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Abstract
The proposed model uses the multiview-video-plus-depth (MVD) data format and the reference view synthesis software (VSRS). In order to contribute to a rapid development of the H.264-compatible 3DV standard, the model was built on the JM17.2 reference software. The Nokia 3DV-TM encoder can be configured to produce either H.264 compatible bitstreams (i.e. H.264 decoders can extract a single texture view) or MVC compatible bitstreams (i.e. MVC decoders can extract a selected number of texture views).  
Nokia 3DV-TM includes the following coding tools in addition to the coding tools available in H.264/MVC:

1. In-loop view synthesis prediction (VSP) for texture and depth coding

2. Gradual view refresh (GVR) for texture and depth coding
3. Resolution adjustment for depth coding

4. Depth-based motion vector prediction (D-MVP) for texture coding

5. In-loop Joint inter-View Depth Filtering (JVDF) for depth coding

6. Depth-range-based weighted prediction (DRWP) for depth coding
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Introduction

Nokia 3DV-TM was built on the MVD data format for enabling 3DV functionality and as H.264/MVC-compatible solution due to the following reasons:
· MVD data format is well established, multiple implementations of view synthesis algorithms are available, and their complexity is known and manageable.
· A rapid market adoption for the 3DV coding standard may be expected, when H.264/MVC technology is utilized in base for coding of MVD data.
· H.264/MVC compatible solution can be efficiently utilized for both texture and depth map data coding.
· We observed that the allocated bitrate share for depth-map data is relatively low. Thus, utilizing completely new coding architecture for depth coding would not be justified with achieved bit-rate savings in our opinion. An efficient compression of depth map data resulting high quality of view synthesis can be achieved with H.264/MVC-based solution with few high-level coding tools. 
Based on this reasoning, we selected MVD representation as the uncompressed 3DV data format, H.264 as the underlying coding technology and the reference MPEG View Synthesis Software (VSRS) as the post-processing algorithm enabling 3DV functionality of our proposal. 
We re-used the modules of existing H.264/MVC as much as possible. The additional coding tools were designed to be easily integrated into the H.264/MVC codec. Furthermore, no syntax changes in the macroblock layer or below are included in the Nokia 3DV-TM for texture or depth map coding and a majority of the modules of an H.264/MVC implementation can be applied as such for depth views and enhanced coding of texture views.
1 Proposal Description
1.1 Uncompressed 3DV Data Format 
Multiview video plus depth data format (MVD) has been utilized in Nokia 3DV-TM proposal. Each sample of multiview video data (texture) is associated with a sample of depth map data. Multiview video (texture) data is represented with YUV 4:2:0 digital video format and 8-bit per sample accuracy.  Associated with texture multiview depth map data is represented at YUV 4:0:0 digital video format and 8-bit accuracy. 

1.2 Elementary coding units and coding order
The Nokia 3DV-TM specifies that all texture and depth map view components which describe 3D scene at a particular moment of time form an access unit. A coded view component is represented by one or more Network Abstraction Layer (NAL) units similarly to H.264/MVC. The data of a coded view component is not interleaved by any other coded view component, and the data for an access unit is not interleaved by any other access unit in the bitstream/decoding order. See Figure 1 for an example, where access unit t consisting of texture and depth view components (T0t,T1t ,D0t,D1t) precede in bitstream and decoding order access unit  t+1 consisting of texture and depth view components (T0t+1,T1t+1 ,D0t+1,D1t+1).
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Figure 1. Definition and coding order of access units
The Nokia 3DV-TM allows any coding order of view components within an access unit, thus depth view components may be coded prior to respective texture view components or vice versa. Following not-limiting examples of coding order for an access unit are allowed:  

· T0,T1,D0, D1…

· T1, D1, T0, D0…

· D0,T0, D1, T1…

To enable H.264-compatibility, the texture view component for the H.264-compatible base view is coded first, where the rest of texture and depth view components of the same access units are following in any order. Following not-limiting examples of coding order for an access unit with H.264-compatibility are allowed:  

· T0,T1,D0, D1…

· T0, D0, T1, D1…

· T0, D0,D1, T1…

To enable forward MVC-compatibility, texture view components of two MVC-compatible views are coded first, where the rest of texture and depth map pictures of the same access unit are following in any order.  Following not-limiting examples of coding order for an access unit with MVC-compatibility are allowed:  

· T0,T1,D0, D1…

· T0, T1,D1, D0…

1.3 General Architecture of Nokia 3DV-TM 
The Nokia 3DV-TM encoder is configured to code a selected number of texture views as H.264/MVC compatible, while the remaining texture views utilize enhanced texture coding. H.264-compatible base view of Nokia 3DV-TM is implemented with functionality of JM17.2 reference software of the H.264 coding standard. MVC-compatible texture view coding can be configured from encoder configuration parameters in such a way that functionally of 3DV-TM will be limited to the JM17.2 reference software of MVC coding standard. 

A high level flow chart of the Nokia 3DV-TM encoder and decoder are presented in Figures 2 and 3 respectively. On the figure below, solid lines depict general data flow and dashed lines show control information signaling. 
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Figure 2. High-level flow chart of the Nokia 3DV-TM encoder
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Figure 3. High-level flow chart of the Nokia 3DV-TM decoder
In general, coding of texture and depth map images are performed independently and high level of technology compatibility with existing H.264 coding standard is achieved. To achieve additional compression efficiency, the following coding tools are included for texture coding, depth coding or both:
1. In-loop view synthesis prediction (VSP) for texture and depth coding
2. Gradual view refresh (GVR) for texture and depth coding
3. Reduced-resolution depth coding
4. Depth-based motion vector prediction (D-MVP) for texture coding
5. In-loop Joint inter-View Depth Filtering (JVDF) for depth coding
6. Depth-range-based weighted prediction (DRWP) for depth coding
Figure 4 shows enhanced texture coding in Nokia 3DV-TM. The processing modules which are marked in red indicate the novel coding tools of Nokia 3DV-TM.
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Figure 4. Flow chart of enhanced texture coding in Nokia 3DV-TM
Similarly, Figure 5 shows processing flow for depth map coding in Nokia 3DV-TM. The processing modules which are marked in red indicate the novel coding tools of Nokia 3DV-TM. 
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Figure 5. Flow chart of depth map coding in Nokia 3DV-TM
Note that coding tools which are introduced in Nokia 3DV-TM are implemented mostly at the high level coding architecture. Moreover, no syntax changes in the macroblock layer or below are included in the Nokia 3DV-TM for texture or depth map coding and a majority of the module of an H.264/MVC implementation can be applied as such for coding of texture or depth. 

A detailed description of the coding tools is provided in Section 6. 
1.4 3DV-TM Post-Processing (View Synthesis)
The MPEG View Synthesis Reference Software (VSRS) [1] was utilized at the post processing stage of Nokia 3DV-TM proposal. 
2 Compression performance 

This section provides objective quality results for Nokia 3DV-TM compared to the JMVC anchor used in [1], where texture views are coded as one MVC bitstream and depth views are coded as another MVC bitstream. The results in the section below are reported with Bjontegaard delta PSNR (dPSNR, dB) and delta bit-rate (dBR, %) against the JMVC anchor computed for luma PSNR of coded texture data and the total bit-rate of coded texture and depth data.

The text sequences are available as instructed in [1]. We would like to express gratitude for all organizations who have provided test sequences [1][4].

2.1 2-view (C2) test conditions

The coding gain produced by Nokia 3DV-TM vs. JMVC anchor for C2 test configuration is reported in Table 1. Bjontegard deltas were computed using average luma PSNR results of 2 decoded texture views and the total bitrate for the sequence. 

Table 1. Coding gain of the Nokia 3DV-TM vs. JMVC Anchor, C2 test condition
	Nokia 3DV-TM vs. JMVC Anchor, texture data of C2

	Sequence
	dBR, %
	dPSNR, dB

	Hall2
	-20.99
	0.83

	Street
	-27.47
	1.25

	Dancer
	-21.41
	0.82

	GT_Fly
	-18.75
	0.85

	Kendo
	-32.74
	2.39

	Balloons
	-42.58
	3.16

	Lovebird1
	-17.04
	0.75

	Newspaper
	-27.94
	1.58

	Average
	-26.12
	1.45


2.2 3-view (C3) test conditions

The coding gain produced by Nokia 3DV-TM vs. JMVC anchor for C3 test configuration is reported in Table 2. Bjontegard deltas were computed using average PSNR results of 3 decoded texture views and the total bitrate for the sequence. 

Table 2. Coding gain of the Nokia 3DV-TM vs. JMVC Anchor, C3 test condition
	Nokia 3DV-TM vs. JMVC Anchor, texture data of C3

	Sequence
	dBR, %
	dPSNR, dB

	Hall2
	-39.94
	1.48

	Street
	-36.07
	1.39

	Dancer
	-32.14
	1.30

	GT_Fly
	-33.04
	1.45

	Kendo
	-29.40
	1.90

	Balloons
	-48.60
	4.02

	Lovebird1
	-20.37
	0.85

	Newspaper
	-42.62
	2.62

	Average
	-35.27
	1.88


3 Software implementation description

Nokia 3DV-TM is implemented on the top of JM17.2 reference software with use of C source code. Modification to reference software included support for extended number of coded views (up-to 16) compliant with MVC high profile, support of texture and depth map coding in single access unit (AU) and the proposed coding tools. The source code can be compiled under MS Windows and Linux OS. 

4 Detailed description of coding tools

4.1 In-loop View Synthesis-based inter-view Prediction (VSP)

In-loop View Synthesis Prediction (VSP) is supported in Nokia 3DV-TM for coding of both texture and depth map data. 
View synthesis algorithm of VSP in Nokia 3DV-TM was implemented with reuse of the ViSBD part of MPEG VSRS, where view synthesis is implemented through depth map (d) to disparity (D) conversion with following mapping pixels of source picture s(x,y) in a new pixel location in synthesised target image t(x+D,y). 
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Note, that in the case of projection of texture picture, s(x,y) is a sample of texture image, and d(s(x,y)) is the depth map value associated with s(x,y). In the case of projection of depth map values s(x,y)=d(x,y) and  this sample is projected using its own value d(s(x,y))= d(x,y). 
To enable VSP for coding of the current view, the previously coded texture and depth view components of the same access unit may be used for the view synthesis. 
A synthesized picture resulting from VSP is included in the initial reference picture lists List0 and List1 following temporal and inter-view reference frames. However, reference picture list modification syntax (i.e., RPLR commands) were extended to support VSP reference pictures, thus any ordering of reference picture lists is allowed. 
4.2 Gradual View Refresh (GVR)
It was found in [2] that the human visual system (HVS) seems to require a processing delay from stimulus onset until depth is fully perceived. This observation is utilized in the coding of GVR access units. When decoding is started from a GVR point, a subset of the views can be accurately decoded, while the remaining views can be approximately reconstructed using view synthesis. Perfect reconstruction of all views can be reached at a subsequent random access point. 
While no inter prediction is applied in IDR and anchor access units, GVR access units are coded in a manner that inter prediction is selectively enabled and hence compression improvement compared to IDR and anchor access units may be reached. The encoder selects which views are refreshed in a GVR access units and codes these view components in the GVR access unit without inter prediction, while the remaining non-refreshed views may use both inter and inter-view prediction. The selection of refreshed views is done in a manner that each view becomes refreshed within a reasonable period, which may depend on the targeted application but is typically up to few seconds at most. To allow decoders to detect the possibility of starting decoding, GVR access units may be indicated in the NAL unit header or slice header similarly to anchor access units.
Figure 6 presents a configuration of using GVR access units at every other random access point. It is assumed in Figure 6 that the frame rate is 30 Hz and random access points are coded every half a second. GVR access units refresh the base view only, while the non-base views are refreshed once per second with anchor access units. 
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Figure 6. Examples of GVR access units (picture order count 15 and 45) coded at every other random access point; a) Two-view coding, b) Three-view coding with PIP inter-view prediction hierarchy.
When decoding is started from a GVR access unit, the texture and depth view components which do not use inter prediction are decoded, and the remaining “non-refreshed” views are approximately reconstructed using view synthesis (a.k.a. depth-image-based rendering, DIBR). Decoding of the non-refreshed views can be started at subsequent IDR, anchor, or GVR access units. Figure 7 presents an example of the decoder side operation when decoding is started at a GVR access unit of the bitstream presented in Figure 6a.
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Figure 7. Decoder operation when starting decoding from GVR access unit at picture order count 15.
4.3 Reduced-resolution depth coding 

Nokia 3DV-TM design considers spatial resolution conversion for depth map data. The proposed compressed 3DV data format allows coding of the original MVD data at different spatial resolutions for texture and depth map data. 

Nokia 3DV-TM defines several coding tools which process texture and depth map data jointly, e.g. View Synthesis Prediction (VSP) or Depth-based Motion Vector Prediction (D-MVP) for texture coding. To enable such functionality, Nokia 3DV-TM specifies in-loop resolution normalization for depth map data to the resolution of the texture data. 
The encoder specifies and signals in the bitstream the spatial resolution of output pictures to which depth images are resampled in the decoder. Rescaling of texture and depth map data is performed with common resampling algorithms included in the JMVC software package [3].

4.4 Depth-based Motion Vector Prediction (D-MVP)
Depth-based motion vector prediction (D-MVP) is a coding tool which takes in use available depth map data and utilizes it for coding/decoding of the associated with depth map texture data. 
This coding tool is enabled for enhanced texture coding and requires depth map data to be coded prior to the texture data. For example, T0D0-D1T1-D2T2 coding structure may be used, where T# and D# terms refer to a coded view component for texture and depth, respectively. T0 was coded independently of D0 as the base view in order to provide H.264-compatibility. D-MVP was enabled for enhanced texture coding, and (D1, D2) were coded prior to the corresponding (T1, T2).
The D-MVP tool consists of two parts, direction-separated MVP and depth-based MV competition for Skip and Direct modes, which are described next.

A.
Direction-separated MVP

Conventional median MVP of H.264/AVC is restricted to identical prediction directions of motion vector candidates. All available neighboring blocks are classified according to the direction of their prediction (temporal or inter-view). If current block Cb, see Figure 8, uses an inter-view reference picture, all neighboring blocks which do not utilize inter-view prediction are marked as not-available for MVP and are not considered in the median MVP of H.264/AVC. Vice versa, if Cb uses temporal prediction, neighboring blocks that used inter-view reference frames are marked as not-available for MVP. The flowchart of this process is depicted in Figure 8. 
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Figure 8. Flow chart of direction-separated MVP
If no motion vector candidates are available from the neighboring blocks, the default “zero-MV” MVP (mvy=0, mvx=0) for inter-view prediction is replaced with mvy=0 and mvx =
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 is average disparity which is associated with current texture Cb and computed by (2): 
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where i is index of pixels within current Cb, N is a total number of pixels in Cb.

B.
Depth-based MV Competition for Skip and Direct modes

Flow charts of the process for the proposed Depth-based Motion Competition (DMC) in the Skip and Direct modes are shown in Figure 9a) and b), respectively. In the Skip mode, motion vectors {mvi} of texture data blocks {A, B, C} are grouped according to their prediction direction forming Group 1 and Group 2 for temporal and inter-view respectively. The DMC process, which is detailed in the grey block of Figure 9a), is performed for each group independently. 
For each motion vector mvi within a given Group, we first derive a motion-compensated depth block d(cb,mvi) where the motion vector mvi is applied relatively to the position of d(cb) to obtain the depth block from the reference depth map pointed to by mvi. Then, we estimate the similarity between d(cb) and d(cb,mvi) as shown in (3):
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The mvi that provides a minimal SAD value within a current Group is selected as an optimal predictor for a particular direction (mvpdir) 
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Following this, the predictor in the temporal direction (mvptmp) is competed against the predictor in the inter-view direction (mvpinter). The predictor which provides a minimal SAD can be got by (5) for the Skip mode:
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Finally, 
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 which refers to another view (inter-view prediction) undergoes the following sanity check: In the case of “Zero-MV” is utilized it is replaced with a “disparity-MV” predictor, which is calculated as it shown in (2). 
The MVP for the Direct mode of B slices, illustrated in Figure 9b), is very similar to the Skip mode, but DMC (marked with grey blocks) is performed over both reference pictures lists (List 0 and List 1) independently. Thus, for each prediction direction (temporal or inter-view) DMC produces two predictors (mvp0dir and mvp1dir) for List 0 and List 1, respectively. The SAD values of mvp0dir and mvp1dir are computed as shown in (5) and averaged to form the SAD of bi-prediction for each direction independently: 
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(6)
In the case of weighted prediction, SAD values were averaged with specified weights.

Then, the MVP for the Direct mode is selected from available mvpinter and mvptmp as it shown in (5). Similar to the Skip mode, “zero-MV” in each reference lists are replaced with “disparity-MV”, if 
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refers to another view (inter-view prediction).
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Figure 9. Flowchart of the DMC for a) Skip  mode in P slices; b) Direct mode in B slices.
4.5 In-loop Joint inter-View Depth Filtering (JVDF) 

The underlying idea of JVDF is as follows: The depth map of one of the available views is converted into the depth space (Z-space) as it shown in (1). Following these, original depth values of View 1 are projected to arbitrary View 2. This projection creates two estimates of the real depth value, which are averaged in order to produce a denoised estimate of the real depth value. In the subsequent paragraphs, more details of JVDF are provided.
A filtered depth value of View 2, [image: image24.png]


, is produced through a weighted average of the original depth value depth map value z2 and the depth value of view 1 z1 which was projected to View 2 (d1->2).  
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 = w1∙z1->2 + w2∙z2




(7) 
where w1 and w2 are weighting factors or filter coefficients for the depth values of different views or view projections. 
Filtering is applied if depth value estimates belong to a certain confidence interval, in other words, if the absolute difference between  estimates is below a particular threshold (Th): 
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If |z1→2 - z2 |<Th
, w1=w2=0.5



Otherwise, w1 = 0, w2 = 1 
Figure 10 shows the coding of two depth map views with in-loop implementation of JVDF. The H.264 coding algorithm is depicted within a dashed line box, marked in black color. The JVDF is depicted in the dashed-line box marked in red color. And the parameter Th is transmitted to the decoder within a sequence parameter set extension.  
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Figure 10. In-loop JVDF of 2-view depth map coding.
4.6 Depth Range Based Weighted Prediction (DRWP) 
DRWP performs a non-linear compensation of the depth map inconsistency which is caused by use of different Znear/Zfar values in the conversion from the depth values z to the respective depth map samples v. This compensation process is described as follows.

For each depth map value v1 (was produced with Z1near/Z1far) we computed corresponding z depth value:
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(9)
Following this, we compute depth map value v2 representation for current depth value z and with new depth range (Z2near/Z2far):
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(10)
A direct realization of the formulas would have relatively high computational complexity due to the division operations. To enable DRWP in Nokia 3DV-TM, the compensation process was implemented as a form of weighted prediction as follows. Let us choose two sampling points of the remapping function whose difference is a power of two in the input sample values. The input sample values of these sampling points are denoted a and a + 2d, where d is a positive integer. The output sample values y1 and y2, respectively, for these sampling points should be as close as possible to integer values to avoid quantization error. 

The output sample value y then becomes a linear function of the input sample value x:

[image: image32.png]y = round(y;

y1)




where round is a function returning the closest integer.

This function can be counted with integer arithmetic as follows:

[image: image33.png]y=y1 +((G=) x (2 —y) +2¢71) » )




where >> denotes a right bit-shift operation.

When offset o is defined as

[image: image34.png]o=y; +(((-) x (y2—y2) +2¢7%) » )




and weight w is defined as

[image: image35.png]



this function becomes identical to explicit weighted prediction:

[image: image36.png](xxw+2¢1)»d+o





If values y1 and y2 are indicated as fixed-point values Qf, where f represents the number of fractional bits, the quantization error in the depth map quantization rescaling may be reduced. The function then becomes

[image: image37.png](a+ (((x —2) X (2 —y)) +2471) > d) +251) > |





The encoder and the decoder derive the values of a, d, y1, and y2 from the camera and view synthesis parameters included in the bitstream. 
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