	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)
Busan, KR, 16-22 April, 2005
	Document VCEG-Z11
Filename: VCEG-Z11.doc

Generated: 19 March, 05

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Hongbo Zhu,
Song Zhang,
Institute Of Computing Technology,
Chinese Academy of Science,
Beijing, China
	Tel:
Fax:
Email:
	+86 010 62120683

zhuhb@ict.ac.cn
zhangs@ict.ac.cn

	Title:
	Improved VLC coding of transform coefficients

	Purpose:
	Proposal.

1 Background

The CAVLC used in H.264 proved to be considerably more efficient for transform coefficient coding than the initially used UVLC. However, the CAVLC is also considerably more complex to implement both for encoding and decoding, and is much less efficient than the CABAC. In this proposal, we proposed two modifications to the CAVLC to make it faster and more efficient. The first modification is the coding of the coefficients number and the coefficients’ magnitudes, and the second is the coding of zerobefore.
2 Coding of Coefficients Number and Magnitude
Firstly, the combination of non-zero coefficients number and the number of coefficients that have absolute value 1 is coded as a syntax element. The combination is mapped to a index firstly, then the index is coded by one of the Huffman code tables tab14-tab22 in appendix. The map is as follows:
· Map the combination to index3 or index4 by table 1 and table 2.
	Index3
	a0
	a1
	a2
	a3
	a4
	a5
	a6
	a7
	a8
	a9
	a10
	a11
	a12
	a13
	a14
	a15
	a16

	Cfnum
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	Abs1num
	0
	1
	2
	3
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

Table 1
	Index4
	b0
	b1
	b2
	b3
	b4
	b5

	Cfnum
	3
	2
	1
	3
	2
	3

	Abs1num
	2
	1
	0
	1
	0
	0

Table 2 (Let nA and nB be the numbers of non-zero transform coefficient levels in the block located to the left of the current block and the block located above the current block, respectively. When nA+nB>6, change the b2 to b3 and change the b3 to b2)
· Intercross index3 and index4 into index1 by a intercross factor itlv. Let cfnum denotes the non-zero coefficients number in the current block, abs1num denotes the number of coefficients that have absolute value 1 in the current block. The intercross is exampled as follows:
When itlv is 6:
	Index1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	index
	a0
	a1
	a2
	a3
	a4
	a5
	b0
	a6
	b1
	a7
	b2
	a8
	b3
	a9
	b4
	a10
	b5

	Index1
	17
	18
	19
	20
	21
	22

	index
	a11
	a12
	a13
	a14
	a15
	a16

When itlv is 14:
	Index1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	Index
	a0
	a1
	a2
	a3
	a4
	a5
	a6
	a7
	a8
	a9
	a10
	a11
	a12
	a13
	b0
	a14
	b1

	Index1
	17
	18
	19
	20
	21
	22

	index
	a15
	b2
	a16
	b3
	b4
	b5

· Map the index1 to index2 by a center. When center is 12:
	Index1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	Index2
	23
	22
	20
	18
	16
	14
	12
	10
	8
	6
	4
	2
	1
	3
	5

	15
	16
	17
	18
	19
	20
	21
	22

	7
	9
	11
	13
	15
	17
	19
	21

When center=5:
	Index1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	Index2
	10
	8
	6
	4
	2
	1
	3
	5
	7
	9
	11
	12
	13
	14
	15

	15
	16
	17
	18
	19
	20
	21
	22

	16
	17
	18
	19
	20
	21
	22
	23

· Code index2 using one denoted by tabx of the Huffman code tables tab14-tab22 in appendix.
Tabx, center and itlv are selected according to ltsum=nA+nB. They are listed in Table 3.
	Ltsum
	tabx
	itlv
	center

	0
	14
	7
	0

	1
	14
	5
	0

	2
	16
	6
	0

	3
	16
	6
	0

	4
	16
	6
	0

	5
	17
	7
	0

	6
	19
	7
	0

	7
	19
	9
	0

	8
	19
	8
	3

	9
	20
	9
	4

	10
	20
	10
	5

	11
	21
	10
	5

	12
	21
	11
	6

	13
	21
	12
	6

	14
	21
	12
	6

	15
	21
	13
	7

	16
	21
	14
	7

	17
	20
	15
	8

	18
	20
	15
	8

	19
	19
	15
	8

	>=20
	20
	16
	10

Table 3 coding parameter selection for combination symbols(If only one of nA and nB do not exists, ltsum=2*nC, in which nC exists. If neither nA nor nB are existed, ltsum=0)
When cfnum>3, the abs1num need to be coded as a syntax element. Firstly, the abs1num is mapped to an index by a center, the map is similar to that above. Then, the index is coded by one denoted by tabx of the code tables tab0-tab9 in the appendix. The tabx and center are selected according to the type and non-zero coefficients number of the current block, as listed in table 4.
	 cfNum

BlkType
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	Inter
	Tabx
	0
	0
	1
	2
	2
	3
	3
	4
	5
	5
	5
	5
	8

	
	Center
	4
	5
	5
	6
	6
	6
	6
	6
	6
	6
	6
	6
	2

	Other
	Tabx
	0
	1
	1
	2
	2
	3
	3
	3
	3
	3
	3
	5
	8

	
	Center
	4
	4
	4
	4
	4
	5
	4
	5
	5
	5
	5
	4
	2

Table 4 The selection of tabx and center

For the block with the type chromadc, the cfnum and abs1num are mapped to index2 by the table5. Index2 is coded by tab0 in appendix. When cfnum>2, the abs1num need to be coded as a single symbol. When cfnum is 3, abs1num will be coded under the parameters center=3 and tab0. When cfnum is 4, the parameters is tab1 and center=0.
	Index2
	1
	2
	3
	4
	5
	6
	7
	8

	Cfnum
	0
	1
	2
	3
	4
	2
	1
	2

	Abs1num
	0
	1
	2
	-
	-
	1
	0
	0

Table 5

Zig-zag scanning is applied to the current 4x4 block orderly to get the non-zero coefficients array level[] and the run array run[]. The array level[] is continued to run-length scanning reversely in which the consecutive non-zero coefficients with absolute value 1 are looked upon run. For example, level[]={7, 5, -1, 2, -3, 1, 1, 1} is run-length coded, the results is the run array run1[]={3, 0, 1, 0} and the level array levelThan1[]={-3, 2, 5, 7}. The array run1[] is coded firstly. The run is mapped to index by a center firstly, then the index is coded by one denoted by tabx of the Huffman code tables tab0-tab9 in the appendix.

The parameters center and tabx are selected according to the number (denoted by leftT1num) of lefted coefficients that have an absolute value than 1 and the number (denoted by leftabs1num) of lefted coefficients that have an absolute value 1, as listed in table 6.
	 LeftT1num

Leftabs1num
	1
	2
	3
	>=4

	
	tabx
	center
	tabx
	center
	tabx
	center
	tabx
	center

	3
	1
	0
	1
	0
	1
	0
	0
	0

	4
	1
	3
	1
	0
	1
	0
	1
	0

	5
	2
	5
	2
	3
	1
	0
	1
	0

	6
	3
	6
	3
	3
	2
	2
	1
	0

	7
	3
	7
	3
	3
	3
	2
	2
	2

	>=8
	4
	5
	5
	4
	5
	4
	3
	2

Table 6 the parameters for the coding of the array run1[]
When leftT1num=1 and leftabs1num=2, tabx=0, center=2.
When leftT1num>1 and leftabs1num=2 or leftabs1num=1, the number (denoted by trail0) of consecutive 0 in run1[] rather than run is coded. For example: run1[]={3, 0, 0, 1}, when 3 has been coded, leftabs1num=1, trail0=2. Trail0 is mapped to index by a center, then the index is coded by one (denoted by tabx) of the Huffman code tables tab0-tab9 in appendix. When leftabs1num=2, tabx=0, center=0. When leftabs1num=1, set center=0, tabx is selected according to leftT1num, as listed in table 7.
	leftT1num
	2
	3
	4
	5
	6
	7
	>=8

	tabx
	0
	0
	0
	1
	2
	2
	3

Table 7
The array levelThan1[] is coded subsequently. Firstly, the absolute value of each element in levelThan1[] is decreased by 1. For example, levelThan1[]={-3, 2, 5, 7} become levelThan1[]={-2, 1, 4, 6}. The coding of levelThan1[] is similar to that of coding residual coefficients before trailingones in CAVLC. The table to change the VLC is different from the CAVLC, it is {3, 7, 14, 28, 56}.
3 New coding method of the zerobefore
In the CAVLC, the VLC table for coding of zerobefore is selected only according to lefted total zeros, lefttotzero. In this proposal, it will be selected according to lefttotzero and lefted total number (denoted by leftcfnum) of non-zero coefficients. When lefttotzero>2, zerobefore is mapped to index firstly, as shown in follows:
When leftcfnum>2, index=zerobefore+1, otherwise, when leftcfnum=2, index is queried from the table 8.
	 zerobefore

lefttotzero
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	2
	3
	2
	1
	
	
	
	
	
	
	
	
	
	
	
	

	3
	1
	2
	3
	4
	
	
	
	
	
	
	
	
	
	
	

	4
	1
	4
	5
	2
	3
	
	
	
	
	
	
	
	
	
	

	5
	1
	3
	4
	5
	6
	2
	
	
	
	
	
	
	
	
	

	6
	7
	6
	5
	4
	3
	2
	1
	
	
	
	
	
	
	
	

	7
	8
	7
	6
	5
	4
	3
	2
	1
	
	
	
	
	
	
	

	8
	2
	3
	8
	9
	4
	1
	5
	7
	6
	
	
	
	
	
	

	>=9
	7
	8
	5
	1
	2
	3
	4
	6
	9
	10
	11
	12
	13
	14
	15

Table 8 the map table of mapping the zerobefore to index when leftcfnum=2
The index is coded by one (denoted by tabx) of the Huffman code tables tab0-tab9 in the appendix. The parameter tabx is gotten in table 9.
	leftcfnum

lefttotzero
	2
	3
	4
	5
	6
	>=7

	3
	1
	1
	0
	0
	0
	0

	4
	1
	1
	1
	0
	0
	0

	5
	2
	2
	2
	0
	0
	0

	6
	3
	3
	3
	1
	1
	0

	7
	3
	3
	2
	2
	2
	0

	8
	2
	3
	3
	3
	2
	1

	>=9
	5
	5
	3
	2
	2
	1

Table 9 selection of the tabx for coding of zerobefore
When lefttotzero=2 and leftcfnum=2, index=3-zerobefore, tabx=0.
When lefttotzero=2 and leftcfnum>2, or lefttotzero=1, The number (denoted by run0num) of consecutive run that have value 0 rather than runbefore is coded. For example, run[]={0,1, 0, 0, 0, 2, 4}, when 4 and 2 are coded subsequently, lefttotzero=1 and run0num=3. Let index=run0num+1, the index will be coded by one (denoted by tabx) of the Huffman code tables tab0-tab9 in appendix. The tabx is selected according to the parameters lefttotzero and leftcfnum, as shown in Table 10.
	leftcfnum

lefttotzero
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	>=13

	1
	0
	0
	1
	1
	1
	3
	3
	3
	3
	5
	5
	6

	2
	0
	0
	0
	1
	9
	2
	2
	2
	2
	2
	2
	3

Table 10 selection of the tabx for coding of run0num
4 Simulation results

Test conditions similar to the ones in H.264 are used. Frame rates and Qp values are kept the same. Avsnr performance relative to CAVLC for the different sequences are listed in table 11. The detailed results can be found in the spreadsheet VCEG-Z11.xls.
	Sequence
	BDPSNR between the new entropy coding and the CAVLC (%)

	Container
	0.097262

	News
	0.062767

	Foreman
	0.001808

	Silent
	-0.0147

	Paris
	0.128046

	Mobile
	0.211028

	Tempete
	0.132941

	Average
	0.08845

Table 11 BDPSNR difference between the proposal and the CAVLC (A positive value denotes in favor of our algorithms)
This shows that coding performance of the new entropy coding algorithm in the proposal is practically superior to the CAVLC by 0.088dB on average.

5 Conclusions

A new method of the entropy coding of 4x4 DCT coefficients has been described in the proposal. It results in better coding performance than the CAVLC. As all semantics elements are coded by regular Huffman codes, it is expected that the decoder of the method described in the proposal is faster than that of the CAVLC.
6 Appendix (VLC tables)
	Index
	Tab14
	Tab15
	Tab16
	Tab17

	1
	1
	1
	10
	01

	2
	01
	01
	11
	100

	3
	001
	001
	010
	101

	4
	00010
	0001
	011
	110

	5
	00011
	000010
	0010
	111

	6
	000010
	000011
	0011
	0010

	7
	000011
	0000010
	00010
	0011

	8
	0000010
	0000011
	00011
	00010

	9
	0000011
	00000010
	000010
	00011

	10
	00000010
	00000011
	000011
	000010

	11
	00000011
	000000010
	0000010
	000011

	12
	000000010
	000000011
	0000011
	0000010

	13
	000000011
	0000000010
	00000010
	0000011

	14
	0000000010
	0000000011
	00000011
	00000010

	15
	0000000011
	00000000010
	000000010
	00000011

	16
	00000000010
	00000000011
	000000011
	000000010

	17
	00000000011
	000000000010
	0000000010
	000000011

	18
	000000000010
	000000000011
	0000000011
	0000000010

	19
	000000000011
	0000000000010
	00000000010
	0000000011

	20
	0000000000010
	0000000000011
	00000000011
	00000000010

	21
	0000000000011
	00000000000010
	000000000010
	00000000011

	22
	00000000000010
	00000000000011
	000000000011
	000000000010

	23
	00000000000011
	000000000000010
	0000000000010
	000000000011

	Index
	Tab18
	Tab19
	Tab20
	Tab21
	Tab22

	1
	001
	001
	001
	001
	001

	2
	010
	010
	010
	010
	010

	3
	011
	011
	011
	011
	0110

	4
	100
	100
	100
	1000
	0111

	5
	101
	101
	1010
	1001
	1000

	6
	110
	1100
	1011
	1010
	1001

	7
	1110
	1101
	1100
	1011
	1010

	8
	1111
	1110
	1101
	1100
	1011

	9
	00010
	1111
	1110
	1101
	1100

	10
	00011
	00010
	1111
	1110
	1101

	11
	000010
	00011
	00010
	1111
	1110

	12
	000011
	000010
	00011
	00010
	1111

	13
	0000010
	000011
	000010
	00011
	00010

	14
	0000011
	0000010
	000011
	000010
	00011

	15
	00000010
	0000011
	0000010
	000011
	000010

	16
	00000011
	00000010
	0000011
	0000010
	000011

	17
	000000010
	00000011
	00000010
	0000011
	0000010

	18
	000000011
	000000010
	00000011
	00000010
	0000011

	19
	0000000010
	000000011
	000000010
	00000011
	00000010

	20
	0000000011
	0000000010
	000000011
	000000010
	00000011

	21
	00000000010
	0000000011
	0000000010
	000000011
	000000010

	22
	00000000011
	00000000010
	0000000011
	0000000010
	000000011

	23
	000000000010
	00000000011
	00000000010
	0000000011
	0000000010

Regular Huffman codes Table 1 (For coding of combination symbol of the number of non-zero coefficients and the number of the coefficients with a absolute value 1)
(tab14 and tab15 are the combination of Golomb code with parameter p=2 and Golomb code with parameter p=1, here, the parameter p denotes that the binary part provides p variations to a unary code. Tab16 is the Golomb code with p=2. tab17-tab22 is the combination of Golomb code with p=2 and a complete binary tree code, for example, the tab19, when the index is less than 10, it is complete binary tree code. When the index is more than 9, it is a Golomb code with p=2)

	index
	Tab0
	Tab1
	Tab2
	Tab3
	Tab4

	1
	1
	01
	01
	01
	001

	2
	01
	10
	10
	100
	010

	3
	001
	11
	110
	101
	011

	4
	0001
	001
	111
	110
	100

	5
	00001
	0001
	001
	111
	101

	6
	000001
	00001
	0001
	001
	110

	7
	0000001
	000001
	00001
	0001
	111

	8
	00000001
	0000001
	000001
	00001
	0001

	9
	000000001
	00000001
	0000001
	000001
	00001

	10
	0000000001
	000000001
	00000001
	0000001
	000001

	11
	00000000001
	0000000001
	000000001
	00000001
	0000001

	12
	000000000001
	00000000001
	0000000001
	000000001
	00000001

	13
	0000000000001
	000000000001
	00000000001
	0000000001
	000000001

	14
	00000000000001
	0000000000001
	000000000001
	00000000001
	0000000001

	15
	000000000000001
	00000000000001
	0000000000001
	000000000001
	00000000001

	16
	0000000000000001
	000000000000001
	00000000000001
	0000000000001
	000000000001

	index
	Tab5
	Tab6
	Tab7
	Tab8
	Tab9

	1
	001
	001
	001
	001
	1

	2
	010
	010
	010
	010
	001

	3
	011
	011
	011
	011
	010

	4
	100
	100
	100
	1000
	011

	5
	101
	101
	1010
	1001
	0001

	6
	110
	1100
	1011
	1010
	00001

	7
	1110
	1101
	1100
	1011
	000001

	8
	1111
	1110
	1101
	1100
	0000001

	9
	0001
	1111
	1110
	1101
	00000001

	10
	00001
	0001
	1111
	1110
	000000001

	11
	000001
	00001
	0001
	1111
	0000000001

	12
	0000001
	000001
	00001
	0001
	00000000001

	13
	00000001
	0000001
	000001
	00001
	000000000001

	14
	000000001
	00000001
	0000001
	000001
	0000000000001

	15
	0000000001
	000000001
	00000001
	0000001
	00000000000001

	16
	00000000001
	0000000001
	000000001
	00000001
	000000000000001

Regular Huffman codes table 2 (When the coded symbol has a span, a simple truncation is applied to the huffman codes. For example, the tab5, when a symbol is in range [1, 10], the code for the index 10 is 0000 rather than 00001)
(tab0 is a Golomb code with p=1. tab1-tab8 is the combination of Golomb codes with p=1 and complete binary tree codes. For example, the tab6, when index<10, it is a complete binary tree codes, when index>=10, it is a Golomb code with p=1. The tab9 is a combination of the first bit and tab1.)

File:VCEG-Z11.doc
Page: 7
Date Printed: 3/24/2005

