	ITU – Telecommunications Standardization Sector
STUDY GROUP 21 Question 6
Video Coding Experts Group (VCEG)
78th Meeting: 13–23 January 2026, by teleconference
	Document VCEG-BZ08-v1

	Question:
	6/21 (VCEG)

	Source:
	Byeongho Jo, Sooyoung Park, Jongmo Sung (ETRI)
	Email:
	{bhjo, sooyoung, jmseong}@etri.re.kr

	Title:
	Correction of WAV Header Handling in DataIO Class for 24-bit Signal Support

	Purpose:
	Proposal

Abstract
This document reports and proposes a software bug fix in the DataIO module of the H.BWC reference implementation. For datasets containing 24-bit samples, reconstructed WAV files were observed to include invalid RIFF/WAV header metadata, which caused some standard tools to interpret the output as zero-length. The root cause is an incorrect integer-division term used in computing the byteRate and blockAlign fields in DataIO::writeToOStream(). A patch is provided below. The modification does not affect any normative syntax, semantics, or bitstream elements; it solely corrects non-normative output file formatting.

1. Technical Background
In the BWC reference encoder/decoder, decoded waveform files may be output in the WAV container format. The relevant function DataIO::writeToOStream() constructs the WAV header by writing RIFF metadata fields, including sampleRate, byteRate, blockAlign, and bitsPerSample. However, for input signals with bit depth ≥ 17 (e.g., 24-bit biomedical EMG signals), the following expressions were used in the original code:
a = sampleRate * std::stoi(m_cfg["BitDepth"]) * int32_t(m_numChannels / 8);
b = int16_t(std::stoi(m_cfg["BitDepth"]) * int32_t(m_numChannels / 8));
Because integer division is applied to the term (m_numChannels / 8), the value becomes 0 for any case where numChannels < 8 (e.g., mono and stereo). Consequently, both byteRate and blockAlign fields were written as zero.
2. Proposed Correction
File: DataIO.cpp
Function: DataIO::writeToOStream()
Patch (diff format):
@@ -344,11 +344,17 @@
 int32_t sampleRate = std::stoi(m_cfg["SampleRate"]);
 a = sampleRate;
 streamOut.write(reinterpret_cast<char *>(&a), sizeof(int32_t));//sampleRate
- a = sampleRate * std::stoi(m_cfg["BitDepth"]) * int32_t(m_numChannels / 8); //bytes per second (all channels)
- streamOut.write(reinterpret_cast<char *>(&a), sizeof(int32_t));//bytes per second (all channels)
- b = int16_t(std::stoi(m_cfg["BitDepth"]) * int32_t(m_numChannels / 8));
- streamOut.write(reinterpret_cast<char *>(&b), sizeof(int16_t));//(BitsPerSample * Channels) / 8
- b = int16_t(std::stoi(m_cfg["BitDepth"]));
- streamOut.write(reinterpret_cast<char *>(&b), sizeof(int16_t));//bits per sample
+ // ---
+ // FIX: Correct byteRate and blockAlign calculation
+ // Previous formula used integer division (m_numChannels / 8),
+ // resulting in zero for any case where numChannels < 8 (e.g., mono and stereo).
+ // Correct formulas:
+ // byteRate = sampleRate * numChannels * (bitDepth / 8)
+ // blockAlign = numChannels * (bitDepth / 8)
+ // ---
+ int32_t bitDepthVal = std::stoi(m_cfg["BitDepth"]);
+ a = sampleRate * int32_t(m_numChannels) * (bitDepthVal / 8);
+ streamOut.write(reinterpret_cast<char *>(&a), sizeof(int32_t)); // byteRate
+ b = int16_t(int32_t(m_numChannels) * (bitDepthVal / 8));
+ streamOut.write(reinterpret_cast<char *>(&b), sizeof(int16_t)); // blockAlign
+ b = int16_t(bitDepthVal);
+ streamOut.write(reinterpret_cast<char *>(&b), sizeof(int16_t)); // bitsPerSample
 s = "data";
 streamOut.write(s.c_str(), s.size());
 u = std::numeric_limits<uint32_t>::max();
3. Validation
The proposed correction was validated using two 24-bit test items (UC3 and UC5) from the MPEG audio coding for machines (ACoM) CfP test set [1]. For each item, the reference encoder/decoder was executed with the emg_lossless.cfg configuration, and the reconstructed waveform file produced by the decoder was examined.
Prior to the patch, the reconstructed WAV files could contain invalid RIFF/WAV header metadata (specifically, byteRate and blockAlign written as zero due to an integer-division issue), which caused external tools to interpret the output as zero-length and, consequently, prevented reliable bit-exact verification using third-party checking tools (e.g., compaudio).
After applying the patch, the decoded WAV files for UC3 and UC5 were confirmed to be correctly parsed by standard tools, and a bit-exact comparison against the original input indicated perfect reconstruction (bit-identical samples) under emg_lossless.cfg for both items. Since the patch only corrects non-normative output WAV header field computation within DataIO::writeToOStream(), it does not modify any encoded bitstream elements or normative decoding behavior.
4. Conclusion
This contribution documents a non-normative software fix to correct WAV file header generation for 24-bit input signals. The modification restores compliance with the RIFF/WAV specification and ensures correct interoperability of decoded waveform files with external tools. It does not affect the encoded bitstream, syntax, or normative behavior of the codec. It is proposed that this correction be included in the next BWC reference software release.
5. Patent rights declaration(s)
ETRI may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6. References
[1] ISO/IEC JTC 1/SC29/WG6, " Updated call for proposals on audio coding for machines".
