ECB7
	15
	991
	0x7D41D96E
	0

	480
	0x40000000
	15
	992
	0x7FFFFFFF
	0

	481
	0x20B361A6
	14
	993
	0x7FFFFFFF
	0

	482
	0x216AB0DA
	14
	994
	0x7FFFFFFF
	0

	483
	0x222603A0
	14
	995
	0x7FFFFFFF
	0

	484
	0x22E57079
	14
	996
	0x7FFFFFFF
	0

	485
	0x23A90E63
	14
	997
	0x7FFFFFFF
	0

	486
	0x2470F4DD
	14
	998
	0x7FFFFFFF
	0

	487
	0x253D3BEA
	14
	999
	0x7FFFFFFF
	0

	488
	0x260DFC14
	14
	1000
	0x7FFFFFFF
	0

	489
	0x26E34E6E
	14
	1001
	0x7FFFFFFF
	0

	490
	0x27BD4C98
	14
	1002
	0x7FFFFFFF
	0

	491
	0x289C10C1
	14
	1003
	0x7FFFFFFF
	0

	492
	0x297FB5AA
	14
	1004
	0x7FFFFFFF
	0

	493
	0x2A6856AD
	14
	1005
	0x7FFFFFFF
	0

	494
	0x2B560FBB
	14
	1006
	0x7FFFFFFF
	0

	495
	0x2C48FD60
	14
	1007
	0x7FFFFFFF
	0

	496
	0x2D413CCD
	14
	1008
	0x7FFFFFFF
	0

	497
	0x2E3EEBD2
	14
	1009
	0x7FFFFFFF
	0

	498
	0x2F4228E8
	14
	1010
	0x7FFFFFFF
	0

	499
	0x304B1333
	14
	1011
	0x7FFFFFFF
	0

	500
	0x3159CA84
	14
	1012
	0x7FFFFFFF
	0

	501
	0x326E6F62
	14
	1013
	0x7FFFFFFF
	0

	502
	0x33892305
	14
	1014
	0x7FFFFFFF
	0

	503
	0x34AA0764
	14
	1015
	0x7FFFFFFF
	0

	504
	0x35D13F33
	14
	1016
	0x7FFFFFFF
	0

	505
	0x36FEEDE6
	14
	1017
	0x7FFFFFFF
	0

	506
	0x383337BB
	14
	1018
	0x7FFFFFFF
	0

	507
	0x396E41BA
	14
	1019
	0x7FFFFFFF
	0

	508
	0x3AB031BA
	14
	1020
	0x7FFFFFFF
	0

	509
	0x3BF92E67
	14
	1021
	0x7FFFFFFF
	0

	510
	0x3D495F45
	14
	1022
	0x7FFFFFFF
	0

	511
	0x3EA0ECB7
	14
	1023
	0x7FFFFFFF
	0

[bookmark: _Toc202359755][bookmark: _Ref212729412][bookmark: _Ref212730932][bookmark: _Toc213429848]
Predefined coefficients for integer invertible DCT / IDCT
A1_16[4] = {
	-2147483647, −889516852, 0, 889516852,
};

B1_16[4] = {
	2147483647, 1518500249, 0, −1518500249,
};

A3_16[4] = {
	−2147483647, −1434902698, −889516852, −427161056,
};

B3_16[4] = {
	2147483647, 1984016188, 1518500249, 821806413,
};

A4_16[8] = {
	0, 105499107, 211508678, 318549108, 427161056, 537916651, 651432042, 768381935,
};

B4_16[8] = {
	0, −210490206, −418953276, −623381597, −821806413, −1012316784, −1193077990, −1362349204,
};

A1_32[8] = {
	−2147483647, −1434902698, −889516852, −427161056, 0, 427161056, 889516852, 1434902698,
};

B1_32[8] = {
	2147483647, 1984016188, 1518500249, 821806413, 0, −821806413, −1518500249, −1984016188,
};

A3_32[8] = {
	−2147483647, −1762394283, −1434902698, −1147853924, −889516852, −651432042, −427161056, −211508678,
};

B3_32[8] = {
	2147483647, 2106220351, 1984016188, 1785567395, 1518500249, 1193077990, 821806413, 418953276,
};

A4_32[16] = {
	0, 52717765, 105499107, 158407910, 211508678, 264866845, 318549108, 372623761,
	427161056, 482233579, 537916651, 594288762, 651432042, 709432771, 768381935, 828375853,
};

B4_32[16] = {
	0, −105372028, −210490206, −315101294, −418953276, −521795963, −623381597, −723465451,
	−821806413, −918167571, −1012316784, −1104027236, −1193077990, −1279254515, −1362349204, −1442161874,
};

A1_64[16] = {
	−2147483647, −1762394283, −1434902698, −1147853924, −889516852, −651432042, −427161056, −211508678,
	0, 211508678, 427161056, 651432042, 889516852, 1147853924, 1434902698, 1762394283,
};

B1_64[16] = {
	2147483647, 2106220351, 1984016188, 1785567395, 1518500249, 1193077990, 821806413, 418953276,
	0, −418953276, −821806413, −1193077990, −1518500249, −1785567395, −1984016188, −2106220351,
};

A3_64[16] = {
	−2147483647, −1946365724, −1762394283, −1592682420, −1434902698, −1287152163, −1147853924, −1015684122,
	−889516852, −768381935, −651432042, −537916651, −427161056, −318549108, −211508678, −105499107,
};

B3_64[16] = {
	2147483647, 2137142926, 2106220351, 2055013722, 1984016188, 1893911493, 1785567395, 1660027308,
	1518500249, 1362349204, 1193077990, 1012316784, 821806413, 623381597, 418953276, 210490206,
};

A4_64[32] = {
	0, 26354912, 52717765, 79096506, 105499107, 131933563, 158407910, 184930235,
	211508678, 238151452, 264866845, 291663238, 318549108, 345533045, 372623761, 399830101,
	427161056, 454625776, 482233579, 509993970, 537916651, 566011534, 594288762, 622758717,
	651432042, 680319656, 709432771, 738782911, 768381935, 798242054, 828375853, 858796317,
};

B4_64[32] = {
	0, −52701887, −105372028, −157978697, −210490206, −262874923, −315101294, −367137860,
	−418953276, −470516330, −521795963, −572761285, −623381597, −673626408, −723465451, −772868706,
	−821806413, −870249095, −918167571, −965532978, −1012316784, −1058490807, −1104027236, −1148898640,
	−1193077990, −1236538675, −1279254515, −1321199780, −1362349204, −1402677999, −1442161874, −1480777044,
};

A1_128[32] = {
	−2147483647, −1946365724, −1762394283, −1592682420, −1434902698, −1287152163, −1147853924, −1015684122,
	−889516852, −768381935, −651432042, −537916651, −427161056, −318549108, −211508678, −105499107,
	0, 105499107, 211508678, 318549108, 427161056, 537916651, 651432042, 768381935,
	889516852, 1015684122, 1147853924, 1287152163, 1434902698, 1592682420, 1762394283, 1946365724,
};

B1_128[32] = {
	2147483647, 2137142926, 2106220351, 2055013722, 1984016188, 1893911493, 1785567395, 1660027308,
	1518500249, 1362349204, 1193077990, 1012316784, 821806413, 623381597, 418953276, 210490206,
	0, −210490206, −418953276, −623381597, −821806413, −1012316784, −1193077990, −1362349204,
	−1518500249, −1660027308, −1785567395, −1893911493, −1984016188, −2055013722, −2106220351, −2137142926,
};

A3_128[32] = {
	−2147483647, −2044574398, −1946365724, −1852432133, −1762394283, −1675912687, −1592682420, −1512428625,
	−1434902698, −1359879022, −1287152163, −1216534460, −1147853924, −1080952429, −1015684122, −951914032,
	−889516852, −828375853, −768381935, −709432771, −651432042, −594288762, −537916651, −482233579,
	−427161056, −372623761, −318549108, −264866845, −211508678, −158407910, −105499107, −52717765,
};

B3_128[32] = {
	2147483647, 2144896909, 2137142926, 2124240379, 2106220351, 2083126253, 2055013722, 2021950483,
	1984016188, 1941302224, 1893911493, 1841958164, 1785567395, 1724875039, 1660027308, 1591180425,
	1518500249, 1442161874, 1362349204, 1279254515, 1193077990, 1104027236, 1012316784, 918167571,
	821806413, 723465451, 623381597, 521795963, 418953276, 315101294, 210490206, 105372028,
};

A4_128[64] = {
	0, 13176960, 26354912, 39534849, 52717765, 65904652, 79096506, 92294325,
	105499107, 118711851, 131933563, 145165246, 158407910, 171662568, 184930235, 198211930,
	211508678, 224821507, 238151452, 251499549, 264866845, 278254389, 291663238, 305094454,
	318549108, 332028276, 345533045, 359064506, 372623761, 386211919, 399830101, 413479434,
	427161056, 440876117, 454625776, 468411202, 482233579, 496094100, 509993970, 523934410,
	537916651, 551941939, 566011534, 580126712, 594288762, 608498990, 622758717, 637069283,
	651432042, 665848369, 680319656, 694847313, 709432771, 724077480, 738782911, 753550558,
	768381935, 783278580, 798242054, 813273942, 828375853, 843549424, 858796317, 874118220,
};

B4_128[64] = {
	0, −26352928, −52701887, −79042909, −105372028, −131685278, −157978697, −184248325,
	−210490206, −236700388, −262874923, −289009871, −315101294, −341145265, −367137860, −393075166,
	−418953276, −444768293, −470516330, −496193509, −521795963, −547319836, −572761285, −598116478,
	−623381597, −648552837, −673626408, −698598533, −723465451, −748223418, −772868706, −797397602,
	−821806413, −846091463, −870249095, −894275670, −918167571, −941921200, −965532978, −988999351,
	−1012316784, −1035481765, −1058490807, −1081340445, −1104027236, −1126547765, −1148898640, −1171076495,
	−1193077990, −1214899812, −1236538675, −1257991319, −1279254515, −1300325059, −1321199780, −1341875532,
	−1362349204, −1382617710, −1402677999, −1422527050, −1442161874, −1461579513, −1480777044, −1499751575,
};

A1_256[64] = {
	−2147483647, −2044574398, −1946365724, −1852432133, −1762394283, −1675912687, −1592682420, −1512428625,
	−1434902698, −1359879022, −1287152163, −1216534460, −1147853924, −1080952429, −1015684122, −951914032,
	−889516852, −828375853, −768381935, −709432771, −651432042, −594288762, −537916651, −482233579,
	−427161056, −372623761, −318549108, −264866845, −211508678, −158407910, −105499107, −52717765,
	0, 52717765, 105499107, 158407910, 211508678, 264866845, 318549108, 372623761,
	427161056, 482233579, 537916651, 594288762, 651432042, 709432771, 768381935, 828375853,
	889516852, 951914032, 1015684122, 1080952429, 1147853924, 1216534460, 1287152163, 1359879022,
	1434902698, 1512428625, 1592682420, 1675912687, 1762394283, 1852432133, 1946365724, 2044574398,
};

B1_256[64] = {
	2147483647, 2144896909, 2137142926, 2124240379, 2106220351, 2083126253, 2055013722, 2021950483,
	1984016188, 1941302224, 1893911493, 1841958164, 1785567395, 1724875039, 1660027308, 1591180425,
	1518500249, 1442161874, 1362349204, 1279254515, 1193077990, 1104027236, 1012316784, 918167571,
	821806413, 723465451, 623381597, 521795963, 418953276, 315101294, 210490206, 105372028,
	0, −105372028, −210490206, −315101294, −418953276, −521795963, −623381597, −723465451,
	−821806413, −918167571, −1012316784, −1104027236, −1193077990, −1279254515, −1362349204, −1442161874,
	−1518500249, −1591180425, −1660027308, −1724875039, −1785567395, −1841958164, −1893911493, −1941302224,
	−1984016188, −2021950483, −2055013722, −2083126253, −2106220351, −2124240379, −2137142926, −2144896909,
};

A3_256[64] = {
	−2147483647, −2095412859, −2044574398, −1994910245, −1946365724, −1898889255, −1852432133, −1806948326,
	−1762394283, −1718728765, −1675912687, −1633908973, −1592682420, −1552199576, −1512428625, −1473339283,
	−1434902698, −1397091361, −1359879022, −1323240610, −1287152163, −1251590761, −1216534460, −1181962234,
	−1147853924, −1114190182, −1080952429, −1048122803, −1015684122, −983619845, −951914032, −920551313,
	−889516852, −858796317, −828375853, −798242054, −768381935, −738782911, −709432771, −680319656,
	−651432042, −622758717, −594288762, −566011534, −537916651, −509993970, −482233579, −454625776,
	−427161056, −399830101, −372623761, −345533045, −318549108, −291663238, −264866845, −238151452,
	−211508678, −184930235, −158407910, −131933563, −105499107, −79096506, −52717765, −26354912,
};

B3_256[64] = {
	2147483647, 2146836865, 2144896909, 2141664947, 2137142926, 2131333571, 2124240379, 2115867625,
	2106220351, 2095304369, 2083126253, 2069693341, 2055013722, 2039096240, 2021950483, 2003586778,
	1984016188, 1963250500, 1941302224, 1918184580, 1893911493, 1868497585, 1841958164, 1814309215,
	1785567395, 1755750016, 1724875039, 1692961061, 1660027308, 1626093615, 1591180425, 1555308767,
	1518500249, 1480777044, 1442161874, 1402677999, 1362349204, 1321199780, 1279254515, 1236538675,
	1193077990, 1148898640, 1104027236, 1058490807, 1012316784, 965532978, 918167571, 870249095,
	821806413, 772868706, 723465451, 673626408, 623381597, 572761285, 521795963, 470516330,
	418953276, 367137860, 315101294, 262874923, 210490206, 157978697, 105372028, 52701887,
};

A4_256[128] = {
	0, 6588418, 13176960, 19765750, 26354912, 32944571, 39534849, 46125873,
	52717765, 59310649, 65904652, 72499896, 79096506, 85694608, 92294325, 98895783,
	105499107, 112104421, 118711851, 125321523, 131933563, 138548095, 145165246, 151785142,
	158407910, 165033677, 171662568, 178294712, 184930235, 191569265, 198211930, 204858358,
	211508678, 218163018, 224821507, 231484275, 238151452, 244823166, 251499549, 258180732,
	264866845, 271558020, 278254389, 284956084, 291663238, 298375983, 305094454, 311818784,
	318549108, 325285560, 332028276, 338777392, 345533045, 352295370, 359064506, 365840590,
	372623761, 379414157, 386211919, 393017187, 399830101, 406650802, 413479434, 420316137,
	427161056, 434014335, 440876117, 447746549, 454625776, 461513944, 468411202, 475317698,
	482233579, 489158996, 496094100, 503039040, 509993970, 516959042, 523934410, 530920228,
	537916651, 544923836, 551941939, 558971119, 566011534, 573063345, 580126712, 587201797,
	594288762, 601387772, 608498990, 615622583, 622758717, 629907561, 637069283, 644244053,
	651432042, 658633423, 665848369, 673077055, 680319656, 687576349, 694847313, 702132726,
	709432771, 716747627, 724077480, 731422512, 738782911, 746158864, 753550558, 760958185,
	768381935, 775822002, 783278580, 790751865, 798242054, 805749346, 813273942, 820816043,
	828375853, 835953578, 843549424, 851163600, 858796317, 866447785, 874118220, 881807836,
};

B4_256[128] = {
	0, −13176712, −26352928, −39528151, −52701887, −65873638, −79042909, −92209205,
	−105372028, −118530885, −131685278, −144834714, −157978697, −171116732, −184248325, −197372981,
	−210490206, −223599506, −236700388, −249792358, −262874923, −275947592, −289009871, −302061269,
	−315101294, −328129457, −341145265, −354148229, −367137860, −380113669, −393075166, −406021864,
	−418953276, −431868915, −444768293, −457650927, −470516330, −483364019, −496193509, −509004318,
	−521795963, −534567963, −547319836, −560051103, −572761285, −585449903, −598116478, −610760535,
	−623381597, −635979190, −648552837, −661102068, −673626408, −686125386, −698598533, −711045377,
	−723465451, −735858287, −748223418, −760560379, −772868706, −785147934, −797397602, −809617248,
	−821806413, −833964637, −846091463, −858186434, −870249095, −882278991, −894275670, −906238681,
	−918167571, −930061894, −941921200, −953745043, −965532978, −977284561, −988999351, −1000676905,
	−1012316784, −1023918549, −1035481765, −1047005996, −1058490807, −1069935767, −1081340445, −1092704410,
	−1104027236, −1115308496, −1126547765, −1137744620, −1148898640, −1160009404, −1171076495, −1182099495,
	−1193077990, −1204011566, −1214899812, −1225742318, −1236538675, −1247288477, −1257991319, −1268646799,
	−1279254515, −1289814068, −1300325059, −1310787095, −1321199780, −1331562722, −1341875532, −1352137822,
	−1362349204, −1372509294, −1382617710, −1392674071, −1402677999, −1412629117, −1422527050, −1432371426,
	−1442161874, −1451898025, −1461579513, −1471205973, −1480777044, −1490292364, −1499751575, −1509154322,
};

A1_512[128] = {
	−2147483647, −2095412859, −2044574398, −1994910245, −1946365724, −1898889255, −1852432133, −1806948326,
	−1762394283, −1718728765, −1675912687, −1633908973, −1592682420, −1552199576, −1512428625, −1473339283,
	−1434902698, −1397091361, −1359879022, −1323240610, −1287152163, −1251590761, −1216534460, −1181962234,
	−1147853924, −1114190182, −1080952429, −1048122803, −1015684122, −983619845, −951914032, −920551313,
	−889516852, −858796317, −828375853, −798242054, −768381935, −738782911, −709432771, −680319656,
	−651432042, −622758717, −594288762, −566011534, −537916651, −509993970, −482233579, −454625776,
	−427161056, −399830101, −372623761, −345533045, −318549108, −291663238, −264866845, −238151452,
	−211508678, −184930235, −158407910, −131933563, −105499107, −79096506, −52717765, −26354912,
	0, 26354912, 52717765, 79096506, 105499107, 131933563, 158407910, 184930235,
	211508678, 238151452, 264866845, 291663238, 318549108, 345533045, 372623761, 399830101,
	427161056, 454625776, 482233579, 509993970, 537916651, 566011534, 594288762, 622758717,
	651432042, 680319656, 709432771, 738782911, 768381935, 798242054, 828375853, 858796317,
	889516852, 920551313, 951914032, 983619845, 1015684122, 1048122803, 1080952429, 1114190182,
	1147853924, 1181962234, 1216534460, 1251590761, 1287152163, 1323240610, 1359879022, 1397091361,
	1434902698, 1473339283, 1512428625, 1552199576, 1592682420, 1633908973, 1675912687, 1718728765,
	1762394283, 1806948326, 1852432133, 1898889255, 1946365724, 1994910245, 2044574398, 2095412859,
};

B1_512[128] = {
	2147483647, 2146836865, 2144896909, 2141664947, 2137142926, 2131333571, 2124240379, 2115867625,
	2106220351, 2095304369, 2083126253, 2069693341, 2055013722, 2039096240, 2021950483, 2003586778,
	1984016188, 1963250500, 1941302224, 1918184580, 1893911493, 1868497585, 1841958164, 1814309215,
	1785567395, 1755750016, 1724875039, 1692961061, 1660027308, 1626093615, 1591180425, 1555308767,
	1518500249, 1480777044, 1442161874, 1402677999, 1362349204, 1321199780, 1279254515, 1236538675,
	1193077990, 1148898640, 1104027236, 1058490807, 1012316784, 965532978, 918167571, 870249095,
	821806413, 772868706, 723465451, 673626408, 623381597, 572761285, 521795963, 470516330,
	418953276, 367137860, 315101294, 262874923, 210490206, 157978697, 105372028, 52701887,
	0, −52701887, −105372028, −157978697, −210490206, −262874923, −315101294, −367137860,
	−418953276, −470516330, −521795963, −572761285, −623381597, −673626408, −723465451, −772868706,
	−821806413, −870249095, −918167571, −965532978, −1012316784, −1058490807, −1104027236, −1148898640,
	−1193077990, −1236538675, −1279254515, −1321199780, −1362349204, −1402677999, −1442161874, −1480777044,
	−1518500249, −1555308767, −1591180425, −1626093615, −1660027308, −1692961061, −1724875039, −1755750016,
	−1785567395, −1814309215, −1841958164, −1868497585, −1893911493, −1918184580, −1941302224, −1963250500,
	−1984016188, −2003586778, −2021950483, −2039096240, −2055013722, −2069693341, −2083126253, −2095304369,
	−2106220351, −2115867625, −2124240379, −2131333571, −2137142926, −2141664947, −2144896909, −2146836865,
};

A3_512[128] = {
	−2147483647, −2121290448, −2095412859, −2069843295, −2044574398, −2019599026, −1994910245, −1970501324,
	−1946365724, −1922497092, −1898889255, −1875536213, −1852432133, −1829571343, −1806948326, −1784557714,
	−1762394283, −1740452950, −1718728765, −1697216909, −1675912687, −1654811527, −1633908973, −1613200682,
	−1592682420, −1572350060, −1552199576, −1532227041, −1512428625, −1492800589, −1473339283, −1454041146,
	−1434902698, −1415920543, −1397091361, −1378411911, −1359879022, −1341489598, −1323240610, −1305129097,
	−1287152163, −1269306976, −1251590761, −1234000808, −1216534460, −1199189117, −1181962234, −1164851317,
	−1147853924, −1130967661, −1114190182, −1097519190, −1080952429, −1064487689, −1048122803, −1031855642,
	−1015684122, −999606193, −983619845, −967723104, −951914032, −936190725, −920551313, −904993957,
	−889516852, −874118220, −858796317, −843549424, −828375853, −813273942, −798242054, −783278580,
	−768381935, −753550558, −738782911, −724077480, −709432771, −694847313, −680319656, −665848369,
	−651432042, −637069283, −622758717, −608498990, −594288762, −580126712, −566011534, −551941939,
	−537916651, −523934410, −509993970, −496094100, −482233579, −468411202, −454625776, −440876117,
	−427161056, −413479434, −399830101, −386211919, −372623761, −359064506, −345533045, −332028276,
	−318549108, −305094454, −291663238, −278254389, −264866845, −251499549, −238151452, −224821507,
	−211508678, −198211930, −184930235, −171662568, −158407910, −145165246, −131933563, −118711851,
	−105499107, −92294325, −79096506, −65904652, −52717765, −39534849, −26354912, −13176960,
};

B3_512[128] = {
	2147483647, 2147321945, 2146836865, 2146028479, 2144896909, 2143442325, 2141664947, 2139565042,
	2137142926, 2134398965, 2131333571, 2127947205, 2124240379, 2120213650, 2115867625, 2111202958,
	2106220351, 2100920555, 2095304369, 2089372637, 2083126253, 2076566159, 2069693341, 2062508835,
	2055013722, 2047209132, 2039096240, 2030676268, 2021950483, 2012920200, 2003586778, 1993951624,
	1984016188, 1973781966, 1963250500, 1952423376, 1941302224, 1929888719, 1918184580, 1906191569,
	1893911493, 1881346201, 1868497585, 1855367580, 1841958164, 1828271355, 1814309215, 1800073848,
	1785567395, 1770792043, 1755750016, 1740443580, 1724875039, 1709046738, 1692961061, 1676620431,
	1660027308, 1643184190, 1626093615, 1608758157, 1591180425, 1573363067, 1555308767, 1537020243,
	1518500249, 1499751575, 1480777044, 1461579513, 1442161874, 1422527050, 1402677999, 1382617710,
	1362349204, 1341875532, 1321199780, 1300325059, 1279254515, 1257991319, 1236538675, 1214899812,
	1193077990, 1171076495, 1148898640, 1126547765, 1104027236, 1081340445, 1058490807, 1035481765,
	1012316784, 988999351, 965532978, 941921200, 918167571, 894275670, 870249095, 846091463,
	821806413, 797397602, 772868706, 748223418, 723465451, 698598533, 673626408, 648552837,
	623381597, 598116478, 572761285, 547319836, 521795963, 496193509, 470516330, 444768293,
	418953276, 393075166, 367137860, 341145265, 315101294, 289009871, 262874923, 236700388,
	210490206, 184248325, 157978697, 131685278, 105372028, 79042909, 52701887, 26352928,
};

A4_512[256] = {
	0, 3294201, 6588418, 9882666, 13176960, 16471316, 19765750, 23060277,
	26354912, 29649672, 32944571, 36239625, 39534849, 42830260, 46125873, 49421702,
	52717765, 56014075, 59310649, 62607503, 65904652, 69202111, 72499896, 75798023,
	79096506, 82395363, 85694608, 88994257, 92294325, 95594829, 98895783, 102197204,
	105499107, 108801507, 112104421, 115407864, 118711851, 122016399, 125321523, 128627239,
	131933563, 135240509, 138548095, 141856335, 145165246, 148474843, 151785142, 155096160,
	158407910, 161720411, 165033677, 168347724, 171662568, 174978225, 178294712, 181612043,
	184930235, 188249303, 191569265, 194890135, 198211930, 201534666, 204858358, 208183024,
	211508678, 214835338, 218163018, 221491736, 224821507, 228152348, 231484275, 234817304,
	238151452, 241486733, 244823166, 248160766, 251499549, 254839533, 258180732, 261523164,
	264866845, 268211792, 271558020, 274905547, 278254389, 281604562, 284956084, 288308970,
	291663238, 295018903, 298375983, 301734494, 305094454, 308455878, 311818784, 315183188,
	318549108, 321916559, 325285560, 328656127, 332028276, 335402026, 338777392, 342154393,
	345533045, 348913365, 352295370, 355679078, 359064506, 362451671, 365840590, 369231281,
	372623761, 376018047, 379414157, 382812109, 386211919, 389613606, 393017187, 396422679,
	399830101, 403239469, 406650802, 410064118, 413479434, 416896767, 420316137, 423737561,
	427161056, 430586641, 434014335, 437444154, 440876117, 444310243, 447746549, 451185054,
	454625776, 458068733, 461513944, 464961428, 468411202, 471863286, 475317698, 478774456,
	482233579, 485695086, 489158996, 492625328, 496094100, 499565331, 503039040, 506515247,
	509993970, 513475229, 516959042, 520445429, 523934410, 527426003, 530920228, 534417104,
	537916651, 541418888, 544923836, 548431513, 551941939, 555455134, 558971119, 562489912,
	566011534, 569536005, 573063345, 576593574, 580126712, 583662780, 587201797, 590743784,
	594288762, 597836751, 601387772, 604941844, 608498990, 612059229, 615622583, 619189072,
	622758717, 626331540, 629907561, 633486802, 637069283, 640655026, 644244053, 647836385,
	651432042, 655031048, 658633423, 662239190, 665848369, 669460984, 673077055, 676696605,
	680319656, 683946230, 687576349, 691210036, 694847313, 698488202, 702132726, 705780908,
	709432771, 713088336, 716747627, 720410667, 724077480, 727748087, 731422512, 735100779,
	738782911, 742468931, 746158864, 749852731, 753550558, 757252368, 760958185, 764668033,
	768381935, 772099917, 775822002, 779548215, 783278580, 787013122, 790751865, 794494834,
	798242054, 801993550, 805749346, 809509468, 813273942, 817042791, 820816043, 824593721,
	828375853, 832162463, 835953578, 839749223, 843549424, 847354208, 851163600, 854977628,
	858796317, 862619694, 866447785, 870280618, 874118220, 877960617, 881807836, 885659905,
};

B4_512[256] = {
	0, −6588387, −13176712, −19764913, −26352928, −32940695, −39528151, −46115236,
	−52701887, −59288042, −65873638, −72458615, −79042909, −85626460, −92209205, −98791081,
	−105372028, −111951983, −118530885, −125108670, −131685278, −138260647, −144834714, −151407418,
	−157978697, −164548489, −171116732, −177683365, −184248325, −190811551, −197372981, −203932553,
	−210490206, −217045877, −223599506, −230151030, −236700388, −243247517, −249792358, −256334847,
	−262874923, −269412525, −275947592, −282480061, −289009871, −295536961, −302061269, −308582734,
	−315101294, −321616889, −328129457, −334638936, −341145265, −347648383, −354148229, −360644742,
	−367137860, −373627523, −380113669, −386596237, −393075166, −399550396, −406021864, −412489512,
	−418953276, −425413098, −431868915, −438320667, −444768293, −451211734, −457650927, −464085813,
	−470516330, −476942419, −483364019, −489781069, −496193509, −502601279, −509004318, −515402566,
	−521795963, −528184448, −534567963, −540946445, −547319836, −553688076, −560051103, −566408860,
	−572761285, −579108319, −585449903, −591785976, −598116478, −604441351, −610760535, −617073970,
	−623381597, −629683357, −635979190, −642269036, −648552837, −654830534, −661102068, −667367379,
	−673626408, −679879097, −686125386, −692365218, −698598533, −704825272, −711045377, −717258790,
	−723465451, −729665303, −735858287, −742044345, −748223418, −754395449, −760560379, −766718151,
	−772868706, −779011986, −785147934, −791276492, −797397602, −803511207, −809617248, −815715670,
	−821806413, −827889421, −833964637, −840032003, −846091463, −852142959, −858186434, −864221832,
	−870249095, −876268167, −882278991, −888281511, −894275670, −900261412, −906238681, −912207419,
	−918167571, −924119082, −930061894, −935995952, −941921200, −947837582, −953745043, −959643527,
	−965532978, −971413341, −977284561, −983146583, −988999351, −994842809, −1000676905, −1006501581,
	−1012316784, −1018122458, −1023918549, −1029705003, −1035481765, −1041248781, −1047005996, −1052753356,
	−1058490807, −1064218296, −1069935767, −1075643168, −1081340445, −1087027543, −1092704410, −1098370992,
	−1104027236, −1109673088, −1115308496, −1120933406, −1126547765, −1132151521, −1137744620, −1143327011,
	−1148898640, −1154459455, −1160009404, −1165548435, −1171076495, −1176593532, −1182099495, −1187594332,
	−1193077990, −1198550419, −1204011566, −1209461381, −1214899812, −1220326808, −1225742318, −1231146290,
	−1236538675, −1241919421, −1247288477, −1252645793, −1257991319, −1263325005, −1268646799, −1273956652,
	−1279254515, −1284540337, −1289814068, −1295075658, −1300325059, −1305562221, −1310787095, −1315999631,
	−1321199780, −1326387493, −1331562722, −1336725418, −1341875532, −1347013016, −1352137822, −1357249900,
	−1362349204, −1367435684, −1372509294, −1377569985, −1382617710, −1387652421, −1392674071, −1397682613,
	−1402677999, −1407660183, −1412629117, −1417584755, −1422527050, −1427455956, −1432371426, −1437273414,
	−1442161874, −1447036759, −1451898025, −1456745625, −1461579513, −1466399644, −1471205973, −1475998455,
	−1480777044, −1485541695, −1490292364, −1495029005, −1499751575, −1504460029, −1509154322, −1513834410,
};

A1_1024[256] = {
	−2147483647, −2121290448, −2095412859, −2069843295, −2044574398, −2019599026, −1994910245, −1970501324,
	−1946365724, −1922497092, −1898889255, −1875536213, −1852432133, −1829571343, −1806948326, −1784557714,
	−1762394283, −1740452950, −1718728765, −1697216909, −1675912687, −1654811527, −1633908973, −1613200682,
	−1592682420, −1572350060, −1552199576, −1532227041, −1512428625, −1492800589, −1473339283, −1454041146,
	−1434902698, −1415920543, −1397091361, −1378411911, −1359879022, −1341489598, −1323240610, −1305129097,
	−1287152163, −1269306976, −1251590761, −1234000808, −1216534460, −1199189117, −1181962234, −1164851317,
	−1147853924, −1130967661, −1114190182, −1097519190, −1080952429, −1064487689, −1048122803, −1031855642,
	−1015684122, −999606193, −983619845, −967723104, −951914032, −936190725, −920551313, −904993957,
	−889516852, −874118220, −858796317, −843549424, −828375853, −813273942, −798242054, −783278580,
	−768381935, −753550558, −738782911, −724077480, −709432771, −694847313, −680319656, −665848369,
	−651432042, −637069283, −622758717, −608498990, −594288762, −580126712, −566011534, −551941939,
	−537916651, −523934410, −509993970, −496094100, −482233579, −468411202, −454625776, −440876117,
	−427161056, −413479434, −399830101, −386211919, −372623761, −359064506, −345533045, −332028276,
	−318549108, −305094454, −291663238, −278254389, −264866845, −251499549, −238151452, −224821507,
	−211508678, −198211930, −184930235, −171662568, −158407910, −145165246, −131933563, −118711851,
	−105499107, −92294325, −79096506, −65904652, −52717765, −39534849, −26354912, −13176960,
	0, 13176960, 26354912, 39534849, 52717765, 65904652, 79096506, 92294325,
	105499107, 118711851, 131933563, 145165246, 158407910, 171662568, 184930235, 198211930,
	211508678, 224821507, 238151452, 251499549, 264866845, 278254389, 291663238, 305094454,
	318549108, 332028276, 345533045, 359064506, 372623761, 386211919, 399830101, 413479434,
	427161056, 440876117, 454625776, 468411202, 482233579, 496094100, 509993970, 523934410,
	537916651, 551941939, 566011534, 580126712, 594288762, 608498990, 622758717, 637069283,
	651432042, 665848369, 680319656, 694847313, 709432771, 724077480, 738782911, 753550558,
	768381935, 783278580, 798242054, 813273942, 828375853, 843549424, 858796317, 874118220,
	889516852, 904993957, 920551313, 936190725, 951914032, 967723104, 983619845, 999606193,
	1015684122, 1031855642, 1048122803, 1064487689, 1080952429, 1097519190, 1114190182, 1130967661,
	1147853924, 1164851317, 1181962234, 1199189117, 1216534460, 1234000808, 1251590761, 1269306976,
	1287152163, 1305129097, 1323240610, 1341489598, 1359879022, 1378411911, 1397091361, 1415920543,
	1434902698, 1454041146, 1473339283, 1492800589, 1512428625, 1532227041, 1552199576, 1572350060,
	1592682420, 1613200682, 1633908973, 1654811527, 1675912687, 1697216909, 1718728765, 1740452950,
	1762394283, 1784557714, 1806948326, 1829571343, 1852432133, 1875536213, 1898889255, 1922497092,
	1946365724, 1970501324, 1994910245, 2019599026, 2044574398, 2069843295, 2095412859, 2121290448,
};

B1_1024[256] = {
	2147483647, 2147321945, 2146836865, 2146028479, 2144896909, 2143442325, 2141664947, 2139565042,
	2137142926, 2134398965, 2131333571, 2127947205, 2124240379, 2120213650, 2115867625, 2111202958,
	2106220351, 2100920555, 2095304369, 2089372637, 2083126253, 2076566159, 2069693341, 2062508835,
	2055013722, 2047209132, 2039096240, 2030676268, 2021950483, 2012920200, 2003586778, 1993951624,
	1984016188, 1973781966, 1963250500, 1952423376, 1941302224, 1929888719, 1918184580, 1906191569,
	1893911493, 1881346201, 1868497585, 1855367580, 1841958164, 1828271355, 1814309215, 1800073848,
	1785567395, 1770792043, 1755750016, 1740443580, 1724875039, 1709046738, 1692961061, 1676620431,
	1660027308, 1643184190, 1626093615, 1608758157, 1591180425, 1573363067, 1555308767, 1537020243,
	1518500249, 1499751575, 1480777044, 1461579513, 1442161874, 1422527050, 1402677999, 1382617710,
	1362349204, 1341875532, 1321199780, 1300325059, 1279254515, 1257991319, 1236538675, 1214899812,
	1193077990, 1171076495, 1148898640, 1126547765, 1104027236, 1081340445, 1058490807, 1035481765,
	1012316784, 988999351, 965532978, 941921200, 918167571, 894275670, 870249095, 846091463,
	821806413, 797397602, 772868706, 748223418, 723465451, 698598533, 673626408, 648552837,
	623381597, 598116478, 572761285, 547319836, 521795963, 496193509, 470516330, 444768293,
	418953276, 393075166, 367137860, 341145265, 315101294, 289009871, 262874923, 236700388,
	210490206, 184248325, 157978697, 131685278, 105372028, 79042909, 52701887, 26352928,
	0, −26352928, −52701887, −79042909, −105372028, −131685278, −157978697, −184248325,
	−210490206, −236700388, −262874923, −289009871, −315101294, −341145265, −367137860, −393075166,
	−418953276, −444768293, −470516330, −496193509, −521795963, −547319836, −572761285, −598116478,
	−623381597, −648552837, −673626408, −698598533, −723465451, −748223418, −772868706, −797397602,
	−821806413, −846091463, −870249095, −894275670, −918167571, −941921200, −965532978, −988999351,
	−1012316784, −1035481765, −1058490807, −1081340445, −1104027236, −1126547765, −1148898640, −1171076495,
	−1193077990, −1214899812, −1236538675, −1257991319, −1279254515, −1300325059, −1321199780, −1341875532,
	−1362349204, −1382617710, −1402677999, −1422527050, −1442161874, −1461579513, −1480777044, −1499751575,
	−1518500249, −1537020243, −1555308767, −1573363067, −1591180425, −1608758157, −1626093615, −1643184190,
	−1660027308, −1676620431, −1692961061, −1709046738, −1724875039, −1740443580, −1755750016, −1770792043,
	−1785567395, −1800073848, −1814309215, −1828271355, −1841958164, −1855367580, −1868497585, −1881346201,
	−1893911493, −1906191569, −1918184580, −1929888719, −1941302224, −1952423376, −1963250500, −1973781966,
	−1984016188, −1993951624, −2003586778, −2012920200, −2021950483, −2030676268, −2039096240, −2047209132,
	−2055013722, −2062508835, −2069693341, −2076566159, −2083126253, −2089372637, −2095304369, −2100920555,
	−2106220351, −2111202958, −2115867625, −2120213650, −2124240379, −2127947205, −2131333571, −2134398965,
	−2137142926, −2139565042, −2141664947, −2143442325, −2144896909, −2146028479, −2146836865, −2147321945,
};

A3_1024[256] = {
	−2147483647, −2134347114, −2121290448, −2108312682, −2095412859, −2082590039, −2069843295, −2057171715,
	−2044574398, −2032050460, −2019599026, −2007219237, −1994910245, −1982671216, −1970501324, −1958399760,
	−1946365724, −1934398427, −1922497092, −1910660953, −1898889255, −1887181253, −1875536213, −1863953411,
	−1852432133, −1840971676, −1829571343, −1818230452, −1806948326, −1795724299, −1784557714, −1773447921,
	−1762394283, −1751396166, −1740452950, −1729564018, −1718728765, −1707946592, −1697216909, −1686539132,
	−1675912687, −1665337006, −1654811527, −1644335698, −1633908973, −1623530812, −1613200682, −1602918058,
	−1592682420, −1582493256, −1572350060, −1562252331, −1552199576, −1542191307, −1532227041, −1522306304,
	−1512428625, −1502593540, −1492800589, −1483049319, −1473339283, −1463670038, −1454041146, −1444452175,
	−1434902698, −1425392293, −1415920543, −1406487035, −1397091361, −1387733119, −1378411911, −1369127341,
	−1359879022, −1350666568, −1341489598, −1332347736, −1323240610, −1314167852, −1305129097, −1296123986,
	−1287152163, −1278213276, −1269306976, −1260432918, −1251590761, −1242780169, −1234000808, −1225252347,
	−1216534460, −1207846823, −1199189117, −1190561025, −1181962234, −1173392433, −1164851317, −1156338580,
	−1147853924, −1139397049, −1130967661, −1122565468, −1114190182, −1105841517, −1097519190, −1089222920,
	−1080952429, −1072707443, −1064487689, −1056292898, −1048122803, −1039977138, −1031855642, −1023758056,
	−1015684122, −1007633585, −999606193, −991601695, −983619845, −975660396, −967723104, −959807729,
	−951914032, −944041776, −936190725, −928360648, −920551313, −912762492, −904993957, −897245485,
	−889516852, −881807836, −874118220, −866447785, −858796317, −851163600, −843549424, −835953578,
	−828375853, −820816043, −813273942, −805749346, −798242054, −790751865, −783278580, −775822002,
	−768381935, −760958185, −753550558, −746158864, −738782911, −731422512, −724077480, −716747627,
	−709432771, −702132726, −694847313, −687576349, −680319656, −673077055, −665848369, −658633423,
	−651432042, −644244053, −637069283, −629907561, −622758717, −615622583, −608498990, −601387772,
	−594288762, −587201797, −580126712, −573063345, −566011534, −558971119, −551941939, −544923836,
	−537916651, −530920228, −523934410, −516959042, −509993970, −503039040, −496094100, −489158996,
	−482233579, −475317698, −468411202, −461513944, −454625776, −447746549, −440876117, −434014335,
	−427161056, −420316137, −413479434, −406650802, −399830101, −393017187, −386211919, −379414157,
	−372623761, −365840590, −359064506, −352295370, −345533045, −338777392, −332028276, −325285560,
	−318549108, −311818784, −305094454, −298375983, −291663238, −284956084, −278254389, −271558020,
	−264866845, −258180732, −251499549, −244823166, −238151452, −231484275, −224821507, −218163018,
	−211508678, −204858358, −198211930, −191569265, −184930235, −178294712, −171662568, −165033677,
	−158407910, −151785142, −145165246, −138548095, −131933563, −125321523, −118711851, −112104421,
	−105499107, −98895783, −92294325, −85694608, −79096506, −72499896, −65904652, −59310649,
	−52717765, −46125873, −39534849, −32944571, −26354912, −19765750, −13176960, −6588418,
};

B3_1024[256] = {
	2147483647, 2147443221, 2147321945, 2147119824, 2146836865, 2146473079, 2146028479, 2145503082,
	2144896909, 2144209981, 2143442325, 2142593970, 2141664947, 2140655292, 2139565042, 2138394239,
	2137142926, 2135811152, 2134398965, 2132906419, 2131333571, 2129680479, 2127947205, 2126133816,
	2124240379, 2122266966, 2120213650, 2118080510, 2115867625, 2113575079, 2111202958, 2108751351,
	2106220351, 2103610053, 2100920555, 2098151959, 2095304369, 2092377891, 2089372637, 2086288719,
	2083126253, 2079885359, 2076566159, 2073168776, 2069693341, 2066139982, 2062508835, 2058800035,
	2055013722, 2051150040, 2047209132, 2043191149, 2039096240, 2034924561, 2030676268, 2026351521,
	2021950483, 2017473320, 2012920200, 2008291295, 2003586778, 1998806828, 1993951624, 1989021349,
	1984016188, 1978936330, 1973781966, 1968553291, 1963250500, 1957873795, 1952423376, 1946899450,
	1941302224, 1935631909, 1929888719, 1924072870, 1918184580, 1912224072, 1906191569, 1900087300,
	1893911493, 1887664382, 1881346201, 1874957188, 1868497585, 1861967633, 1855367580, 1848697673,
	1841958164, 1835149305, 1828271355, 1821324571, 1814309215, 1807225552, 1800073848, 1792854372,
	1785567395, 1778213194, 1770792043, 1763304223, 1755750016, 1748129706, 1740443580, 1732691927,
	1724875039, 1716993211, 1709046738, 1701035921, 1692961061, 1684822463, 1676620431, 1668355276,
	1660027308, 1651636840, 1643184190, 1634669675, 1626093615, 1617456334, 1608758157, 1599999410,
	1591180425, 1582301533, 1573363067, 1564365366, 1555308767, 1546193612, 1537020243, 1527789006,
	1518500249, 1509154322, 1499751575, 1490292364, 1480777044, 1471205973, 1461579513, 1451898025,
	1442161874, 1432371426, 1422527050, 1412629117, 1402677999, 1392674071, 1382617710, 1372509294,
	1362349204, 1352137822, 1341875532, 1331562722, 1321199780, 1310787095, 1300325059, 1289814068,
	1279254515, 1268646799, 1257991319, 1247288477, 1236538675, 1225742318, 1214899812, 1204011566,
	1193077990, 1182099495, 1171076495, 1160009404, 1148898640, 1137744620, 1126547765, 1115308496,
	1104027236, 1092704410, 1081340445, 1069935767, 1058490807, 1047005996, 1035481765, 1023918549,
	1012316784, 1000676905, 988999351, 977284561, 965532978, 953745043, 941921200, 930061894,
	918167571, 906238681, 894275670, 882278991, 870249095, 858186434, 846091463, 833964637,
	821806413, 809617248, 797397602, 785147934, 772868706, 760560379, 748223418, 735858287,
	723465451, 711045377, 698598533, 686125386, 673626408, 661102068, 648552837, 635979190,
	623381597, 610760535, 598116478, 585449903, 572761285, 560051103, 547319836, 534567963,
	521795963, 509004318, 496193509, 483364019, 470516330, 457650927, 444768293, 431868915,
	418953276, 406021864, 393075166, 380113669, 367137860, 354148229, 341145265, 328129457,
	315101294, 302061269, 289009871, 275947592, 262874923, 249792358, 236700388, 223599506,
	210490206, 197372981, 184248325, 171116732, 157978697, 144834714, 131685278, 118530885,
	105372028, 92209205, 79042909, 65873638, 52701887, 39528151, 26352928, 13176712,
};

A4_1024[512] = {
	0, 1647100, 3294201, 4941307, 6588418, 8235537, 9882666, 11529806,
	13176960, 14824129, 16471316, 18118523, 19765750, 21413001, 23060277, 24707580,
	26354912, 28002276, 29649672, 31297103, 32944571, 34592077, 36239625, 37887215,
	39534849, 41182531, 42830260, 44478040, 46125873, 47773759, 49421702, 51069703,
	52717765, 54365888, 56014075, 57662328, 59310649, 60959040, 62607503, 64256040,
	65904652, 67553342, 69202111, 70850962, 72499896, 74148916, 75798023, 77447219,
	79096506, 80745887, 82395363, 84044936, 85694608, 87344381, 88994257, 90644237,
	92294325, 93944521, 95594829, 97245248, 98895783, 100546434, 102197204, 103848094,
	105499107, 107150244, 108801507, 110452899, 112104421, 113756075, 115407864, 117059788,
	118711851, 120364054, 122016399, 123668888, 125321523, 126974306, 128627239, 130280324,
	131933563, 133586957, 135240509, 136894221, 138548095, 140202132, 141856335, 143510706,
	145165246, 146819958, 148474843, 150129904, 151785142, 153440560, 155096160, 156751942,
	158407910, 160064066, 161720411, 163376947, 165033677, 166690602, 168347724, 170005045,
	171662568, 173320294, 174978225, 176636364, 178294712, 179953271, 181612043, 183271030,
	184930235, 186589658, 188249303, 189909172, 191569265, 193229585, 194890135, 196550916,
	198211930, 199873179, 201534666, 203196391, 204858358, 206520568, 208183024, 209845726,
	211508678, 213171881, 214835338, 216499049, 218163018, 219827246, 221491736, 223156489,
	224821507, 226486793, 228152348, 229818175, 231484275, 233150651, 234817304, 236484237,
	238151452, 239818950, 241486733, 243154805, 244823166, 246491819, 248160766, 249830009,
	251499549, 253169390, 254839533, 256509979, 258180732, 259851793, 261523164, 263194847,
	264866845, 266539159, 268211792, 269884745, 271558020, 273231620, 274905547, 276579803,
	278254389, 279929308, 281604562, 283280154, 284956084, 286632355, 288308970, 289985930,
	291663238, 293340894, 295018903, 296697265, 298375983, 300055059, 301734494, 303414292,
	305094454, 306774982, 308455878, 310137145, 311818784, 313500798, 315183188, 316865957,
	318549108, 320232641, 321916559, 323600865, 325285560, 326970646, 328656127, 330342002,
	332028276, 333714950, 335402026, 337089506, 338777392, 340465687, 342154393, 343843511,
	345533045, 347222995, 348913365, 350604156, 352295370, 353987010, 355679078, 357371576,
	359064506, 360757870, 362451671, 364145910, 365840590, 367535713, 369231281, 370927296,
	372623761, 374320677, 376018047, 377715873, 379414157, 381112902, 382812109, 384511781,
	386211919, 387912527, 389613606, 391315159, 393017187, 394719693, 396422679, 398126148,
	399830101, 401534541, 403239469, 404944889, 406650802, 408357211, 410064118, 411771525,
	413479434, 415187847, 416896767, 418606197, 420316137, 422026591, 423737561, 425449048,
	427161056, 428873586, 430586641, 432300223, 434014335, 435728977, 437444154, 439159866,
	440876117, 442592908, 444310243, 446028122, 447746549, 449465525, 451185054, 452905136,
	454625776, 456346974, 458068733, 459791056, 461513944, 463237401, 464961428, 466686028,
	468411202, 470136954, 471863286, 473590200, 475317698, 477045782, 478774456, 480503721,
	482233579, 483964034, 485695086, 487426740, 489158996, 490891858, 492625328, 494359407,
	496094100, 497829407, 499565331, 501301875, 503039040, 504776830, 506515247, 508254293,
	509993970, 511734281, 513475229, 515216815, 516959042, 518701913, 520445429, 522189594,
	523934410, 525679879, 527426003, 529172785, 530920228, 532668333, 534417104, 536166542,
	537916651, 539667432, 541418888, 543171022, 544923836, 546677332, 548431513, 550186381,
	551941939, 553698189, 555455134, 557212777, 558971119, 560730163, 562489912, 564250369,
	566011534, 567773413, 569536005, 571299316, 573063345, 574828097, 576593574, 578359778,
	580126712, 581894379, 583662780, 585431918, 587201797, 588972418, 590743784, 592515898,
	594288762, 596062379, 597836751, 599611881, 601387772, 603164425, 604941844, 606720032,
	608498990, 610278722, 612059229, 613840515, 615622583, 617405434, 619189072, 620973499,
	622758717, 624544730, 626331540, 628119149, 629907561, 631696778, 633486802, 635277636,
	637069283, 638861745, 640655026, 642449128, 644244053, 646039804, 647836385, 649633796,
	651432042, 653231125, 655031048, 656831813, 658633423, 660435881, 662239190, 664043352,
	665848369, 667654246, 669460984, 671268586, 673077055, 674886394, 676696605, 678507692,
	680319656, 682132501, 683946230, 685760845, 687576349, 689392745, 691210036, 693028224,
	694847313, 696667305, 698488202, 700310009, 702132726, 703956359, 705780908, 707606378,
	709432771, 711260089, 713088336, 714917514, 716747627, 718578677, 720410667, 722243600,
	724077480, 725912307, 727748087, 729584821, 731422512, 733261164, 735100779, 736941361,
	738782911, 740625434, 742468931, 744313407, 746158864, 748005304, 749852731, 751701148,
	753550558, 755400964, 757252368, 759104774, 760958185, 762812603, 764668033, 766524476,
	768381935, 770240415, 772099917, 773960445, 775822002, 777684591, 779548215, 781412877,
	783278580, 785145328, 787013122, 788881967, 790751865, 792622820, 794494834, 796367911,
	798242054, 800117266, 801993550, 803870909, 805749346, 807628865, 809509468, 811391159,
	813273942, 815157818, 817042791, 818928865, 820816043, 822704327, 824593721, 826484229,
	828375853, 830268597, 832162463, 834057456, 835953578, 837850832, 839749223, 841648752,
	843549424, 845451241, 847354208, 849258326, 851163600, 853070033, 854977628, 856886388,
	858796317, 860707417, 862619694, 864533148, 866447785, 868363608, 870280618, 872198822,
	874118220, 876038817, 877960617, 879883622, 881807836, 883733263, 885659905, 887587767,
};

B4_1024[512] = {
	0, −3294197, −6588387, −9882561, −13176712, −16470832, −19764913, −23058947,
	−26352928, −29646846, −32940695, −36234466, −39528151, −42821744, −46115236, −49408620,
	−52701887, −55995030, −59288042, −62580914, −65873638, −69166208, −72458615, −75750851,
	−79042909, −82334782, −85626460, −88917937, −92209205, −95500255, −98791081, −102081675,
	−105372028, −108662134, −111951983, −115241570, −118530885, −121819921, −125108670, −128397125,
	−131685278, −134973122, −138260647, −141547847, −144834714, −148121241, −151407418, −154693240,
	−157978697, −161263783, −164548489, −167832808, −171116732, −174400254, −177683365, −180966058,
	−184248325, −187530159, −190811551, −194092494, −197372981, −200653003, −203932553, −207211623,
	−210490206, −213768293, −217045877, −220322951, −223599506, −226875535, −230151030, −233425983,
	−236700388, −239974235, −243247517, −246520228, −249792358, −253063900, −256334847, −259605190,
	−262874923, −266144037, −269412525, −272680379, −275947592, −279214155, −282480061, −285745302,
	−289009871, −292273760, −295536961, −298799466, −302061269, −305322361, −308582734, −311842381,
	−315101294, −318359466, −321616889, −324873555, −328129457, −331384586, −334638936, −337892498,
	−341145265, −344397229, −347648383, −350898719, −354148229, −357396906, −360644742, −363891729,
	−367137860, −370383127, −373627523, −376871039, −380113669, −383355404, −386596237, −389836160,
	−393075166, −396313247, −399550396, −402786604, −406021864, −409256170, −412489512, −415721883,
	−418953276, −422183684, −425413098, −428641510, −431868915, −435095303, −438320667, −441545000,
	−444768293, −447990541, −451211734, −454431865, −457650927, −460868912, −464085813, −467301621,
	−470516330, −473729932, −476942419, −480153784, −483364019, −486573116, −489781069, −492987869,
	−496193509, −499397981, −502601279, −505803393, −509004318, −512204045, −515402566, −518599875,
	−521795963, −524990823, −528184448, −531376831, −534567963, −537757837, −540946445, −544133781,
	−547319836, −550504604, −553688076, −556870245, −560051103, −563230644, −566408860, −569585743,
	−572761285, −575935480, −579108319, −582279796, −585449903, −588618632, −591785976, −594951927,
	−598116478, −601279622, −604441351, −607601658, −610760535, −613917975, −617073970, −620228514,
	−623381597, −626533214, −629683357, −632832018, −635979190, −639124865, −642269036, −645411696,
	−648552837, −651692453, −654830534, −657967075, −661102068, −664235505, −667367379, −670497682,
	−673626408, −676753549, −679879097, −683003045, −686125386, −689246113, −692365218, −695482694,
	−698598533, −701712728, −704825272, −707936157, −711045377, −714152924, −717258790, −720362968,
	−723465451, −726566232, −729665303, −732762657, −735858287, −738952185, −742044345, −745134758,
	−748223418, −751310318, −754395449, −757478805, −760560379, −763640163, −766718151, −769794334,
	−772868706, −775941259, −779011986, −782080880, −785147934, −788213140, −791276492, −794337981,
	−797397602, −800455346, −803511207, −806565176, −809617248, −812667415, −815715670, −818762005,
	−821806413, −824848888, −827889421, −830928007, −833964637, −836999305, −840032003, −843062725,
	−846091463, −849118210, −852142959, −855165703, −858186434, −861205146, −864221832, −867236484,
	−870249095, −873259658, −876268167, −879274614, −882278991, −885281293, −888281511, −891279640,
	−894275670, −897269597, −900261412, −903251109, −906238681, −909224120, −912207419, −915188572,
	−918167571, −921144410, −924119082, −927091578, −930061894, −933030020, −935995952, −938959680,
	−941921200, −944880502, −947837582, −950792431, −953745043, −956695410, −959643527, −962589385,
	−965532978, −968474299, −971413341, −974350098, −977284561, −980216725, −983146583, −986074127,
	−988999351, −991922247, −994842809, −997761031, −1000676905, −1003590423, −1006501581, −1009410370,
	−1012316784, −1015220815, −1018122458, −1021021705, −1023918549, −1026812985, −1029705003, −1032594599,
	−1035481765, −1038366495, −1041248781, −1044128617, −1047005996, −1049880911, −1052753356, −1055623324,
	−1058490807, −1061355800, −1064218296, −1067078287, −1069935767, −1072790730, −1075643168, −1078493075,
	−1081340445, −1084185270, −1087027543, −1089867259, −1092704410, −1095538990, −1098370992, −1101200410,
	−1104027236, −1106851464, −1109673088, −1112492101, −1115308496, −1118122266, −1120933406, −1123741907,
	−1126547765, −1129350972, −1132151521, −1134949406, −1137744620, −1140537157, −1143327011, −1146114174,
	−1148898640, −1151680403, −1154459455, −1157235791, −1160009404, −1162780288, −1165548435, −1168313839,
	−1171076495, −1173836395, −1176593532, −1179347901, −1182099495, −1184848308, −1187594332, −1190337561,
	−1193077990, −1195815611, −1198550419, −1201282406, −1204011566, −1206737894, −1209461381, −1212182023,
	−1214899812, −1217614743, −1220326808, −1223036002, −1225742318, −1228445749, −1231146290, −1233843934,
	−1236538675, −1239230506, −1241919421, −1244605413, −1247288477, −1249968606, −1252645793, −1255320033,
	−1257991319, −1260659645, −1263325005, −1265987391, −1268646799, −1271303222, −1273956652, −1276607086,
	−1279254515, −1281898934, −1284540337, −1287178717, −1289814068, −1292446384, −1295075658, −1297701886,
	−1300325059, −1302945173, −1305562221, −1308176197, −1310787095, −1313394908, −1315999631, −1318601257,
	−1321199780, −1323795194, −1326387493, −1328976672, −1331562722, −1334145640, −1336725418, −1339302051,
	−1341875532, −1344445856, −1347013016, −1349577007, −1352137822, −1354695455, −1357249900, −1359801152,
	−1362349204, −1364894050, −1367435684, −1369974101, −1372509294, −1375041257, −1377569985, −1380095471,
	−1382617710, −1385136695, −1387652421, −1390164882, −1392674071, −1395179983, −1397682613, −1400181953,
	−1402677999, −1405170744, −1407660183, −1410146309, −1412629117, −1415108601, −1417584755, −1420057573,
	−1422527050, −1424993179, −1427455956, −1429915373, −1432371426, −1434824108, −1437273414, −1439719338,
	−1442161874, −1444601016, −1447036759, −1449469097, −1451898025, −1454323536, −1456745625, −1459164286,
	−1461579513, −1463991301, −1466399644, −1468804537, −1471205973, −1473603948, −1475998455, −1478389489,
	−1480777044, −1483161114, −1485541695, −1487918780, −1490292364, −1492662441, −1495029005, −1497392052,
	−1499751575, −1502107569, −1504460029, −1506808948, −1509154322, −1511496144, −1513834410, −1516169113,
};

A1_2048[512] = {
	−2147483647, −2134347114, −2121290448, −2108312682, −2095412859, −2082590039, −2069843295, −2057171715,
	−2044574398, −2032050460, −2019599026, −2007219237, −1994910245, −1982671216, −1970501324, −1958399760,
	−1946365724, −1934398427, −1922497092, −1910660953, −1898889255, −1887181253, −1875536213, −1863953411,
	−1852432133, −1840971676, −1829571343, −1818230452, −1806948326, −1795724299, −1784557714, −1773447921,
	−1762394283, −1751396166, −1740452950, −1729564018, −1718728765, −1707946592, −1697216909, −1686539132,
	−1675912687, −1665337006, −1654811527, −1644335698, −1633908973, −1623530812, −1613200682, −1602918058,
	−1592682420, −1582493256, −1572350060, −1562252331, −1552199576, −1542191307, −1532227041, −1522306304,
	−1512428625, −1502593540, −1492800589, −1483049319, −1473339283, −1463670038, −1454041146, −1444452175,
	−1434902698, −1425392293, −1415920543, −1406487035, −1397091361, −1387733119, −1378411911, −1369127341,
	−1359879022, −1350666568, −1341489598, −1332347736, −1323240610, −1314167852, −1305129097, −1296123986,
	−1287152163, −1278213276, −1269306976, −1260432918, −1251590761, −1242780169, −1234000808, −1225252347,
	−1216534460, −1207846823, −1199189117, −1190561025, −1181962234, −1173392433, −1164851317, −1156338580,
	−1147853924, −1139397049, −1130967661, −1122565468, −1114190182, −1105841517, −1097519190, −1089222920,
	−1080952429, −1072707443, −1064487689, −1056292898, −1048122803, −1039977138, −1031855642, −1023758056,
	−1015684122, −1007633585, −999606193, −991601695, −983619845, −975660396, −967723104, −959807729,
	−951914032, −944041776, −936190725, −928360648, −920551313, −912762492, −904993957, −897245485,
	−889516852, −881807836, −874118220, −866447785, −858796317, −851163600, −843549424, −835953578,
	−828375853, −820816043, −813273942, −805749346, −798242054, −790751865, −783278580, −775822002,
	−768381935, −760958185, −753550558, −746158864, −738782911, −731422512, −724077480, −716747627,
	−709432771, −702132726, −694847313, −687576349, −680319656, −673077055, −665848369, −658633423,
	−651432042, −644244053, −637069283, −629907561, −622758717, −615622583, −608498990, −601387772,
	−594288762, −587201797, −580126712, −573063345, −566011534, −558971119, −551941939, −544923836,
	−537916651, −530920228, −523934410, −516959042, −509993970, −503039040, −496094100, −489158996,
	−482233579, −475317698, −468411202, −461513944, −454625776, −447746549, −440876117, −434014335,
	−427161056, −420316137, −413479434, −406650802, −399830101, −393017187, −386211919, −379414157,
	−372623761, −365840590, −359064506, −352295370, −345533045, −338777392, −332028276, −325285560,
	−318549108, −311818784, −305094454, −298375983, −291663238, −284956084, −278254389, −271558020,
	−264866845, −258180732, −251499549, −244823166, −238151452, −231484275, −224821507, −218163018,
	−211508678, −204858358, −198211930, −191569265, −184930235, −178294712, −171662568, −165033677,
	−158407910, −151785142, −145165246, −138548095, −131933563, −125321523, −118711851, −112104421,
	−105499107, −98895783, −92294325, −85694608, −79096506, −72499896, −65904652, −59310649,
	−52717765, −46125873, −39534849, −32944571, −26354912, −19765750, −13176960, −6588418,
	0, 6588418, 13176960, 19765750, 26354912, 32944571, 39534849, 46125873,
	52717765, 59310649, 65904652, 72499896, 79096506, 85694608, 92294325, 98895783,
	105499107, 112104421, 118711851, 125321523, 131933563, 138548095, 145165246, 151785142,
	158407910, 165033677, 171662568, 178294712, 184930235, 191569265, 198211930, 204858358,
	211508678, 218163018, 224821507, 231484275, 238151452, 244823166, 251499549, 258180732,
	264866845, 271558020, 278254389, 284956084, 291663238, 298375983, 305094454, 311818784,
	318549108, 325285560, 332028276, 338777392, 345533045, 352295370, 359064506, 365840590,
	372623761, 379414157, 386211919, 393017187, 399830101, 406650802, 413479434, 420316137,
	427161056, 434014335, 440876117, 447746549, 454625776, 461513944, 468411202, 475317698,
	482233579, 489158996, 496094100, 503039040, 509993970, 516959042, 523934410, 530920228,
	537916651, 544923836, 551941939, 558971119, 566011534, 573063345, 580126712, 587201797,
	594288762, 601387772, 608498990, 615622583, 622758717, 629907561, 637069283, 644244053,
	651432042, 658633423, 665848369, 673077055, 680319656, 687576349, 694847313, 702132726,
	709432771, 716747627, 724077480, 731422512, 738782911, 746158864, 753550558, 760958185,
	768381935, 775822002, 783278580, 790751865, 798242054, 805749346, 813273942, 820816043,
	828375853, 835953578, 843549424, 851163600, 858796317, 866447785, 874118220, 881807836,
	889516852, 897245485, 904993957, 912762492, 920551313, 928360648, 936190725, 944041776,
	951914032, 959807729, 967723104, 975660396, 983619845, 991601695, 999606193, 1007633585,
	1015684122, 1023758056, 1031855642, 1039977138, 1048122803, 1056292898, 1064487689, 1072707443,
	1080952429, 1089222920, 1097519190, 1105841517, 1114190182, 1122565468, 1130967661, 1139397049,
	1147853924, 1156338580, 1164851317, 1173392433, 1181962234, 1190561025, 1199189117, 1207846823,
	1216534460, 1225252347, 1234000808, 1242780169, 1251590761, 1260432918, 1269306976, 1278213276,
	1287152163, 1296123986, 1305129097, 1314167852, 1323240610, 1332347736, 1341489598, 1350666568,
	1359879022, 1369127341, 1378411911, 1387733119, 1397091361, 1406487035, 1415920543, 1425392293,
	1434902698, 1444452175, 1454041146, 1463670038, 1473339283, 1483049319, 1492800589, 1502593540,
	1512428625, 1522306304, 1532227041, 1542191307, 1552199576, 1562252331, 1572350060, 1582493256,
	1592682420, 1602918058, 1613200682, 1623530812, 1633908973, 1644335698, 1654811527, 1665337006,
	1675912687, 1686539132, 1697216909, 1707946592, 1718728765, 1729564018, 1740452950, 1751396166,
	1762394283, 1773447921, 1784557714, 1795724299, 1806948326, 1818230452, 1829571343, 1840971676,
	1852432133, 1863953411, 1875536213, 1887181253, 1898889255, 1910660953, 1922497092, 1934398427,
	1946365724, 1958399760, 1970501324, 1982671216, 1994910245, 2007219237, 2019599026, 2032050460,
	2044574398, 2057171715, 2069843295, 2082590039, 2095412859, 2108312682, 2121290448, 2134347114,
};

B1_2048[512] = {
	2147483647, 2147443221, 2147321945, 2147119824, 2146836865, 2146473079, 2146028479, 2145503082,
	2144896909, 2144209981, 2143442325, 2142593970, 2141664947, 2140655292, 2139565042, 2138394239,
	2137142926, 2135811152, 2134398965, 2132906419, 2131333571, 2129680479, 2127947205, 2126133816,
	2124240379, 2122266966, 2120213650, 2118080510, 2115867625, 2113575079, 2111202958, 2108751351,
	2106220351, 2103610053, 2100920555, 2098151959, 2095304369, 2092377891, 2089372637, 2086288719,
	2083126253, 2079885359, 2076566159, 2073168776, 2069693341, 2066139982, 2062508835, 2058800035,
	2055013722, 2051150040, 2047209132, 2043191149, 2039096240, 2034924561, 2030676268, 2026351521,
	2021950483, 2017473320, 2012920200, 2008291295, 2003586778, 1998806828, 1993951624, 1989021349,
	1984016188, 1978936330, 1973781966, 1968553291, 1963250500, 1957873795, 1952423376, 1946899450,
	1941302224, 1935631909, 1929888719, 1924072870, 1918184580, 1912224072, 1906191569, 1900087300,
	1893911493, 1887664382, 1881346201, 1874957188, 1868497585, 1861967633, 1855367580, 1848697673,
	1841958164, 1835149305, 1828271355, 1821324571, 1814309215, 1807225552, 1800073848, 1792854372,
	1785567395, 1778213194, 1770792043, 1763304223, 1755750016, 1748129706, 1740443580, 1732691927,
	1724875039, 1716993211, 1709046738, 1701035921, 1692961061, 1684822463, 1676620431, 1668355276,
	1660027308, 1651636840, 1643184190, 1634669675, 1626093615, 1617456334, 1608758157, 1599999410,
	1591180425, 1582301533, 1573363067, 1564365366, 1555308767, 1546193612, 1537020243, 1527789006,
	1518500249, 1509154322, 1499751575, 1490292364, 1480777044, 1471205973, 1461579513, 1451898025,
	1442161874, 1432371426, 1422527050, 1412629117, 1402677999, 1392674071, 1382617710, 1372509294,
	1362349204, 1352137822, 1341875532, 1331562722, 1321199780, 1310787095, 1300325059, 1289814068,
	1279254515, 1268646799, 1257991319, 1247288477, 1236538675, 1225742318, 1214899812, 1204011566,
	1193077990, 1182099495, 1171076495, 1160009404, 1148898640, 1137744620, 1126547765, 1115308496,
	1104027236, 1092704410, 1081340445, 1069935767, 1058490807, 1047005996, 1035481765, 1023918549,
	1012316784, 1000676905, 988999351, 977284561, 965532978, 953745043, 941921200, 930061894,
	918167571, 906238681, 894275670, 882278991, 870249095, 858186434, 846091463, 833964637,
	821806413, 809617248, 797397602, 785147934, 772868706, 760560379, 748223418, 735858287,
	723465451, 711045377, 698598533, 686125386, 673626408, 661102068, 648552837, 635979190,
	623381597, 610760535, 598116478, 585449903, 572761285, 560051103, 547319836, 534567963,
	521795963, 509004318, 496193509, 483364019, 470516330, 457650927, 444768293, 431868915,
	418953276, 406021864, 393075166, 380113669, 367137860, 354148229, 341145265, 328129457,
	315101294, 302061269, 289009871, 275947592, 262874923, 249792358, 236700388, 223599506,
	210490206, 197372981, 184248325, 171116732, 157978697, 144834714, 131685278, 118530885,
	105372028, 92209205, 79042909, 65873638, 52701887, 39528151, 26352928, 13176712,
	0, −13176712, −26352928, −39528151, −52701887, −65873638, −79042909, −92209205,
	−105372028, −118530885, −131685278, −144834714, −157978697, −171116732, −184248325, −197372981,
	−210490206, −223599506, −236700388, −249792358, −262874923, −275947592, −289009871, −302061269,
	−315101294, −328129457, −341145265, −354148229, −367137860, −380113669, −393075166, −406021864,
	−418953276, −431868915, −444768293, −457650927, −470516330, −483364019, −496193509, −509004318,
	−521795963, −534567963, −547319836, −560051103, −572761285, −585449903, −598116478, −610760535,
	−623381597, −635979190, −648552837, −661102068, −673626408, −686125386, −698598533, −711045377,
	−723465451, −735858287, −748223418, −760560379, −772868706, −785147934, −797397602, −809617248,
	−821806413, −833964637, −846091463, −858186434, −870249095, −882278991, −894275670, −906238681,
	−918167571, −930061894, −941921200, −953745043, −965532978, −977284561, −988999351, −1000676905,
	−1012316784, −1023918549, −1035481765, −1047005996, −1058490807, −1069935767, −1081340445, −1092704410,
	−1104027236, −1115308496, −1126547765, −1137744620, −1148898640, −1160009404, −1171076495, −1182099495,
	−1193077990, −1204011566, −1214899812, −1225742318, −1236538675, −1247288477, −1257991319, −1268646799,
	−1279254515, −1289814068, −1300325059, −1310787095, −1321199780, −1331562722, −1341875532, −1352137822,
	−1362349204, −1372509294, −1382617710, −1392674071, −1402677999, −1412629117, −1422527050, −1432371426,
	−1442161874, −1451898025, −1461579513, −1471205973, −1480777044, −1490292364, −1499751575, −1509154322,
	−1518500249, −1527789006, −1537020243, −1546193612, −1555308767, −1564365366, −1573363067, −1582301533,
	−1591180425, −1599999410, −1608758157, −1617456334, −1626093615, −1634669675, −1643184190, −1651636840,
	−1660027308, −1668355276, −1676620431, −1684822463, −1692961061, −1701035921, −1709046738, −1716993211,
	−1724875039, −1732691927, −1740443580, −1748129706, −1755750016, −1763304223, −1770792043, −1778213194,
	−1785567395, −1792854372, −1800073848, −1807225552, −1814309215, −1821324571, −1828271355, −1835149305,
	−1841958164, −1848697673, −1855367580, −1861967633, −1868497585, −1874957188, −1881346201, −1887664382,
	−1893911493, −1900087300, −1906191569, −1912224072, −1918184580, −1924072870, −1929888719, −1935631909,
	−1941302224, −1946899450, −1952423376, −1957873795, −1963250500, −1968553291, −1973781966, −1978936330,
	−1984016188, −1989021349, −1993951624, −1998806828, −2003586778, −2008291295, −2012920200, −2017473320,
	−2021950483, −2026351521, −2030676268, −2034924561, −2039096240, −2043191149, −2047209132, −2051150040,
	−2055013722, −2058800035, −2062508835, −2066139982, −2069693341, −2073168776, −2076566159, −2079885359,
	−2083126253, −2086288719, −2089372637, −2092377891, −2095304369, −2098151959, −2100920555, −2103610053,
	−2106220351, −2108751351, −2111202958, −2113575079, −2115867625, −2118080510, −2120213650, −2122266966,
	−2124240379, −2126133816, −2127947205, −2129680479, −2131333571, −2132906419, −2134398965, −2135811152,
	−2137142926, −2138394239, −2139565042, −2140655292, −2141664947, −2142593970, −2143442325, −2144209981,
	−2144896909, −2145503082, −2146028479, −2146473079, −2146836865, −2147119824, −2147321945, −2147443221,
};

A3_2048[512] = {
	−2147483647, −2140905336, −2134347114, −2127808858, −2121290448, −2114791763, −2108312682, −2101853087,
	−2095412859, −2088991882, −2082590039, −2076207215, −2069843295, −2063498166, −2057171715, −2050863829,
	−2044574398, −2038303311, −2032050460, −2025815734, −2019599026, −2013400229, −2007219237, −2001055944,
	−1994910245, −1988782037, −1982671216, −1976577679, −1970501324, −1964442052, −1958399760, −1952374351,
	−1946365724, −1940373782, −1934398427, −1928439562, −1922497092, −1916570920, −1910660953, −1904767095,
	−1898889255, −1893027338, −1887181253, −1881350908, −1875536213, −1869737077, −1863953411, −1858185126,
	−1852432133, −1846694346, −1840971676, −1835264037, −1829571343, −1823893510, −1818230452, −1812582085,
	−1806948326, −1801329091, −1795724299, −1790133867, −1784557714, −1778995759, −1773447921, −1767914123,
	−1762394283, −1756888323, −1751396166, −1745917734, −1740452950, −1735001736, −1729564018, −1724139719,
	−1718728765, −1713331080, −1707946592, −1702575226, −1697216909, −1691871568, −1686539132, −1681219529,
	−1675912687, −1670618536, −1665337006, −1660068026, −1654811527, −1649567441, −1644335698, −1639116232,
	−1633908973, −1628713855, −1623530812, −1618359776, −1613200682, −1608053464, −1602918058, −1597794398,
	−1592682420, −1587582061, −1582493256, −1577415943, −1572350060, −1567295543, −1562252331, −1557220362,
	−1552199576, −1547189911, −1542191307, −1537203703, −1532227041, −1527261261, −1522306304, −1517362112,
	−1512428625, −1507505787, −1502593540, −1497691826, −1492800589, −1487919772, −1483049319, −1478189175,
	−1473339283, −1468499589, −1463670038, −1458850575, −1454041146, −1449241697, −1444452175, −1439672526,
	−1434902698, −1430142638, −1425392293, −1420651612, −1415920543, −1411199034, −1406487035, −1401784494,
	−1397091361, −1392407586, −1387733119, −1383067910, −1378411911, −1373765070, −1369127341, −1364498674,
	−1359879022, −1355268335, −1350666568, −1346073671, −1341489598, −1336914302, −1332347736, −1327789854,
	−1323240610, −1318699958, −1314167852, −1309644247, −1305129097, −1300622359, −1296123986, −1291633936,
	−1287152163, −1282678625, −1278213276, −1273756074, −1269306976, −1264865938, −1260432918, −1256007873,
	−1251590761, −1247181541, −1242780169, −1238386605, −1234000808, −1229622735, −1225252347, −1220889602,
	−1216534460, −1212186880, −1207846823, −1203514248, −1199189117, −1194871389, −1190561025, −1186257986,
	−1181962234, −1177673729, −1173392433, −1169118309, −1164851317, −1160591420, −1156338580, −1152092761,
	−1147853924, −1143622032, −1139397049, −1135178937, −1130967661, −1126763183, −1122565468, −1118374480,
	−1114190182, −1110012540, −1105841517, −1101677079, −1097519190, −1093367815, −1089222920, −1085084469,
	−1080952429, −1076826765, −1072707443, −1068594429, −1064487689, −1060387190, −1056292898, −1052204780,
	−1048122803, −1044046933, −1039977138, −1035913385, −1031855642, −1027803877, −1023758056, −1019718148,
	−1015684122, −1011655945, −1007633585, −1003617011, −999606193, −995601098, −991601695, −987607955,
	−983619845, −979637335, −975660396, −971688995, −967723104, −963762692, −959807729, −955858186,
	−951914032, −947975239, −944041776, −940113615, −936190725, −932273080, −928360648, −924453402,
	−920551313, −916654352, −912762492, −908875703, −904993957, −901117227, −897245485, −893378702,
	−889516852, −885659905, −881807836, −877960617, −874118220, −870280618, −866447785, −862619694,
	−858796317, −854977628, −851163600, −847354208, −843549424, −839749223, −835953578, −832162463,
	−828375853, −824593721, −820816043, −817042791, −813273942, −809509468, −805749346, −801993550,
	−798242054, −794494834, −790751865, −787013122, −783278580, −779548215, −775822002, −772099917,
	−768381935, −764668033, −760958185, −757252368, −753550558, −749852731, −746158864, −742468931,
	−738782911, −735100779, −731422512, −727748087, −724077480, −720410667, −716747627, −713088336,
	−709432771, −705780908, −702132726, −698488202, −694847313, −691210036, −687576349, −683946230,
	−680319656, −676696605, −673077055, −669460984, −665848369, −662239190, −658633423, −655031048,
	−651432042, −647836385, −644244053, −640655026, −637069283, −633486802, −629907561, −626331540,
	−622758717, −619189072, −615622583, −612059229, −608498990, −604941844, −601387772, −597836751,
	−594288762, −590743784, −587201797, −583662780, −580126712, −576593574, −573063345, −569536005,
	−566011534, −562489912, −558971119, −555455134, −551941939, −548431513, −544923836, −541418888,
	−537916651, −534417104, −530920228, −527426003, −523934410, −520445429, −516959042, −513475229,
	−509993970, −506515247, −503039040, −499565331, −496094100, −492625328, −489158996, −485695086,
	−482233579, −478774456, −475317698, −471863286, −468411202, −464961428, −461513944, −458068733,
	−454625776, −451185054, −447746549, −444310243, −440876117, −437444154, −434014335, −430586641,
	−427161056, −423737561, −420316137, −416896767, −413479434, −410064118, −406650802, −403239469,
	−399830101, −396422679, −393017187, −389613606, −386211919, −382812109, −379414157, −376018047,
	−372623761, −369231281, −365840590, −362451671, −359064506, −355679078, −352295370, −348913365,
	−345533045, −342154393, −338777392, −335402026, −332028276, −328656127, −325285560, −321916559,
	−318549108, −315183188, −311818784, −308455878, −305094454, −301734494, −298375983, −295018903,
	−291663238, −288308970, −284956084, −281604562, −278254389, −274905547, −271558020, −268211792,
	−264866845, −261523164, −258180732, −254839533, −251499549, −248160766, −244823166, −241486733,
	−238151452, −234817304, −231484275, −228152348, −224821507, −221491736, −218163018, −214835338,
	−211508678, −208183024, −204858358, −201534666, −198211930, −194890135, −191569265, −188249303,
	−184930235, −181612043, −178294712, −174978225, −171662568, −168347724, −165033677, −161720411,
	−158407910, −155096160, −151785142, −148474843, −145165246, −141856335, −138548095, −135240509,
	−131933563, −128627239, −125321523, −122016399, −118711851, −115407864, −112104421, −108801507,
	−105499107, −102197204, −98895783, −95594829, −92294325, −88994257, −85694608, −82395363,
	−79096506, −75798023, −72499896, −69202111, −65904652, −62607503, −59310649, −56014075,
	−52717765, −49421702, −46125873, −42830260, −39534849, −36239625, −32944571, −29649672,
	−26354912, −23060277, −19765750, −16471316, −13176960, −9882666, −6588418, −3294201,
};

B3_2048[512] = {
	2147483647, 2147473541, 2147443221, 2147392689, 2147321945, 2147230990, 2147119824, 2146988449,
	2146836865, 2146665075, 2146473079, 2146260880, 2146028479, 2145775879, 2145503082, 2145210091,
	2144896909, 2144563538, 2144209981, 2143836243, 2143442325, 2143028233, 2142593970, 2142139540,
	2141664947, 2141170196, 2140655292, 2140120239, 2139565042, 2138989707, 2138394239, 2137778643,
	2137142926, 2136487094, 2135811152, 2135115106, 2134398965, 2133662733, 2132906419, 2132130029,
	2131333571, 2130517051, 2129680479, 2128823861, 2127947205, 2127050521, 2126133816, 2125197099,
	2124240379, 2123263665, 2122266966, 2121250291, 2120213650, 2119157053, 2118080510, 2116984030,
	2115867625, 2114731304, 2113575079, 2112398959, 2111202958, 2109987084, 2108751351, 2107495769,
	2106220351, 2104925108, 2103610053, 2102275198, 2100920555, 2099546138, 2098151959, 2096738031,
	2095304369, 2093850984, 2092377891, 2090885104, 2089372637, 2087840504, 2086288719, 2084717297,
	2083126253, 2081515602, 2079885359, 2078235539, 2076566159, 2074877232, 2073168776, 2071440807,
	2069693341, 2067926393, 2066139982, 2064334123, 2062508835, 2060664132, 2058800035, 2056916559,
	2055013722, 2053091543, 2051150040, 2049189230, 2047209132, 2045209766, 2043191149, 2041153301,
	2039096240, 2037019987, 2034924561, 2032809981, 2030676268, 2028523441, 2026351521, 2024160528,
	2021950483, 2019721407, 2017473320, 2015206244, 2012920200, 2010615209, 2008291295, 2005948477,
	2003586778, 2001206221, 1998806828, 1996388621, 1993951624, 1991495859, 1989021349, 1986528117,
	1984016188, 1981485584, 1978936330, 1976368449, 1973781966, 1971176905, 1968553291, 1965911147,
	1963250500, 1960571374, 1957873795, 1955157787, 1952423376, 1949670588, 1946899450, 1944109986,
	1941302224, 1938476189, 1935631909, 1932769410, 1929888719, 1926989863, 1924072870, 1921137766,
	1918184580, 1915213339, 1912224072, 1909216806, 1906191569, 1903148391, 1900087300, 1897008324,
	1893911493, 1890796836, 1887664382, 1884514160, 1881346201, 1878160534, 1874957188, 1871736195,
	1868497585, 1865241387, 1861967633, 1858676354, 1855367580, 1852041343, 1848697673, 1845336603,
	1841958164, 1838562387, 1835149305, 1831718951, 1828271355, 1824806551, 1821324571, 1817825448,
	1814309215, 1810775906, 1807225552, 1803658188, 1800073848, 1796472564, 1792854372, 1789219304,
	1785567395, 1781898680, 1778213194, 1774510970, 1770792043, 1767056449, 1763304223, 1759535401,
	1755750016, 1751948106, 1748129706, 1744294852, 1740443580, 1736575926, 1732691927, 1728791619,
	1724875039, 1720942224, 1716993211, 1713028036, 1709046738, 1705049354, 1701035921, 1697006478,
	1692961061, 1688899710, 1684822463, 1680729357, 1676620431, 1672495724, 1668355276, 1664199124,
	1660027308, 1655839867, 1651636840, 1647418268, 1643184190, 1638934646, 1634669675, 1630389318,
	1626093615, 1621782607, 1617456334, 1613114837, 1608758157, 1604386334, 1599999410, 1595597427,
	1591180425, 1586748446, 1582301533, 1577839726, 1573363067, 1568871600, 1564365366, 1559844407,
	1555308767, 1550758488, 1546193612, 1541614182, 1537020243, 1532411836, 1527789006, 1523151796,
	1518500249, 1513834410, 1509154322, 1504460029, 1499751575, 1495029005, 1490292364, 1485541695,
	1480777044, 1475998455, 1471205973, 1466399644, 1461579513, 1456745625, 1451898025, 1447036759,
	1442161874, 1437273414, 1432371426, 1427455956, 1422527050, 1417584755, 1412629117, 1407660183,
	1402677999, 1397682613, 1392674071, 1387652421, 1382617710, 1377569985, 1372509294, 1367435684,
	1362349204, 1357249900, 1352137822, 1347013016, 1341875532, 1336725418, 1331562722, 1326387493,
	1321199780, 1315999631, 1310787095, 1305562221, 1300325059, 1295075658, 1289814068, 1284540337,
	1279254515, 1273956652, 1268646799, 1263325005, 1257991319, 1252645793, 1247288477, 1241919421,
	1236538675, 1231146290, 1225742318, 1220326808, 1214899812, 1209461381, 1204011566, 1198550419,
	1193077990, 1187594332, 1182099495, 1176593532, 1171076495, 1165548435, 1160009404, 1154459455,
	1148898640, 1143327011, 1137744620, 1132151521, 1126547765, 1120933406, 1115308496, 1109673088,
	1104027236, 1098370992, 1092704410, 1087027543, 1081340445, 1075643168, 1069935767, 1064218296,
	1058490807, 1052753356, 1047005996, 1041248781, 1035481765, 1029705003, 1023918549, 1018122458,
	1012316784, 1006501581, 1000676905, 994842809, 988999351, 983146583, 977284561, 971413341,
	965532978, 959643527, 953745043, 947837582, 941921200, 935995952, 930061894, 924119082,
	918167571, 912207419, 906238681, 900261412, 894275670, 888281511, 882278991, 876268167,
	870249095, 864221832, 858186434, 852142959, 846091463, 840032003, 833964637, 827889421,
	821806413, 815715670, 809617248, 803511207, 797397602, 791276492, 785147934, 779011986,
	772868706, 766718151, 760560379, 754395449, 748223418, 742044345, 735858287, 729665303,
	723465451, 717258790, 711045377, 704825272, 698598533, 692365218, 686125386, 679879097,
	673626408, 667367379, 661102068, 654830534, 648552837, 642269036, 635979190, 629683357,
	623381597, 617073970, 610760535, 604441351, 598116478, 591785976, 585449903, 579108319,
	572761285, 566408860, 560051103, 553688076, 547319836, 540946445, 534567963, 528184448,
	521795963, 515402566, 509004318, 502601279, 496193509, 489781069, 483364019, 476942419,
	470516330, 464085813, 457650927, 451211734, 444768293, 438320667, 431868915, 425413098,
	418953276, 412489512, 406021864, 399550396, 393075166, 386596237, 380113669, 373627523,
	367137860, 360644742, 354148229, 347648383, 341145265, 334638936, 328129457, 321616889,
	315101294, 308582734, 302061269, 295536961, 289009871, 282480061, 275947592, 269412525,
	262874923, 256334847, 249792358, 243247517, 236700388, 230151030, 223599506, 217045877,
	210490206, 203932553, 197372981, 190811551, 184248325, 177683365, 171116732, 164548489,
	157978697, 151407418, 144834714, 138260647, 131685278, 125108670, 118530885, 111951983,
	105372028, 98791081, 92209205, 85626460, 79042909, 72458615, 65873638, 59288042,
	52701887, 46115236, 39528151, 32940695, 26352928, 19764913, 13176712, 6588387,
};

A4_2048[1024] = {
	0, 823550, 1647100, 2470650, 3294201, 4117753, 4941307, 5764861,
	6588418, 7411976, 8235537, 9059100, 9882666, 10706234, 11529806, 12353381,
	13176960, 14000543, 14824129, 15647721, 16471316, 17294917, 18118523, 18942134,
	19765750, 20589372, 21413001, 22236636, 23060277, 23883925, 24707580, 25531242,
	26354912, 27178590, 28002276, 28825969, 29649672, 30473383, 31297103, 32120832,
	32944571, 33768319, 34592077, 35415846, 36239625, 37063414, 37887215, 38711026,
	39534849, 40358684, 41182531, 42006389, 42830260, 43654144, 44478040, 45301950,
	46125873, 46949809, 47773759, 48597724, 49421702, 50245695, 51069703, 51893726,
	52717765, 53541818, 54365888, 55189973, 56014075, 56838193, 57662328, 58486480,
	59310649, 60134836, 60959040, 61783263, 62607503, 63431762, 64256040, 65080336,
	65904652, 66728987, 67553342, 68377716, 69202111, 70026526, 70850962, 71675418,
	72499896, 73324395, 74148916, 74973458, 75798023, 76622609, 77447219, 78271851,
	79096506, 79921185, 80745887, 81570613, 82395363, 83220137, 84044936, 84869759,
	85694608, 86519482, 87344381, 88169306, 88994257, 89819234, 90644237, 91469268,
	92294325, 93119410, 93944521, 94769661, 95594829, 96420024, 97245248, 98070501,
	98895783, 99721094, 100546434, 101371804, 102197204, 103022634, 103848094, 104673585,
	105499107, 106324659, 107150244, 107975859, 108801507, 109627187, 110452899, 111278643,
	112104421, 112930231, 113756075, 114581953, 115407864, 116233809, 117059788, 117885802,
	118711851, 119537935, 120364054, 121190209, 122016399, 122842626, 123668888, 124495187,
	125321523, 126147896, 126974306, 127800754, 128627239, 129453762, 130280324, 131106924,
	131933563, 132760240, 133586957, 134413713, 135240509, 136067345, 136894221, 137721138,
	138548095, 139375093, 140202132, 141029213, 141856335, 142683499, 143510706, 144337955,
	145165246, 145992580, 146819958, 147647379, 148474843, 149302351, 150129904, 150957501,
	151785142, 152612829, 153440560, 154268337, 155096160, 155924028, 156751942, 157579903,
	158407910, 159235965, 160064066, 160892215, 161720411, 162548655, 163376947, 164205288,
	165033677, 165862115, 166690602, 167519138, 168347724, 169176360, 170005045, 170833781,
	171662568, 172491406, 173320294, 174149234, 174978225, 175807269, 176636364, 177465511,
	178294712, 179123965, 179953271, 180782630, 181612043, 182441509, 183271030, 184100605,
	184930235, 185759919, 186589658, 187419453, 188249303, 189079209, 189909172, 190739190,
	191569265, 192399397, 193229585, 194059831, 194890135, 195720497, 196550916, 197381394,
	198211930, 199042525, 199873179, 200703893, 201534666, 202365499, 203196391, 204027345,
	204858358, 205689433, 206520568, 207351765, 208183024, 209014344, 209845726, 210677171,
	211508678, 212340248, 213171881, 214003578, 214835338, 215667161, 216499049, 217331001,
	218163018, 218995100, 219827246, 220659458, 221491736, 222324079, 223156489, 223988965,
	224821507, 225654117, 226486793, 227319537, 228152348, 228985228, 229818175, 230651191,
	231484275, 232317429, 233150651, 233983943, 234817304, 235650736, 236484237, 237317809,
	238151452, 238985165, 239818950, 240652806, 241486733, 242320733, 243154805, 243988949,
	244823166, 245657456, 246491819, 247326256, 248160766, 248995350, 249830009, 250664742,
	251499549, 252334432, 253169390, 254004423, 254839533, 255674718, 256509979, 257345317,
	258180732, 259016224, 259851793, 260687440, 261523164, 262358967, 263194847, 264030807,
	264866845, 265702963, 266539159, 267375436, 268211792, 269048228, 269884745, 270721342,
	271558020, 272394780, 273231620, 274068543, 274905547, 275742634, 276579803, 277417054,
	278254389, 279091807, 279929308, 280766893, 281604562, 282442316, 283280154, 284118076,
	284956084, 285794177, 286632355, 287470620, 288308970, 289147407, 289985930, 290824540,
	291663238, 292502022, 293340894, 294179855, 295018903, 295858040, 296697265, 297536579,
	298375983, 299215476, 300055059, 300894731, 301734494, 302574348, 303414292, 304254327,
	305094454, 305934672, 306774982, 307615384, 308455878, 309296465, 310137145, 310977917,
	311818784, 312659744, 313500798, 314341946, 315183188, 316024525, 316865957, 317707485,
	318549108, 319390826, 320232641, 321074552, 321916559, 322758663, 323600865, 324443164,
	325285560, 326128054, 326970646, 327813337, 328656127, 329499015, 330342002, 331185089,
	332028276, 332871563, 333714950, 334558437, 335402026, 336245715, 337089506, 337933398,
	338777392, 339621489, 340465687, 341309989, 342154393, 342998900, 343843511, 344688226,
	345533045, 346377968, 347222995, 348068127, 348913365, 349758707, 350604156, 351449710,
	352295370, 353141137, 353987010, 354832990, 355679078, 356525273, 357371576, 358217987,
	359064506, 359911133, 360757870, 361604716, 362451671, 363298735, 364145910, 364993195,
	365840590, 366688096, 367535713, 368383441, 369231281, 370079232, 370927296, 371775472,
	372623761, 373472162, 374320677, 375169305, 376018047, 376866903, 377715873, 378564958,
	379414157, 380263472, 381112902, 381962447, 382812109, 383661887, 384511781, 385361791,
	386211919, 387062164, 387912527, 388763008, 389613606, 390464323, 391315159, 392166113,
	393017187, 393868380, 394719693, 395571126, 396422679, 397274353, 398126148, 398978064,
	399830101, 400682260, 401534541, 402386944, 403239469, 404092118, 404944889, 405797784,
	406650802, 407503945, 408357211, 409210602, 410064118, 410917759, 411771525, 412625416,
	413479434, 414333577, 415187847, 416042244, 416896767, 417751418, 418606197, 419461103,
	420316137, 421171300, 422026591, 422882011, 423737561, 424593240, 425449048, 426304987,
	427161056, 428017256, 428873586, 429730048, 430586641, 431443366, 432300223, 433157213,
	434014335, 434871589, 435728977, 436586499, 437444154, 438301943, 439159866, 440017924,
	440876117, 441734445, 442592908, 443451508, 444310243, 445169114, 446028122, 446887267,
	447746549, 448605968, 449465525, 450325220, 451185054, 452045026, 452905136, 453765386,
	454625776, 455486305, 456346974, 457207783, 458068733, 458929824, 459791056, 460652429,
	461513944, 462375602, 463237401, 464099343, 464961428, 465823656, 466686028, 467548543,
	468411202, 469274006, 470136954, 471000048, 471863286, 472726670, 473590200, 474453875,
	475317698, 476181666, 477045782, 477910045, 478774456, 479639014, 480503721, 481368575,
	482233579, 483098732, 483964034, 484829485, 485695086, 486560838, 487426740, 488292793,
	489158996, 490025351, 490891858, 491758517, 492625328, 493492291, 494359407, 495226677,
	496094100, 496961676, 497829407, 498697291, 499565331, 500433525, 501301875, 502170380,
	503039040, 503907857, 504776830, 505645960, 506515247, 507384691, 508254293, 509124053,
	509993970, 510864046, 511734281, 512604675, 513475229, 514345942, 515216815, 516087848,
	516959042, 517830397, 518701913, 519573590, 520445429, 521317431, 522189594, 523061921,
	523934410, 524807062, 525679879, 526552859, 527426003, 528299312, 529172785, 530046424,
	530920228, 531794197, 532668333, 533542635, 534417104, 535291739, 536166542, 537041513,
	537916651, 538791957, 539667432, 540543076, 541418888, 542294870, 543171022, 544047344,
	544923836, 545800498, 546677332, 547554336, 548431513, 549308861, 550186381, 551064074,
	551941939, 552819977, 553698189, 554576575, 555455134, 556333868, 557212777, 558091860,
	558971119, 559850553, 560730163, 561609950, 562489912, 563370052, 564250369, 565130863,
	566011534, 566892384, 567773413, 568654620, 569536005, 570417571, 571299316, 572181240,
	573063345, 573945631, 574828097, 575710745, 576593574, 577476585, 578359778, 579243154,
	580126712, 581010454, 581894379, 582778487, 583662780, 584547257, 585431918, 586316765,
	587201797, 588087015, 588972418, 589858008, 590743784, 591629748, 592515898, 593402236,
	594288762, 595175476, 596062379, 596949470, 597836751, 598724221, 599611881, 600499731,
	601387772, 602276003, 603164425, 604053039, 604941844, 605830842, 606720032, 607609414,
	608498990, 609388759, 610278722, 611168878, 612059229, 612949775, 613840515, 614731451,
	615622583, 616513910, 617405434, 618297155, 619189072, 620081187, 620973499, 621866009,
	622758717, 623651624, 624544730, 625438035, 626331540, 627225245, 628119149, 629013255,
	629907561, 630802068, 631696778, 632591688, 633486802, 634382117, 635277636, 636173358,
	637069283, 637965412, 638861745, 639758283, 640655026, 641551974, 642449128, 643346487,
	644244053, 645141825, 646039804, 646937991, 647836385, 648734986, 649633796, 650532815,
	651432042, 652331479, 653231125, 654130982, 655031048, 655931325, 656831813, 657732513,
	658633423, 659534546, 660435881, 661337429, 662239190, 663141164, 664043352, 664945753,
	665848369, 666751200, 667654246, 668557507, 669460984, 670364677, 671268586, 672172712,
	673077055, 673981616, 674886394, 675791390, 676696605, 677602039, 678507692, 679413564,
	680319656, 681225968, 682132501, 683039255, 683946230, 684853427, 685760845, 686668486,
	687576349, 688484436, 689392745, 690301279, 691210036, 692119018, 693028224, 693937656,
	694847313, 695757196, 696667305, 697577640, 698488202, 699398992, 700310009, 701221253,
	702132726, 703044428, 703956359, 704868519, 705780908, 706693528, 707606378, 708519459,
	709432771, 710346314, 711260089, 712174096, 713088336, 714002808, 714917514, 715832454,
	716747627, 717663035, 718578677, 719494555, 720410667, 721327016, 722243600, 723160422,
	724077480, 724994775, 725912307, 726830078, 727748087, 728666334, 729584821, 730503547,
	731422512, 732341718, 733261164, 734180851, 735100779, 736020949, 736941361, 737862015,
	738782911, 739704051, 740625434, 741547061, 742468931, 743391047, 744313407, 745236012,
	746158864, 747081961, 748005304, 748928894, 749852731, 750776816, 751701148, 752625729,
	753550558, 754475636, 755400964, 756326541, 757252368, 758178446, 759104774, 760031354,
	760958185, 761885268, 762812603, 763740191, 764668033, 765596127, 766524476, 767453078,
	768381935, 769311047, 770240415, 771170038, 772099917, 773030053, 773960445, 774891095,
	775822002, 776753168, 777684591, 778616274, 779548215, 780480416, 781412877, 782345598,
	783278580, 784211823, 785145328, 786079094, 787013122, 787947413, 788881967, 789816784,
	790751865, 791687210, 792622820, 793558694, 794494834, 795431240, 796367911, 797304849,
	798242054, 799179526, 800117266, 801055273, 801993550, 802932095, 803870909, 804809992,
	805749346, 806688970, 807628865, 808569031, 809509468, 810450178, 811391159, 812332414,
	813273942, 814215743, 815157818, 816100167, 817042791, 817985690, 818928865, 819872316,
	820816043, 821760046, 822704327, 823648885, 824593721, 825538836, 826484229, 827429901,
	828375853, 829322085, 830268597, 831215389, 832162463, 833109819, 834057456, 835005375,
	835953578, 836902063, 837850832, 838799885, 839749223, 840698845, 841648752, 842598945,
	843549424, 844500189, 845451241, 846402581, 847354208, 848306123, 849258326, 850210819,
	851163600, 852116671, 853070033, 854023685, 854977628, 855931862, 856886388, 857841206,
	858796317, 859751720, 860707417, 861663408, 862619694, 863576273, 864533148, 865490319,
	866447785, 867405548, 868363608, 869321964, 870280618, 871239571, 872198822, 873158371,
	874118220, 875078369, 876038817, 876999567, 877960617, 878921969, 879883622, 880845578,
	881807836, 882770398, 883733263, 884696432, 885659905, 886623684, 887587767, 888552156,
};

B4_2048[1024] = {
	0, −1647099, −3294197, −4941294, −6588387, −8235476, −9882561, −11529640,
	−13176712, −14823776, −16470832, −18117878, −19764913, −21411936, −23058947, −24705945,
	−26352928, −27999895, −29646846, −31293780, −32940695, −34587590, −36234466, −37881320,
	−39528151, −41174960, −42821744, −44468503, −46115236, −47761942, −49408620, −51055268,
	−52701887, −54348475, −55995030, −57641553, −59288042, −60934495, −62580914, −64227295,
	−65873638, −67519943, −69166208, −70812432, −72458615, −74104755, −75750851, −77396903,
	−79042909, −80688869, −82334782, −83980645, −85626460, −87272224, −88917937, −90563597,
	−92209205, −93854758, −95500255, −97145697, −98791081, −100436408, −102081675, −103726882,
	−105372028, −107017112, −108662134, −110307091, −111951983, −113596810, −115241570, −116886261,
	−118530885, −120175438, −121819921, −123464332, −125108670, −126752935, −128397125, −130041240,
	−131685278, −133329239, −134973122, −136616924, −138260647, −139904288, −141547847, −143191323,
	−144834714, −146478021, −148121241, −149764374, −151407418, −153050374, −154693240, −156336015,
	−157978697, −159621287, −161263783, −162906184, −164548489, −166190698, −167832808, −169474820,
	−171116732, −172758544, −174400254, −176041861, −177683365, −179324764, −180966058, −182607245,
	−184248325, −185889297, −187530159, −189170911, −190811551, −192452079, −194092494, −195732795,
	−197372981, −199013051, −200653003, −202292838, −203932553, −205572149, −207211623, −208850976,
	−210490206, −212129312, −213768293, −215407149, −217045877, −218684479, −220322951, −221961294,
	−223599506, −225237587, −226875535, −228513350, −230151030, −231788575, −233425983, −235063255,
	−236700388, −238337381, −239974235, −241610947, −243247517, −244883945, −246520228, −248156366,
	−249792358, −251428203, −253063900, −254699448, −256334847, −257970095, −259605190, −261240134,
	−262874923, −264509558, −266144037, −267778360, −269412525, −271046532, −272680379, −274314066,
	−275947592, −277580955, −279214155, −280847190, −282480061, −284112765, −285745302, −287377671,
	−289009871, −290641901, −292273760, −293905447, −295536961, −297168301, −298799466, −300430456,
	−302061269, −303691904, −305322361, −306952637, −308582734, −310212649, −311842381, −313471930,
	−315101294, −316730474, −318359466, −319988272, −321616889, −323245317, −324873555, −326501602,
	−328129457, −329757118, −331384586, −333011859, −334638936, −336265816, −337892498, −339518981,
	−341145265, −342771348, −344397229, −346022908, −347648383, −349273654, −350898719, −352523578,
	−354148229, −355772673, −357396906, −359020930, −360644742, −362268342, −363891729, −365514902,
	−367137860, −368760602, −370383127, −372005435, −373627523, −375249391, −376871039, −378492465,
	−380113669, −381734649, −383355404, −384975934, −386596237, −388216313, −389836160, −391455778,
	−393075166, −394694323, −396313247, −397931938, −399550396, −401168618, −402786604, −404404353,
	−406021864, −407639137, −409256170, −410872961, −412489512, −414105819, −415721883, −417337702,
	−418953276, −420568604, −422183684, −423798515, −425413098, −427027430, −428641510, −430255339,
	−431868915, −433482236, −435095303, −436708113, −438320667, −439932963, −441545000, −443156777,
	−444768293, −446379548, −447990541, −449601269, −451211734, −452821933, −454431865, −456041530,
	−457650927, −459260055, −460868912, −462477498, −464085813, −465693854, −467301621, −468909114,
	−470516330, −472123270, −473729932, −475336315, −476942419, −478548242, −480153784, −481759043,
	−483364019, −484968710, −486573116, −488177236, −489781069, −491384614, −492987869, −494590835,
	−496193509, −497795892, −499397981, −500999777, −502601279, −504202484, −505803393, −507404005,
	−509004318, −510604331, −512204045, −513803456, −515402566, −517001372, −518599875, −520198072,
	−521795963, −523393547, −524990823, −526587791, −528184448, −529780795, −531376831, −532972553,
	−534567963, −536163057, −537757837, −539352300, −540946445, −542540273, −544133781, −545726969,
	−547319836, −548912381, −550504604, −552096502, −553688076, −555279323, −556870245, −558460838,
	−560051103, −561641039, −563230644, −564819918, −566408860, −567997468, −569585743, −571173682,
	−572761285, −574348551, −575935480, −577522069, −579108319, −580694228, −582279796, −583865021,
	−585449903, −587034440, −588618632, −590202477, −591785976, −593369126, −594951927, −596534378,
	−598116478, −599698227, −601279622, −602860664, −604441351, −606021683, −607601658, −609181276,
	−610760535, −612339435, −613917975, −615496154, −617073970, −618651424, −620228514, −621805238,
	−623381597, −624957590, −626533214, −628108470, −629683357, −631257873, −632832018, −634405790,
	−635979190, −637552215, −639124865, −640697139, −642269036, −643840556, −645411696, −646982457,
	−648552837, −650122836, −651692453, −653261686, −654830534, −656398998, −657967075, −659534765,
	−661102068, −662668981, −664235505, −665801637, −667367379, −668932727, −670497682, −672062243,
	−673626408, −675190177, −676753549, −678316522, −679879097, −681441271, −683003045, −684564417,
	−686125386, −687685952, −689246113, −690805869, −692365218, −693924160, −695482694, −697040818,
	−698598533, −700155836, −701712728, −703269207, −704825272, −706380922, −707936157, −709490976,
	−711045377, −712599360, −714152924, −715706067, −717258790, −718811090, −720362968, −721914422,
	−723465451, −725016055, −726566232, −728115982, −729665303, −731214195, −732762657, −734310688,
	−735858287, −737405453, −738952185, −740498483, −742044345, −743589770, −745134758, −746679308,
	−748223418, −749767088, −751310318, −752853105, −754395449, −755937350, −757478805, −759019816,
	−760560379, −762100495, −763640163, −765179382, −766718151, −768256468, −769794334, −771331747,
	−772868706, −774405210, −775941259, −777476851, −779011986, −780546663, −782080880, −783614637,
	−785147934, −786680768, −788213140, −789745048, −791276492, −792807470, −794337981, −795868026,
	−797397602, −798926709, −800455346, −801983512, −803511207, −805038428, −806565176, −808091450,
	−809617248, −811142570, −812667415, −814191782, −815715670, −817239077, −818762005, −820284450,
	−821806413, −823327892, −824848888, −826369398, −827889421, −829408958, −830928007, −832446567,
	−833964637, −835482217, −836999305, −838515901, −840032003, −841547612, −843062725, −844577343,
	−846091463, −847605086, −849118210, −850630835, −852142959, −853654582, −855165703, −856676320,
	−858186434, −859696043, −861205146, −862713743, −864221832, −865729412, −867236484, −868743045,
	−870249095, −871754633, −873259658, −874764170, −876268167, −877771649, −879274614, −880777062,
	−882278991, −883780402, −885281293, −886781663, −888281511, −889780837, −891279640, −892777918,
	−894275670, −895772897, −897269597, −898765769, −900261412, −901756526, −903251109, −904745161,
	−906238681, −907731667, −909224120, −910716037, −912207419, −913698264, −915188572, −916678341,
	−918167571, −919656261, −921144410, −922632017, −924119082, −925605602, −927091578, −928577009,
	−930061894, −931546231, −933030020, −934513261, −935995952, −937478092, −938959680, −940440717,
	−941921200, −943401128, −944880502, −946359320, −947837582, −949315286, −950792431, −952269017,
	−953745043, −955220507, −956695410, −958169750, −959643527, −961116738, −962589385, −964061465,
	−965532978, −967003923, −968474299, −969944105, −971413341, −972882006, −974350098, −975817617,
	−977284561, −978750931, −980216725, −981681943, −983146583, −984610644, −986074127, −987537029,
	−988999351, −990461090, −991922247, −993382820, −994842809, −996302213, −997761031, −999219262,
	−1000676905, −1002133959, −1003590423, −1005046298, −1006501581, −1007956272, −1009410370, −1010863874,
	−1012316784, −1013769098, −1015220815, −1016671936, −1018122458, −1019572381, −1021021705, −1022470428,
	−1023918549, −1025366069, −1026812985, −1028259296, −1029705003, −1031150105, −1032594599, −1034038486,
	−1035481765, −1036924435, −1038366495, −1039807944, −1041248781, −1042689006, −1044128617, −1045567614,
	−1047005996, −1048443762, −1049880911, −1051317443, −1052753356, −1054188650, −1055623324, −1057057377,
	−1058490807, −1059923616, −1061355800, −1062787361, −1064218296, −1065648605, −1067078287, −1068507341,
	−1069935767, −1071363564, −1072790730, −1074217265, −1075643168, −1077068439, −1078493075, −1079917078,
	−1081340445, −1082763176, −1084185270, −1085606726, −1087027543, −1088447721, −1089867259, −1091286156,
	−1092704410, −1094122022, −1095538990, −1096955314, −1098370992, −1099786025, −1101200410, −1102614147,
	−1104027236, −1105439675, −1106851464, −1108262602, −1109673088, −1111082921, −1112492101, −1113900626,
	−1115308496, −1116715710, −1118122266, −1119528165, −1120933406, −1122337987, −1123741907, −1125145167,
	−1126547765, −1127949700, −1129350972, −1130751579, −1132151521, −1133550797, −1134949406, −1136347347,
	−1137744620, −1139141224, −1140537157, −1141932420, −1143327011, −1144720929, −1146114174, −1147506744,
	−1148898640, −1150289860, −1151680403, −1153070268, −1154459455, −1155847963, −1157235791, −1158622939,
	−1160009404, −1161395188, −1162780288, −1164164704, −1165548435, −1166931480, −1168313839, −1169695511,
	−1171076495, −1172456790, −1173836395, −1175215309, −1176593532, −1177971063, −1179347901, −1180724046,
	−1182099495, −1183474249, −1184848308, −1186221669, −1187594332, −1188966296, −1190337561, −1191708126,
	−1193077990, −1194447152, −1195815611, −1197183367, −1198550419, −1199916765, −1201282406, −1202647340,
	−1204011566, −1205375085, −1206737894, −1208099993, −1209461381, −1210822058, −1212182023, −1213541275,
	−1214899812, −1216257635, −1217614743, −1218971134, −1220326808, −1221681764, −1223036002, −1224389520,
	−1225742318, −1227094395, −1228445749, −1229796382, −1231146290, −1232495475, −1233843934, −1235191668,
	−1236538675, −1237884954, −1239230506, −1240575328, −1241919421, −1243262783, −1244605413, −1245947312,
	−1247288477, −1248628909, −1249968606, −1251307568, −1252645793, −1253983282, −1255320033, −1256656046,
	−1257991319, −1259325853, −1260659645, −1261992696, −1263325005, −1264656570, −1265987391, −1267317468,
	−1268646799, −1269975384, −1271303222, −1272630311, −1273956652, −1275282244, −1276607086, −1277931176,
	−1279254515, −1280577101, −1281898934, −1283220013, −1284540337, −1285859905, −1287178717, −1288496771,
	−1289814068, −1291130605, −1292446384, −1293761402, −1295075658, −1296389153, −1297701886, −1299013855,
	−1300325059, −1301635499, −1302945173, −1304254081, −1305562221, −1306869594, −1308176197, −1309482031,
	−1310787095, −1312091387, −1313394908, −1314697656, −1315999631, −1317300831, −1318601257, −1319900907,
	−1321199780, −1322497876, −1323795194, −1325091734, −1326387493, −1327682473, −1328976672, −1330270088,
	−1331562722, −1332854573, −1334145640, −1335435922, −1336725418, −1338014128, −1339302051, −1340589186,
	−1341875532, −1343161089, −1344445856, −1345729832, −1347013016, −1348295408, −1349577007, −1350857812,
	−1352137822, −1353417036, −1354695455, −1355973076, −1357249900, −1358525925, −1359801152, −1361075578,
	−1362349204, −1363622028, −1364894050, −1366165269, −1367435684, −1368705295, −1369974101, −1371242101,
	−1372509294, −1373775680, −1375041257, −1376306026, −1377569985, −1378833134, −1380095471, −1381356997,
	−1382617710, −1383877609, −1385136695, −1386394966, −1387652421, −1388909060, −1390164882, −1391419886,
	−1392674071, −1393927437, −1395179983, −1396431709, −1397682613, −1398932694, −1400181953, −1401430388,
	−1402677999, −1403924784, −1405170744, −1406415877, −1407660183, −1408903660, −1410146309, −1411388128,
	−1412629117, −1413869275, −1415108601, −1416347094, −1417584755, −1418821581, −1420057573, −1421292730,
	−1422527050, −1423760533, −1424993179, −1426224987, −1427455956, −1428686085, −1429915373, −1431143820,
	−1432371426, −1433598188, −1434824108, −1436049183, −1437273414, −1438496799, −1439719338, −1440941029,
	−1442161874, −1443381869, −1444601016, −1445819313, −1447036759, −1448253354, −1449469097, −1450683988,
	−1451898025, −1453111208, −1454323536, −1455535008, −1456745625, −1457955384, −1459164286, −1460372329,
	−1461579513, −1462785837, −1463991301, −1465195904, −1466399644, −1467602522, −1468804537, −1470005688,
	−1471205973, −1472405394, −1473603948, −1474801635, −1475998455, −1477194406, −1478389489, −1479583701,
	−1480777044, −1481969515, −1483161114, −1484351841, −1485541695, −1486730675, −1487918780, −1489106010,
	−1490292364, −1491477841, −1492662441, −1493846162, −1495029005, −1496210969, −1497392052, −1498572254,
	−1499751575, −1500930014, −1502107569, −1503284241, −1504460029, −1505634931, −1506808948, −1507982078,
	−1509154322, −1510325677, −1511496144, −1512665722, −1513834410, −1515002207, −1516169113, −1517335128,
};

TwiddleReal_4[2] = {
	2147483647, 0,
};

TwiddleImag_4[2] = {
	0, −2147483647,
};

TwiddleReal_8[4] = {
	2147483647, 1518500249, 0, −1518500249,
};

TwiddleImag_8[4] = {
	0, −1518500249, −2147483647, −1518500249,
};

TwiddleReal_16[8] = {
	2147483647, 1984016188, 1518500249, 821806413, 0, −821806413, −1518500249, −1984016188,
};

TwiddleImag_16[8] = {
	0, −821806413, −1518500249, −1984016188, −2147483647, −1984016188, −1518500249, −821806413,
};

TwiddleReal_32[16] = {
	2147483647, 2106220351, 1984016188, 1785567395, 1518500249, 1193077990, 821806413, 418953276,
	0, −418953276, −821806413, −1193077990, −1518500249, −1785567395, −1984016188, −2106220351,
};

TwiddleImag_32[16] = {
	0, −418953276, −821806413, −1193077990, −1518500249, −1785567395, −1984016188, −2106220351,
	−2147483647, −2106220351, −1984016188, −1785567395, −1518500249, −1193077990, −821806413, −418953276,
};

TwiddleReal_64[32] = {
	2147483647, 2137142926, 2106220351, 2055013722, 1984016188, 1893911493, 1785567395, 1660027308,
	1518500249, 1362349204, 1193077990, 1012316784, 821806413, 623381597, 418953276, 210490206,
	0, −210490206, −418953276, −623381597, −821806413, −1012316784, −1193077990, −1362349204,
	−1518500249, −1660027308, −1785567395, −1893911493, −1984016188, −2055013722, −2106220351, −2137142926,
};

TwiddleImag_64[32] = {
	0, −210490206, −418953276, −623381597, −821806413, −1012316784, −1193077990, −1362349204,
	−1518500249, −1660027308, −1785567395, −1893911493, −1984016188, −2055013722, −2106220351, −2137142926,
	−2147483647, −2137142926, −2106220351, −2055013722, −1984016188, −1893911493, −1785567395, −1660027308,
	−1518500249, −1362349204, −1193077990, −1012316784, −821806413, −623381597, −418953276, −210490206,
};

TwiddleReal_128[64] = {
	2147483647, 2144896909, 2137142926, 2124240379, 2106220351, 2083126253, 2055013722, 2021950483,
	1984016188, 1941302224, 1893911493, 1841958164, 1785567395, 1724875039, 1660027308, 1591180425,
	1518500249, 1442161874, 1362349204, 1279254515, 1193077990, 1104027236, 1012316784, 918167571,
	821806413, 723465451, 623381597, 521795963, 418953276, 315101294, 210490206, 105372028,
	0, −105372028, −210490206, −315101294, −418953276, −521795963, −623381597, −723465451,
	−821806413, −918167571, −1012316784, −1104027236, −1193077990, −1279254515, −1362349204, −1442161874,
	−1518500249, −1591180425, −1660027308, −1724875039, −1785567395, −1841958164, −1893911493, −1941302224,
	−1984016188, −2021950483, −2055013722, −2083126253, −2106220351, −2124240379, −2137142926, −2144896909,
};

TwiddleImag_128[64] = {
	0, −105372028, −210490206, −315101294, −418953276, −521795963, −623381597, −723465451,
	−821806413, −918167571, −1012316784, −1104027236, −1193077990, −1279254515, −1362349204, −1442161874,
	−1518500249, −1591180425, −1660027308, −1724875039, −1785567395, −1841958164, −1893911493, −1941302224,
	−1984016188, −2021950483, −2055013722, −2083126253, −2106220351, −2124240379, −2137142926, −2144896909,
	−2147483647, −2144896909, −2137142926, −2124240379, −2106220351, −2083126253, −2055013722, −2021950483,
	−1984016188, −1941302224, −1893911493, −1841958164, −1785567395, −1724875039, −1660027308, −1591180425,
	−1518500249, −1442161874, −1362349204, −1279254515, −1193077990, −1104027236, −1012316784, −918167571,
	−821806413, −723465451, −623381597, −521795963, −418953276, −315101294, −210490206, −105372028,
};

TwiddleReal_256[128] = {
	2147483647, 2146836865, 2144896909, 2141664947, 2137142926, 2131333571, 2124240379, 2115867625,
	2106220351, 2095304369, 2083126253, 2069693341, 2055013722, 2039096240, 2021950483, 2003586778,
	1984016188, 1963250500, 1941302224, 1918184580, 1893911493, 1868497585, 1841958164, 1814309215,
	1785567395, 1755750016, 1724875039, 1692961061, 1660027308, 1626093615, 1591180425, 1555308767,
	1518500249, 1480777044, 1442161874, 1402677999, 1362349204, 1321199780, 1279254515, 1236538675,
	1193077990, 1148898640, 1104027236, 1058490807, 1012316784, 965532978, 918167571, 870249095,
	821806413, 772868706, 723465451, 673626408, 623381597, 572761285, 521795963, 470516330,
	418953276, 367137860, 315101294, 262874923, 210490206, 157978697, 105372028, 52701887,
	0, −52701887, −105372028, −157978697, −210490206, −262874923, −315101294, −367137860,
	−418953276, −470516330, −521795963, −572761285, −623381597, −673626408, −723465451, −772868706,
	−821806413, −870249095, −918167571, −965532978, −1012316784, −1058490807, −1104027236, −1148898640,
	−1193077990, −1236538675, −1279254515, −1321199780, −1362349204, −1402677999, −1442161874, −1480777044,
	−1518500249, −1555308767, −1591180425, −1626093615, −1660027308, −1692961061, −1724875039, −1755750016,
	−1785567395, −1814309215, −1841958164, −1868497585, −1893911493, −1918184580, −1941302224, −1963250500,
	−1984016188, −2003586778, −2021950483, −2039096240, −2055013722, −2069693341, −2083126253, −2095304369,
	−2106220351, −2115867625, −2124240379, −2131333571, −2137142926, −2141664947, −2144896909, −2146836865,
};

TwiddleImag_256[128] = {
	0, −52701887, −105372028, −157978697, −210490206, −262874923, −315101294, −367137860,
	−418953276, −470516330, −521795963, −572761285, −623381597, −673626408, −723465451, −772868706,
	−821806413, −870249095, −918167571, −965532978, −1012316784, −1058490807, −1104027236, −1148898640,
	−1193077990, −1236538675, −1279254515, −1321199780, −1362349204, −1402677999, −1442161874, −1480777044,
	−1518500249, −1555308767, −1591180425, −1626093615, −1660027308, −1692961061, −1724875039, −1755750016,
	−1785567395, −1814309215, −1841958164, −1868497585, −1893911493, −1918184580, −1941302224, −1963250500,
	−1984016188, −2003586778, −2021950483, −2039096240, −2055013722, −2069693341, −2083126253, −2095304369,
	−2106220351, −2115867625, −2124240379, −2131333571, −2137142926, −2141664947, −2144896909, −2146836865,
	−2147483647, −2146836865, −2144896909, −2141664947, −2137142926, −2131333571, −2124240379, −2115867625,
	−2106220351, −2095304369, −2083126253, −2069693341, −2055013722, −2039096240, −2021950483, −2003586778,
	−1984016188, −1963250500, −1941302224, −1918184580, −1893911493, −1868497585, −1841958164, −1814309215,
	−1785567395, −1755750016, −1724875039, −1692961061, −1660027308, −1626093615, −1591180425, −1555308767,
	−1518500249, −1480777044, −1442161874, −1402677999, −1362349204, −1321199780, −1279254515, −1236538675,
	−1193077990, −1148898640, −1104027236, −1058490807, −1012316784, −965532978, −918167571, −870249095,
	−821806413, −772868706, −723465451, −673626408, −623381597, −572761285, −521795963, −470516330,
	−418953276, −367137860, −315101294, −262874923, −210490206, −157978697, −105372028, −52701887,
};

TwiddleReal_512[256] = {
	2147483647, 2147321945, 2146836865, 2146028479, 2144896909, 2143442325, 2141664947, 2139565042,
	2137142926, 2134398965, 2131333571, 2127947205, 2124240379, 2120213650, 2115867625, 2111202958,
	2106220351, 2100920555, 2095304369, 2089372637, 2083126253, 2076566159, 2069693341, 2062508835,
	2055013722, 2047209132, 2039096240, 2030676268, 2021950483, 2012920200, 2003586778, 1993951624,
	1984016188, 1973781966, 1963250500, 1952423376, 1941302224, 1929888719, 1918184580, 1906191569,
	1893911493, 1881346201, 1868497585, 1855367580, 1841958164, 1828271355, 1814309215, 1800073848,
	1785567395, 1770792043, 1755750016, 1740443580, 1724875039, 1709046738, 1692961061, 1676620431,
	1660027308, 1643184190, 1626093615, 1608758157, 1591180425, 1573363067, 1555308767, 1537020243,
	1518500249, 1499751575, 1480777044, 1461579513, 1442161874, 1422527050, 1402677999, 1382617710,
	1362349204, 1341875532, 1321199780, 1300325059, 1279254515, 1257991319, 1236538675, 1214899812,
	1193077990, 1171076495, 1148898640, 1126547765, 1104027236, 1081340445, 1058490807, 1035481765,
	1012316784, 988999351, 965532978, 941921200, 918167571, 894275670, 870249095, 846091463,
	821806413, 797397602, 772868706, 748223418, 723465451, 698598533, 673626408, 648552837,
	623381597, 598116478, 572761285, 547319836, 521795963, 496193509, 470516330, 444768293,
	418953276, 393075166, 367137860, 341145265, 315101294, 289009871, 262874923, 236700388,
	210490206, 184248325, 157978697, 131685278, 105372028, 79042909, 52701887, 26352928,
	0, −26352928, −52701887, −79042909, −105372028, −131685278, −157978697, −184248325,
	−210490206, −236700388, −262874923, −289009871, −315101294, −341145265, −367137860, −393075166,
	−418953276, −444768293, −470516330, −496193509, −521795963, −547319836, −572761285, −598116478,
	−623381597, −648552837, −673626408, −698598533, −723465451, −748223418, −772868706, −797397602,
	−821806413, −846091463, −870249095, −894275670, −918167571, −941921200, −965532978, −988999351,
	−1012316784, −1035481765, −1058490807, −1081340445, −1104027236, −1126547765, −1148898640, −1171076495,
	−1193077990, −1214899812, −1236538675, −1257991319, −1279254515, −1300325059, −1321199780, −1341875532,
	−1362349204, −1382617710, −1402677999, −1422527050, −1442161874, −1461579513, −1480777044, −1499751575,
	−1518500249, −1537020243, −1555308767, −1573363067, −1591180425, −1608758157, −1626093615, −1643184190,
	−1660027308, −1676620431, −1692961061, −1709046738, −1724875039, −1740443580, −1755750016, −1770792043,
	−1785567395, −1800073848, −1814309215, −1828271355, −1841958164, −1855367580, −1868497585, −1881346201,
	−1893911493, −1906191569, −1918184580, −1929888719, −1941302224, −1952423376, −1963250500, −1973781966,
	−1984016188, −1993951624, −2003586778, −2012920200, −2021950483, −2030676268, −2039096240, −2047209132,
	−2055013722, −2062508835, −2069693341, −2076566159, −2083126253, −2089372637, −2095304369, −2100920555,
	−2106220351, −2111202958, −2115867625, −2120213650, −2124240379, −2127947205, −2131333571, −2134398965,
	−2137142926, −2139565042, −2141664947, −2143442325, −2144896909, −2146028479, −2146836865, −2147321945,
};

TwiddleImag_512[256] = {
	0, −26352928, −52701887, −79042909, −105372028, −131685278, −157978697, −184248325,
	−210490206, −236700388, −262874923, −289009871, −315101294, −341145265, −367137860, −393075166,
	−418953276, −444768293, −470516330, −496193509, −521795963, −547319836, −572761285, −598116478,
	−623381597, −648552837, −673626408, −698598533, −723465451, −748223418, −772868706, −797397602,
	−821806413, −846091463, −870249095, −894275670, −918167571, −941921200, −965532978, −988999351,
	−1012316784, −1035481765, −1058490807, −1081340445, −1104027236, −1126547765, −1148898640, −1171076495,
	−1193077990, −1214899812, −1236538675, −1257991319, −1279254515, −1300325059, −1321199780, −1341875532,
	−1362349204, −1382617710, −1402677999, −1422527050, −1442161874, −1461579513, −1480777044, −1499751575,
	−1518500249, −1537020243, −1555308767, −1573363067, −1591180425, −1608758157, −1626093615, −1643184190,
	−1660027308, −1676620431, −1692961061, −1709046738, −1724875039, −1740443580, −1755750016, −1770792043,
	−1785567395, −1800073848, −1814309215, −1828271355, −1841958164, −1855367580, −1868497585, −1881346201,
	−1893911493, −1906191569, −1918184580, −1929888719, −1941302224, −1952423376, −1963250500, −1973781966,
	−1984016188, −1993951624, −2003586778, −2012920200, −2021950483, −2030676268, −2039096240, −2047209132,
	−2055013722, −2062508835, −2069693341, −2076566159, −2083126253, −2089372637, −2095304369, −2100920555,
	−2106220351, −2111202958, −2115867625, −2120213650, −2124240379, −2127947205, −2131333571, −2134398965,
	−2137142926, −2139565042, −2141664947, −2143442325, −2144896909, −2146028479, −2146836865, −2147321945,
	−2147483647, −2147321945, −2146836865, −2146028479, −2144896909, −2143442325, −2141664947, −2139565042,
	−2137142926, −2134398965, −2131333571, −2127947205, −2124240379, −2120213650, −2115867625, −2111202958,
	−2106220351, −2100920555, −2095304369, −2089372637, −2083126253, −2076566159, −2069693341, −2062508835,
	−2055013722, −2047209132, −2039096240, −2030676268, −2021950483, −2012920200, −2003586778, −1993951624,
	−1984016188, −1973781966, −1963250500, −1952423376, −1941302224, −1929888719, −1918184580, −1906191569,
	−1893911493, −1881346201, −1868497585, −1855367580, −1841958164, −1828271355, −1814309215, −1800073848,
	−1785567395, −1770792043, −1755750016, −1740443580, −1724875039, −1709046738, −1692961061, −1676620431,
	−1660027308, −1643184190, −1626093615, −1608758157, −1591180425, −1573363067, −1555308767, −1537020243,
	−1518500249, −1499751575, −1480777044, −1461579513, −1442161874, −1422527050, −1402677999, −1382617710,
	−1362349204, −1341875532, −1321199780, −1300325059, −1279254515, −1257991319, −1236538675, −1214899812,
	−1193077990, −1171076495, −1148898640, −1126547765, −1104027236, −1081340445, −1058490807, −1035481765,
	−1012316784, −988999351, −965532978, −941921200, −918167571, −894275670, −870249095, −846091463,
	−821806413, −797397602, −772868706, −748223418, −723465451, −698598533, −673626408, −648552837,
	−623381597, −598116478, −572761285, −547319836, −521795963, −496193509, −470516330, −444768293,
	−418953276, −393075166, −367137860, −341145265, −315101294, −289009871, −262874923, −236700388,
	−210490206, −184248325, −157978697, −131685278, −105372028, −79042909, −52701887, −26352928,
};

TwiddleReal_1024[512] = {
	2147483647, 2147443221, 2147321945, 2147119824, 2146836865, 2146473079, 2146028479, 2145503082,
	2144896909, 2144209981, 2143442325, 2142593970, 2141664947, 2140655292, 2139565042, 2138394239,
	2137142926, 2135811152, 2134398965, 2132906419, 2131333571, 2129680479, 2127947205, 2126133816,
	2124240379, 2122266966, 2120213650, 2118080510, 2115867625, 2113575079, 2111202958, 2108751351,
	2106220351, 2103610053, 2100920555, 2098151959, 2095304369, 2092377891, 2089372637, 2086288719,
	2083126253, 2079885359, 2076566159, 2073168776, 2069693341, 2066139982, 2062508835, 2058800035,
	2055013722, 2051150040, 2047209132, 2043191149, 2039096240, 2034924561, 2030676268, 2026351521,
	2021950483, 2017473320, 2012920200, 2008291295, 2003586778, 1998806828, 1993951624, 1989021349,
	1984016188, 1978936330, 1973781966, 1968553291, 1963250500, 1957873795, 1952423376, 1946899450,
	1941302224, 1935631909, 1929888719, 1924072870, 1918184580, 1912224072, 1906191569, 1900087300,
	1893911493, 1887664382, 1881346201, 1874957188, 1868497585, 1861967633, 1855367580, 1848697673,
	1841958164, 1835149305, 1828271355, 1821324571, 1814309215, 1807225552, 1800073848, 1792854372,
	1785567395, 1778213194, 1770792043, 1763304223, 1755750016, 1748129706, 1740443580, 1732691927,
	1724875039, 1716993211, 1709046738, 1701035921, 1692961061, 1684822463, 1676620431, 1668355276,
	1660027308, 1651636840, 1643184190, 1634669675, 1626093615, 1617456334, 1608758157, 1599999410,
	1591180425, 1582301533, 1573363067, 1564365366, 1555308767, 1546193612, 1537020243, 1527789006,
	1518500249, 1509154322, 1499751575, 1490292364, 1480777044, 1471205973, 1461579513, 1451898025,
	1442161874, 1432371426, 1422527050, 1412629117, 1402677999, 1392674071, 1382617710, 1372509294,
	1362349204, 1352137822, 1341875532, 1331562722, 1321199780, 1310787095, 1300325059, 1289814068,
	1279254515, 1268646799, 1257991319, 1247288477, 1236538675, 1225742318, 1214899812, 1204011566,
	1193077990, 1182099495, 1171076495, 1160009404, 1148898640, 1137744620, 1126547765, 1115308496,
	1104027236, 1092704410, 1081340445, 1069935767, 1058490807, 1047005996, 1035481765, 1023918549,
	1012316784, 1000676905, 988999351, 977284561, 965532978, 953745043, 941921200, 930061894,
	918167571, 906238681, 894275670, 882278991, 870249095, 858186434, 846091463, 833964637,
	821806413, 809617248, 797397602, 785147934, 772868706, 760560379, 748223418, 735858287,
	723465451, 711045377, 698598533, 686125386, 673626408, 661102068, 648552837, 635979190,
	623381597, 610760535, 598116478, 585449903, 572761285, 560051103, 547319836, 534567963,
	521795963, 509004318, 496193509, 483364019, 470516330, 457650927, 444768293, 431868915,
	418953276, 406021864, 393075166, 380113669, 367137860, 354148229, 341145265, 328129457,
	315101294, 302061269, 289009871, 275947592, 262874923, 249792358, 236700388, 223599506,
	210490206, 197372981, 184248325, 171116732, 157978697, 144834714, 131685278, 118530885,
	105372028, 92209205, 79042909, 65873638, 52701887, 39528151, 26352928, 13176712,
	0, −13176712, −26352928, −39528151, −52701887, −65873638, −79042909, −92209205,
	−105372028, −118530885, −131685278, −144834714, −157978697, −171116732, −184248325, −197372981,
	−210490206, −223599506, −236700388, −249792358, −262874923, −275947592, −289009871, −302061269,
	−315101294, −328129457, −341145265, −354148229, −367137860, −380113669, −393075166, −406021864,
	−418953276, −431868915, −444768293, −457650927, −470516330, −483364019, −496193509, −509004318,
	−521795963, −534567963, −547319836, −560051103, −572761285, −585449903, −598116478, −610760535,
	−623381597, −635979190, −648552837, −661102068, −673626408, −686125386, −698598533, −711045377,
	−723465451, −735858287, −748223418, −760560379, −772868706, −785147934, −797397602, −809617248,
	−821806413, −833964637, −846091463, −858186434, −870249095, −882278991, −894275670, −906238681,
	−918167571, −930061894, −941921200, −953745043, −965532978, −977284561, −988999351, −1000676905,
	−1012316784, −1023918549, −1035481765, −1047005996, −1058490807, −1069935767, −1081340445, −1092704410,
	−1104027236, −1115308496, −1126547765, −1137744620, −1148898640, −1160009404, −1171076495, −1182099495,
	−1193077990, −1204011566, −1214899812, −1225742318, −1236538675, −1247288477, −1257991319, −1268646799,
	−1279254515, −1289814068, −1300325059, −1310787095, −1321199780, −1331562722, −1341875532, −1352137822,
	−1362349204, −1372509294, −1382617710, −1392674071, −1402677999, −1412629117, −1422527050, −1432371426,
	−1442161874, −1451898025, −1461579513, −1471205973, −1480777044, −1490292364, −1499751575, −1509154322,
	−1518500249, −1527789006, −1537020243, −1546193612, −1555308767, −1564365366, −1573363067, −1582301533,
	−1591180425, −1599999410, −1608758157, −1617456334, −1626093615, −1634669675, −1643184190, −1651636840,
	−1660027308, −1668355276, −1676620431, −1684822463, −1692961061, −1701035921, −1709046738, −1716993211,
	−1724875039, −1732691927, −1740443580, −1748129706, −1755750016, −1763304223, −1770792043, −1778213194,
	−1785567395, −1792854372, −1800073848, −1807225552, −1814309215, −1821324571, −1828271355, −1835149305,
	−1841958164, −1848697673, −1855367580, −1861967633, −1868497585, −1874957188, −1881346201, −1887664382,
	−1893911493, −1900087300, −1906191569, −1912224072, −1918184580, −1924072870, −1929888719, −1935631909,
	−1941302224, −1946899450, −1952423376, −1957873795, −1963250500, −1968553291, −1973781966, −1978936330,
	−1984016188, −1989021349, −1993951624, −1998806828, −2003586778, −2008291295, −2012920200, −2017473320,
	−2021950483, −2026351521, −2030676268, −2034924561, −2039096240, −2043191149, −2047209132, −2051150040,
	−2055013722, −2058800035, −2062508835, −2066139982, −2069693341, −2073168776, −2076566159, −2079885359,
	−2083126253, −2086288719, −2089372637, −2092377891, −2095304369, −2098151959, −2100920555, −2103610053,
	−2106220351, −2108751351, −2111202958, −2113575079, −2115867625, −2118080510, −2120213650, −2122266966,
	−2124240379, −2126133816, −2127947205, −2129680479, −2131333571, −2132906419, −2134398965, −2135811152,
	−2137142926, −2138394239, −2139565042, −2140655292, −2141664947, −2142593970, −2143442325, −2144209981,
	−2144896909, −2145503082, −2146028479, −2146473079, −2146836865, −2147119824, −2147321945, −2147443221,
};

TwiddleImag_1024[512] = {
	0, −13176712, −26352928, −39528151, −52701887, −65873638, −79042909, −92209205,
	−105372028, −118530885, −131685278, −144834714, −157978697, −171116732, −184248325, −197372981,
	−210490206, −223599506, −236700388, −249792358, −262874923, −275947592, −289009871, −302061269,
	−315101294, −328129457, −341145265, −354148229, −367137860, −380113669, −393075166, −406021864,
	−418953276, −431868915, −444768293, −457650927, −470516330, −483364019, −496193509, −509004318,
	−521795963, −534567963, −547319836, −560051103, −572761285, −585449903, −598116478, −610760535,
	−623381597, −635979190, −648552837, −661102068, −673626408, −686125386, −698598533, −711045377,
	−723465451, −735858287, −748223418, −760560379, −772868706, −785147934, −797397602, −809617248,
	−821806413, −833964637, −846091463, −858186434, −870249095, −882278991, −894275670, −906238681,
	−918167571, −930061894, −941921200, −953745043, −965532978, −977284561, −988999351, −1000676905,
	−1012316784, −1023918549, −1035481765, −1047005996, −1058490807, −1069935767, −1081340445, −1092704410,
	−1104027236, −1115308496, −1126547765, −1137744620, −1148898640, −1160009404, −1171076495, −1182099495,
	−1193077990, −1204011566, −1214899812, −1225742318, −1236538675, −1247288477, −1257991319, −1268646799,
	−1279254515, −1289814068, −1300325059, −1310787095, −1321199780, −1331562722, −1341875532, −1352137822,
	−1362349204, −1372509294, −1382617710, −1392674071, −1402677999, −1412629117, −1422527050, −1432371426,
	−1442161874, −1451898025, −1461579513, −1471205973, −1480777044, −1490292364, −1499751575, −1509154322,
	−1518500249, −1527789006, −1537020243, −1546193612, −1555308767, −1564365366, −1573363067, −1582301533,
	−1591180425, −1599999410, −1608758157, −1617456334, −1626093615, −1634669675, −1643184190, −1651636840,
	−1660027308, −1668355276, −1676620431, −1684822463, −1692961061, −1701035921, −1709046738, −1716993211,
	−1724875039, −1732691927, −1740443580, −1748129706, −1755750016, −1763304223, −1770792043, −1778213194,
	−1785567395, −1792854372, −1800073848, −1807225552, −1814309215, −1821324571, −1828271355, −1835149305,
	−1841958164, −1848697673, −1855367580, −1861967633, −1868497585, −1874957188, −1881346201, −1887664382,
	−1893911493, −1900087300, −1906191569, −1912224072, −1918184580, −1924072870, −1929888719, −1935631909,
	−1941302224, −1946899450, −1952423376, −1957873795, −1963250500, −1968553291, −1973781966, −1978936330,
	−1984016188, −1989021349, −1993951624, −1998806828, −2003586778, −2008291295, −2012920200, −2017473320,
	−2021950483, −2026351521, −2030676268, −2034924561, −2039096240, −2043191149, −2047209132, −2051150040,
	−2055013722, −2058800035, −2062508835, −2066139982, −2069693341, −2073168776, −2076566159, −2079885359,
	−2083126253, −2086288719, −2089372637, −2092377891, −2095304369, −2098151959, −2100920555, −2103610053,
	−2106220351, −2108751351, −2111202958, −2113575079, −2115867625, −2118080510, −2120213650, −2122266966,
	−2124240379, −2126133816, −2127947205, −2129680479, −2131333571, −2132906419, −2134398965, −2135811152,
	−2137142926, −2138394239, −2139565042, −2140655292, −2141664947, −2142593970, −2143442325, −2144209981,
	−2144896909, −2145503082, −2146028479, −2146473079, −2146836865, −2147119824, −2147321945, −2147443221,
	−2147483647, −2147443221, −2147321945, −2147119824, −2146836865, −2146473079, −2146028479, −2145503082,
	−2144896909, −2144209981, −2143442325, −2142593970, −2141664947, −2140655292, −2139565042, −2138394239,
	−2137142926, −2135811152, −2134398965, −2132906419, −2131333571, −2129680479, −2127947205, −2126133816,
	−2124240379, −2122266966, −2120213650, −2118080510, −2115867625, −2113575079, −2111202958, −2108751351,
	−2106220351, −2103610053, −2100920555, −2098151959, −2095304369, −2092377891, −2089372637, −2086288719,
	−2083126253, −2079885359, −2076566159, −2073168776, −2069693341, −2066139982, −2062508835, −2058800035,
	−2055013722, −2051150040, −2047209132, −2043191149, −2039096240, −2034924561, −2030676268, −2026351521,
	−2021950483, −2017473320, −2012920200, −2008291295, −2003586778, −1998806828, −1993951624, −1989021349,
	−1984016188, −1978936330, −1973781966, −1968553291, −1963250500, −1957873795, −1952423376, −1946899450,
	−1941302224, −1935631909, −1929888719, −1924072870, −1918184580, −1912224072, −1906191569, −1900087300,
	−1893911493, −1887664382, −1881346201, −1874957188, −1868497585, −1861967633, −1855367580, −1848697673,
	−1841958164, −1835149305, −1828271355, −1821324571, −1814309215, −1807225552, −1800073848, −1792854372,
	−1785567395, −1778213194, −1770792043, −1763304223, −1755750016, −1748129706, −1740443580, −1732691927,
	−1724875039, −1716993211, −1709046738, −1701035921, −1692961061, −1684822463, −1676620431, −1668355276,
	−1660027308, −1651636840, −1643184190, −1634669675, −1626093615, −1617456334, −1608758157, −1599999410,
	−1591180425, −1582301533, −1573363067, −1564365366, −1555308767, −1546193612, −1537020243, −1527789006,
	−1518500249, −1509154322, −1499751575, −1490292364, −1480777044, −1471205973, −1461579513, −1451898025,
	−1442161874, −1432371426, −1422527050, −1412629117, −1402677999, −1392674071, −1382617710, −1372509294,
	−1362349204, −1352137822, −1341875532, −1331562722, −1321199780, −1310787095, −1300325059, −1289814068,
	−1279254515, −1268646799, −1257991319, −1247288477, −1236538675, −1225742318, −1214899812, −1204011566,
	−1193077990, −1182099495, −1171076495, −1160009404, −1148898640, −1137744620, −1126547765, −1115308496,
	−1104027236, −1092704410, −1081340445, −1069935767, −1058490807, −1047005996, −1035481765, −1023918549,
	−1012316784, −1000676905, −988999351, −977284561, −965532978, −953745043, −941921200, −930061894,
	−918167571, −906238681, −894275670, −882278991, −870249095, −858186434, −846091463, −833964637,
	−821806413, −809617248, −797397602, −785147934, −772868706, −760560379, −748223418, −735858287,
	−723465451, −711045377, −698598533, −686125386, −673626408, −661102068, −648552837, −635979190,
	−623381597, −610760535, −598116478, −585449903, −572761285, −560051103, −547319836, −534567963,
	−521795963, −509004318, −496193509, −483364019, −470516330, −457650927, −444768293, −431868915,
	−418953276, −406021864, −393075166, −380113669, −367137860, −354148229, −341145265, −328129457,
	−315101294, −302061269, −289009871, −275947592, −262874923, −249792358, −236700388, −223599506,
	−210490206, −197372981, −184248325, −171116732, −157978697, −144834714, −131685278, −118530885,
	−105372028, −92209205, −79042909, −65873638, −52701887, −39528151, −26352928, −13176712,
};

[bookmark: _Toc415476389][bookmark: _Toc423599664][bookmark: _Toc423602168][bookmark: _Toc501130509][bookmark: _Toc503778213]Bibliography

[Makhoul1980]	J. Makhoul, "A fast cosine transform in one and two dimensions," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 1, pp. 27–34, February 1980, doi: 10.1109/TASSP.1980.1163351.
[Geiger2003]	R. Geiger, Y. Yokotani and G. Schuller, "Improved integer transforms for lossless audio coding, "The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 2119–2123 Vol. 2, doi: 10.1109/ACSSC.2003.1292354.

		H.BWC Draft 4 Specification Text	1
2	H.BWC Draft 4 Specification Text
image1.emf
å

=

 y

x

i

)

i

f(

image2.png
ivlCurrRange < 256?

ivlCurrRange = ivlCurrRange << 1
ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

H.266(20) F17

image3.png
DecodeBypass

ivlOffset = ivlOffset << 1
ivlOffset = ivlOffset | read_bits(1)

ivlOffset >=
ivlCurrRange?

Yes

binVal = 1

ivIOffset = ivIOffset — ivICurrRange binVal =0

[

H.266(20) F18

image4.png
DecodeTerminate

ivlCurrRange = ivlCurrRange — 2

ivlOffset >=
ivlCurrRange?

Yes

binVal = 1 binVal =0
¥
RenormD

H.266(20) F19

image5.png
iviCurrRange < 256?

ivlILow = ivlLow — 256

bitsOutstanding++

A

PutBit(0)

ivlLow = ivlILow — 512

'

PutBit(1)

A 4

ivlCurrRange = ivlCurrRange << 1

ivlILow = ivlLow << 1

Done

H.265v2(14)_F9-11

image6.png
PutBit(B)

firstBitFlag != 0?

firstBitFlag = 0 WriteBits(B, 1)

WriteBits(1 — B, 1)
bitsOutstanding— —

L |

H.265v2(14)_F9-12

image7.png
EncodeBypass(binVal)

ivlILow = ivlILow << 1

binVal !=0?

ivlLow = ivlLow + ivlCurrRange

[

iviLow >=1024?

PutBit(1)

v

ivlILow = ivlILow — 1024

PutBit(0)

A

ivlLow = ivlLow — 512
bitsOutstanding++
|

v

BinCountsInNalUnits++

m H.265v2(14)_F9-13

image8.png
EncodeTerminate(binVal)

iviCurrRange = ivlCurrRange — 2

binVal !=0?

ivlLow = ivlLow + ivlCurrRange

v

EncodeFlush

¥

BinCountsInNalUnits++

Done

H.265v2(14)_F9-14

image9.png
EncodeFlush

ivlCurrRange =2

¥

RenormE

v

PutBit((iviLow >> 9) & 1)

v

WriteBits(((ivlILow >>7) & 3) | 1, 2)

H.265v2(14)_F9-15

