	ITU-T SG16 Q.6 VCEG

Geneva, Switzerland 22-24 November, 2004
	Document: VCEG-Y 13

Filename: VCEG-Y 13.doc

	Title:
	A Low-Complexity AVC-based Scalable Video Codec

	Status:
	Input Document to VCEG

	Purpose:
	Contribution

	Author(s) or
Contact(s):
	Yiliang Bao, Xianglin Wang,

Marta Karczewicz, Justin Ridge
	Tel:
Email:
	+12147070151
yiliang.bao@nokia.com

	Source:
	Nokia Research Center

1 Introduction

Based on the efficient AVC codec, we have built a simple Layered Scalable Video Codec. While the base layer is fully compliant to AVC, the enhancement layer coding requires a minimal extension to the AVC modules. Some new coding tools are introduced in order to improve the coding efficiency on the enhancement layers. Some results have been presented in the previous contributions [1].

SVM3.0 adopted in October 2004 can also be considered a layered scalable video codec, but one major difference between Nokia SVC and SVM3.0 is that Nokia SVC uses conventional B slice instead of MCTF to accomplish temporal scalability. In both codecs, some inter-layer prediction modes are used for exploiting the inter-layer redundancy to improve enhancement layer coding efficiency.

[image: image1.wmf]Transform

Quantization

De-

quantization

Entropy

Encoder

-

Inverse

Transform

Base layer

mode

decision

Ref frames

Recon.

Current

frame

Down-

sampling

Upsampling

Down-

sampling

Re-

construction

Transform

Quantization

De-

quantization

Entropy

Encoder

-

Inverse

Transform

Enh layer

mode

decision

Ref frames

Recon.

Current

frame

Re-

construction

Original

video

Base-layer texture

Base-layer

modes

Base layer

stream

Enhancement layer

stream

Figure 1 Block diagram of the AVC-based Scalable Video Codec, Encoder

Motivation for B-slice based Scalable extension

Motion Compensated Temporal Filtering applies wavelet filtering in temporal direction of video sequence, and it is an important component in SVM3.0. Based on MCTF, SVM3.0 achieves temporal scalability. It is also claimed that MCTF improves the overall performance of the SVM3.0.

There are 2 major processing steps in MCTF with lifting structure, prediction and update that correspond to high-pass filtering and low-pass filtering respectively.

In SVM3.0, the prediction step is fairly similar to the processing of conventional B slice. In fact, in SVM3.0, the adaptive high-pass filtering structure can use the identical set of inter-frame prediction modes as those in H.264 B slice.

In the update step, the high-pass signal is fed back to the original frame. In order to get the right high-pass signal, motion compensation operations need to be performed. The motion and mode information obtained in prediction step is usually derived from that obtained in prediction step.

The update step significantly increases the complexity of codec, especially for decoder, as the motion compensation operations are doubled and they are the most complex operations in the decoder.

Another consequence of the update step is that the memory requirement is also increased. If the update step is not needed, the high pass frames can be fully reconstructed in one pass. It is not necessary to buffer those frames if they are at the highest decomposition level. Otherwise, the reconstructed high-pass frames are used as the reference frames in update step, they must be buffered after they are decoded.

2 Prediction paths in Nokia SVC

In Figure 2, the prediction paths used in Nokia SVC are illustrated. At each layer, hierarchical B-slice structure is used. In a hierarchical B-slice structure, the frames are processed according to temporal resolution level, and a frame is always predicted from the closest frames that have been encoded, even if the neighboring frames are coded in B slices.

In actual implementation, all the layers of a frame are always encoded/decoded before the next frame is processed. Nokia SVC does not need to buffer the entire GOP before the processing of any frame in the GOP starts.

[image: image2.wmf]P0_0

B2_0

P1_0

P0_1

B2_1

P1_1

P0_2

B2_2

P1_2

B3_1

B6_1

B6_2

B3_2

B5_2

B4_2

B7_2

B8_2

Layer 0

Layer 1

Layer 2

Figure 2 Prediction paths in Scalable Video Codec

2.1 Implementation of hierarchical B-slice structure using existing AVC syntax

In hierarchical B-slice structure, some B-frames are also used as reference frames. Typically the B frames are encoded in the order according to their temporal levels. The number of reference frames that need to be buffered could be large and possibly more than 16, the upper limit on the total number of reference frames in H.264 specification. Another issue is with the reference frame ordering. To bring the previous P-frame to the front of the reference frame list when a P-frame is encoded, we need to either mark all the B-frames as non-reference frames or perform reference frame reordering for P-frame, but none of them is a good solution once temporal decimation is performed by dropping the NAL units containing B slices.

Here an algorithm based on existing AVC syntax is proposed to solve both problems. The algorithm to be described works with only one reference frame in a each reference frame list, but it could be extended to support multi-reference-frames.

At first an optimal coding order is used. In this order, the frame that has the minimal POC and has all it reference frames encoded is always encoded first. Here are the procedures to find such a frame.

1. Find the frame among the un-encoded frames in the GOP that has the smallest POC, assign the POC of the frame to a variable “currPoc”,

2. Check among the reference frames needed by frame with POC “currPoc” find the one that is not encoded and of the lowest POC. If such a frame is found, assign the POC of this frame to “currPoc”, then go to step 2, otherwise go to step 3.

3. Encode the frame with POC “currPoc”.

[image: image3.wmf]P0

B2

P1

B3

B4

B6

B5

B7

B8

Figure 3 Frame coding order if B-frames are coded by temporal levels

[image: image4.wmf]P0

B2

P1

B3

B6

B5

B4

B7

B8

Figure 4 Frame coding order that requires the minimal number of reference frames
If the new coding order is used, the number of the reference frames needed is number of decomposition level + 1. The number of the reference frames needed is 6 when the GOP size is 32.

A special marking process is used along with the new coding order, always mark a P-frame as a short-term reference frame, and mark a B-frame that will be used as a reference frame as a long-term reference frame. MMCO of index 6 is used for marking a reference B-frame as a long-term reference frame, and the long-term reference frame index is set to levelId.

The levelId is similar to the index of a decomposition level in MCTF. Assume the GOP is of size 2^G (2’s power of G), then the M’th P-frame will appear at position M * 2^G. A B-frame having levelId of “g” will appear at a position specified by the following equation.

M * 2^G + 2^(G – g) * (2 * m - 1)
g = 1, 2, ……, G
m = 1, 1, ……, 2^(g-1)

For the new coding order, only one frame is needed from a level at a time, and a frame assigned with a long-term reference frame index will replace another long-term reference frame with the same index in the reference frame buffer. Eventually, the reference frame buffer will have (G – 1) long-term reference frames, and 2 short-term reference frames.

Lastly, reference frame reordering command is sent for a B slice if necessary. reordering_of_pic_nums_idc of value 2 is used to move a long term reference frame to the front of the list, otherwise the first entry in the reference list will always be a short term reference frame.

Aside from the overhead of sending the reordering command, the performance will be affected due to the usage of B frame as long term reference frames, because the direct mode uses the reference frame type information. More investigation is needed on this issue.
Inter-layer texture prediction modes

2.2 Base Layer Texture Prediction (BLTP)

In this mode, the pixel predictors for an MB are from the co-located MB in the base layer. New syntax elements are needed to indicate such prediction. This is similar to inter-frame prediction, but no motion vector is needed as the locations of the predictors are known. If the base layer is of a different size, proper scaling operation on the base layer reconstructed frame is needed.

2.3 Residue Prediction (RP)
In this mode, the reconstructed prediction residue of the base layer is used in reducing the amount of residue to be coded in the enhancement layer, when both MBs are encoded in inter mode. The usage of the residue prediction is adaptive and the flag is coded only when the residue in the base layer is non-zero.

3 Inter-layer syntax prediction modes
3.1 Mode Inheritance from base layer

In this mode, no additional syntax elements need to be coded for an MB except the MI flag. MI flag is used for indicating that the mode decision of this MB can be derived from that of the corresponding MB in the base layer. If the resolution of the base layer is the same as that of the enhancement layer, all the mode information can be used as is. If the resolution of the base layer is different from that of the enhancement layer (for example, half of the resolution of the enhancement layer), the mode information used by the enhancement layer needs to be derived according to the resolution ratio.

3.2 Motion Vector Prediction

In addition to the spatially neighboring motion vectors from the current layer, vectors from the base layer are also used for motion vector prediction. Motion prediction is performed on motion vector level. For each motion vector, two motion vector predictors are calculated with one from the current layer neighboring motion vectors and one from the co-located base layer motion vector. One of the two motion vector predictors is chosen as the motion vector predictor for the current block. For each motion vector, depending on partition prediction mode (i.e. uni-directional prediction or bi-directional prediction), up to two flag bits conditionally needs to be coded to indicate which layer the motion vector predictor for the current block comes from.

When it is possible to infer which layer the motion vector predictor for the current block comes from, the flag bit need not be coded. For example, when motion vector predictor from the current layer neighboring motion vectors is the same as the motion vector predictor from the co-located base layer motion vectors, no flag bit needs to be coded. In this case, either one of the two motion vector predictors can be used as the motion vector predictor for the current block. Similarly, when the current layer neighboring motion vectors are unavailable, or the co-located base layer motion vectors are unavailable, no flag bit needs to be coded either. In this case, the available one motion vector predictor can be used.

4 SNR coefficient entropy coding

The new texture prediction modes introduce new ways of calculating the pixel predictors; the coefficient-coding scheme in H.264 can still be used for encoding the quantized coefficients.

However, although the quantization processes of SVC layers are independent and the base layer texture has been removed from the original signal by using either Base Layer Texture Prediction Mode or Inter-prediction mode with residue prediction, there still exist strong correlation between the quantized coefficients in the enhancement layer and the coefficients in the base layer, especially when the base layer is of the same size. Here we refer to such a base layer as an SNR base layer, and the enhancement layer is an SNR enhancement layer. The concepts of the significance coding pass and refinement coding pass in embedded bitplane coding are adopted, and the CABAC coefficient coding scheme in H.264 is extended to multi-layer coding.

In H.264, locations of nonzero coefficients are coded using two flags: the significant_coeff_flag and the last_significant_coeff_flag. A significant_coeff_flag of value 1 is coded to indicate a nonzero coefficient at the current scanning position. A significant_coeff_flag of value 0 is coded to indicate a zero coefficient at the current scanning position. The last_significant_coeff_flag is coded after significant_coeff_flag if significant_coeff_flag is 1. The value of the last_significant_coeff_flag is 0, if there are more nonzero coefficients to follow the current nonzero coefficient in the scanning order. Otherwise the last_significant_coeff_flag is 1. Additionally, the magnitude information and sign bit are coded for each non-zero coefficient.

In the enhancement layer coding, the coefficients at locations that do no have any nonzero coefficients in the base layers are coded in a way similar to that in the original CABAC, except the locations that have some nonzero coefficients in the base layers are not scanned at all in this coding pass. A refinement coefficient is generated in the enhancement layer for a location that there is at least one nonzero coefficient at the same location in the base layers. The refinement coefficients are further classified based on the prediction mode of the block and the when the coefficients become nonzero in the base layer.

An efficient coefficient entropy coder for SNR enhancement layer coding is designed using only 3 bits to record the quantization history information for entropy coding purpose, for each coefficient location.

1. SIGNIFICANCE_BIT

This bit indicates whether any coefficients at the same location are non-zero before the coefficient at the same location at the current layer is coded.

This is for defining the significant pass and refinement pass.

2. OLD_SIGNIFICANCE_BIT

It is 1 when SIGNIFICANCE_BIT is 1 and SIGNIFICANCE_BIT is set at the layers below the immediate base layer, otherwise it is 0.

This is fore classifying the refinement coefficients.

3. SIGN_BIT

The SIGN_BIT has the sign bit at the last layer where the coefficient at a particular location is non-zero.

SING_BIT is used for coding the sign bit of the refinement coefficient.

5 Low complexity decoding

The layered structure seems to be natural for a scalable video codec built on top of a non-scalable video codec such as AVC. It achieves the base-layer compliance requirement and it has the flexibility of allowing optimized mode decision within each layer. While layer-by-layer mode decision significantly improves the coding efficiency, one disadvantage of such an approach is that both encoding and decoding complexity increases with the increase in the number of layers. At the encoder side, additional mode decisions incur significant amount of increase in the computation complexity. In addition to that, what is common to both encoder and decoder is that it is also necessary to perform motion compensation, frame reconstruction and loop filtering at each layer. Since mode decision at the encoder is very application specific, and the decoder side complexity is of main interest. It is important to reduce the complexity at the decoder side.

In the proposal [3] submitted to Palma meeting by Heiko Schwarz et al, a solution is proposed that reducing the decoding complexity by enforcing certain constraints in the encoder so the decoder does not have to perform motion compensation and full reconstruction at layers below the actual layer to be decoded.

[image: image5.wmf]P0_0

B2_0

P1_0

P0_1

B2_1

P1_1

P0_2

B2_2

P1_2

B3_1

B6_1

B6_2

B3_2

B5_2

B4_2

B7_2

B8_2

Layer 0

Layer 1

Layer 2

Figure 5 Prediction paths in low complexity decoding
In this document, we assume the entropy decoding of the current layer as well as its base layers is always fully performed. The intra prediction will also be performed, except with some constraint on the prediction modes as discussed below.

In order to avoid performing motion compensation on all layers, the decoder must not perform any reconstruction based on the data that requires motion compensation to reconstruct. This puts a constraint on the texture prediction from layer to layer. Image data can be directly predicted from its base layer in Base Layer Texture Prediction mode only if the base layer location is either intra-coded or base layer itself is predicted its own base layer using the same mod. Please note that the intra-coded blocks are always fully reconstructed. If the base layer location is inter-coded, the redundancy in texture is exploited in another form as the residue prediction.

Constrained intra-prediction in AVC is needed in order to avoid performing neighboring prediction from inter-MBs to intra-MBs, otherwise, full reconstruction of intra-MBs will not be possible if it was predicted from inter-MBs.

Currently loop filtering is applied after all layers of a frame are reconstructed, i.e., the base layer image data used in prediction are not filtered. Partial filtering on the intra-coded macroblocks is possible, but is not current implemented.

Results

Here we compare the performance of the Nokia SVC and MPEG-21 SVM3.0. Eight MPEG-21 svc standard sequence sets are used. The frame size, frame rates and target bit rates are listed in Table 1. The target bit rates are the same as those set for Redmond core experiments.

For Nokia SVC, the number of B-frames inserted between two P-frames is 31 for the highest SVC layer, and the number of B-frames at other layer is adjusted accordingly based on the ratio between the frame rate of the highest layer and that of the current layer so that the I or P-frames are always aligned. For SVM3.0, the number of decomposition levels is set to 5 for the highest layer, and the numbers of decomposition levels at other layers are adjusted similarly. So basically the distance between two P-frames are the same in both codec.

For both codecs, quantization parameter is always fixed for one slice and no macroblock level qp adjustment is performed. The iteration is performed to find a fixed QP for the entire sequence to achieve the target bit rate at each layer.

For SVM3.0, the update is disabled for the base layer so that the base layer is AVC compliant. The update step is always enabled for all other layers. While for Nokia SVC, update step is not applicable.

The FRext option in SVM3.0 has been disabled in generating all the results. Nokia SVC does not use any of the new coding tools defined in FRext to generate the results. It should be expected that new coding tools should help SVM3.0 and Nokia SVC in similar way.

From these results, we can see that overall Nokia SVC performs better than SVM3.0, although SVM3.0 has MCTF.
6 Conclusions

Although Nokia SVC is considerable less complex in the design as well as computationally simpler, it performs very well. We strongly suggest that the works on scalable extension to AVC should put emphasis on developing a low-complexity solution.

7 References
[1] Y. Bao, X. Wang, M. Karczewicz, J. Ridge, “An AVC-based scalable video coder,” VCEG-X07, October 2004.

[2] “Scalable Video Model Version 3.0”. J. Reichel, M. Wien, H. Schwarz, ISO/IEC JTC 1/SC 29/WG 11 N6716, October 2004, Palma de Mallorca, Spain.
[3] H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand, “Further Progress on Scalable Extension of H.264,” ITU-T VCEG, Doc. VCEG-X08, October 2004.
Table 1 Bit rates at each layer of scalable video stream

	
	QCIF

@7.5Hz
	QCIF

@15Hz
	CIF

@7.5Hz
	CIF

@15Hz
	CIF

@30Hz
	4CIF

@30Hz
	4CIF

@60Hz

	BUS
	64
	96
	192

384
	512
	X
	X
	X

	FOOTBALL
	128
	192
	384

512
	1024
	X
	X
	X

	FOREMAN
	32
	48
	96

192
	256
	X
	X
	X

	MOBILE
	48
	64
	128

256
	384
	X
	X
	X

	CITY
	X
	64

128
	X
	X
	256

512
	1024
	2048

	CREW
	X
	96

192
	X
	X
	384

750
	1500
	3000

	HARBOUR
	X
	96

192
	X
	X
	384

750
	1500
	3000

	SOCCER
	X
	96

192
	X
	X
	384

750
	1500
	3000

[image: image6.emf]Bus 5 layers

QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

26.50

27.00

27.50

28.00

28.50

29.00

29.50

30.00

30.50

31.00

0100200300400500600

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image7.emf]Football 5 layers

QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

30.00

30.50

31.00

31.50

32.00

32.50

33.00

33.50

34.00

020040060080010001200

Bitrate(bkps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image8.emf]Foreman 5 layers

QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

31.50

32.00

32.50

33.00

33.50

34.00

34.50

35.00

050100150200250300

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image9.emf]Mobile 5 layers

QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

25.00

25.76

26.51

27.27

28.03

28.78

29.54

30.30

0.0100.0200.0300.0400.0

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image10.emf]City 6 layers

QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

32.50

33.00

33.50

34.00

34.50

35.00

35.50

36.00

36.50

37.00

37.50

38.00

38.50

39.00

39.50

40.00

04008001200160020002400

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image11.emf]Crew 6 layers

QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

32.50

33.00

33.50

34.00

34.50

35.00

35.50

36.00

36.50

37.00

0400800120016002000240028003200

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image12.emf]Harbour 6 layers

QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

29.00

29.50

30.00

30.50

31.00

31.50

32.00

32.50

33.00

33.50

34.00

34.50

35.00

0400800120016002000240028003200

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

[image: image13.emf]Soccer 6 layers

QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

32.00

32.50

33.00

33.50

34.00

34.50

35.00

35.50

36.00

36.50

37.00

37.50

38.00

0400800120016002000240028003200

Bitrate(kbps)

PSNR(Y)

Nokia SVC

SVM3.0 with Update,

without Frext

_1167225461.vsd
P0�

B2�

P1�

B3�

B4�

B6�

B5�

B7�

B8�

_1167292468.vsd
P0_0�

B2_0�

P1_0�

P0_1�

B2_1�

P1_1�

P0_2�

B2_2�

P1_2�

B3_1�

B6_1�

B6_2�

B3_2�

B5_2�

B4_2�

B7_2�

B8_2�

�

�

Layer 0�

Layer 1�

Layer 2�

�

�

_1167292496.vsd
Layer 0�

P0_0�

B2_0�

P1_0�

P0_1�

B2_1�

P1_1�

P0_2�

B2_2�

P1_2�

B3_1�

B6_1�

B6_2�

B3_2�

B5_2�

B4_2�

B7_2�

B8_2�

Layer 1�

�

Layer 2�

�

�

�

_1167041262.vsd
Transform�

Quantization�

De-
quantization�

Entropy Encoder�

-�

Inverse
Transform�

Base layer mode decision�

Ref frames�

�

Recon. Current frame�

Re-construction�

Down-sampling�

Transform�

Quantization�

De-
quantization�

Entropy Encoder�

-�

Upsampling�

Inverse
Transform�

Enh layer mode decision�

Ref frames�

Recon. Current frame�

Original video�

Re-construction�

Down-sampling�

�

Base-layer texture�

Base-layer modes�

Base layer stream�

Enhancement layer stream�

_1167218853.vsd
P0�

B2�

P1�

B3�

B6�

B5�

B4�

B7�

B8�

_1166985160.xls
Chart1

		63.9		63.75

		129		127.25

		254.1		257.31

		507.5		507.76

		1029.3		1020.58

		2039.9		2041.03

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

City 6 layers
QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

36.412

35.19

39.331

38.428

33.623

32.854

37.35

36.945

34.209

33.702

35.705

35.863

Summary

		

		Date: 1/11/2004				Version S143

		All open-loop results are from version S134

		City still has version S134 results

		1) Open Loop versus Close Loop

		Except Mobile and City, all other three sequences show better result with close loop. The difference is about 0.2~0.3dB.

		In Mobile sequence, open loop result is slightly better than close loop result.

		2) Nokia result versus HHI result

		Both Nokia and HHI result are obtained with GOP of 32.

		HHI results are generated always with update, with or without Frext.

		For CIF sequences, Nokia results are always better than HHI results, regardless Frext is enabled or not.

		For 4CIF sequences, Nokia results are better than HHI results, except for harbour sequence.

		Note: all the results are generated with MPEG standard sequences.

Bus

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		64.1		29.98		39.01		40.33				63.8		30.31		39.09		40.44

		1		qcif 15Hz		96.0		30.03		39.29		40.65				95.8		30.34		39.44		40.75

		2		cif 15Hz		192.3		27.28		38.01		39.78				191.6		27.39		38.05		39.77

		3		cif 15Hz		384.4		30.69		39.16		41.14				384.0		30.82		39.08		40.86

		4		cif 30Hz		513.1		30.73		39.37		41.37				513.4		30.92		39.33		41.13

		HHI result, with update and Frext														HHI result, with update, without Frext										HHI result, without update and Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		62.3		29.37		38.80		40.12				62.3		29.37		38.80		40.12				62.3		29.37		38.80		40.12

		1		qcif 15Hz		96.0		29.66		39.05		40.39				96.0		29.66		39.05		40.39				96.7		29.66		39.08		40.40

		2		cif 15Hz		191.7		27.09		37.84		39.44				192.3		27.00		37.79		39.40				192.3		26.92		37.76		39.35

		3		cif 15Hz		385.7		30.47		38.95		40.95				383.6		30.28		38.95		40.94				387.3		30.39		39.06		40.91

		4		cif 30Hz		508.3		30.63		39.11		41.17				509.5		30.42		39.11		41.18				513.5		30.27		39.13		41.06

Bus

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Bus 5 layers
QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

Football

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		128.3		32.88		37.07		39.00				127.5		33.16		37.34		39.31

		1		qcif 15Hz		191.8		31.94		36.57		38.71				191.2		32.35		36.97		39.11

		2		cif 15Hz		383.3		30.93		36.97		39.06				383.3		31.12		37.32		39.33

		3		cif 15Hz		513.0		31.94		37.73		39.69				514.1		32.16		38.00		39.86

		4		cif 30Hz		1026.3		33.60		38.86		40.67				1025.4		33.94		39.21		40.90

		HHI result, with update and Frext														HHI result, with update, without Frext										HHI result, without update and Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		126.9		32.52		36.77		38.92				126.9		32.52		36.77		38.92				126.9		32.52		36.77		38.92

		1		qcif 15Hz		192.4		31.57		36.36		38.82				192.4		31.57		36.36		38.82				192.7		31.55		36.35		38.82

		2		cif 15Hz		382.2		30.46		36.77		39.02				381.9		30.29		36.78		38.99				383.4		30.34		36.83		38.97

		3		cif 15Hz		510.2		31.74		37.56		39.64				512.7		31.50		37.56		39.63				508.7		31.55		37.59		39.59

		4		cif 30Hz		1025.1		33.67		39.14		40.87				1023.9		33.37		39.03		40.82				1022.2		33.39		38.99		40.82

Football

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(bkps)

PSNR(Y)

Football 5 layers
QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

Foreman

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		32.00		33.36		39.14		39.77				31.9		33.69		39.31		39.89

		1		qcif 15Hz		47.90		33.40		39.44		40.08				48.1		33.80		39.60		40.23

		2		cif 15Hz		97.00		32.07		38.85		39.98				96.2		32.09		38.96		40.12

		3		cif 15Hz		191.10		34.59		40.24		41.62				192.2		34.75		40.31		41.73

		4		cif 30Hz		255.40		34.66		40.44		41.88				256.2		34.87		40.54		42.02

		HHI result, with update and Frext														HHI result, with update, without Frext										HHI result, without update and Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		32.2		33.10		39.03		39.62				32.2		33.10		39.03		39.62				32.2		33.10		39.03		39.62

		1		qcif 15Hz		48.0		33.18		39.24		39.82				48.0		33.18		39.24		39.82				48.0		33.14		39.30		39.92

		2		cif 15Hz		95.2		31.69		38.73		39.90				95.1		31.60		38.72		39.91				96.1		31.67		38.66		39.84

		3		cif 15Hz		192.6		34.45		40.04		41.57				193.4		34.37		40.08		41.66				190.7		34.30		40.03		41.45

		4		cif 30Hz		256.3		34.68		40.27		41.78				256.4		34.52		40.28		41.85				256.2		34.40		40.28		41.69

Foreman

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Foreman 5 layers
QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

Mobile

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		48.0		29.23		32.82		32.05				47.9		29.35		32.76		32.17

		1		qcif 15Hz		64.0		29.24		32.63		31.80				63.7		29.27		32.93		32.27

		2		cif 15Hz		128.3		25.64		31.53		30.92				127.8		25.57		31.65		31.15

		3		cif 15Hz		255.2		28.96		33.43		32.87				255.1		29.04		33.50		33.04

		4		cif 30Hz		384.2		29.71		33.90		33.37				383.1		29.74		33.78		33.35

		HHI result, with update and Frext														HHI result, with update, without Frext										HHI result, without update and Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 7.5Hz		48.9		29.21		32.78		32.00				48.9		29.21		32.78		32.00				48.9		29.21		32.78		32.00

		1		qcif 15Hz		64.0		29.13		32.52		31.67				64.0		29.13		32.52		31.67				64.0		29.09		32.55		31.70

		2		cif 15Hz		128.9		25.41		31.67		31.08				129.2		25.42		31.72		31.13				127.4		25.31		31.42		30.84

		3		cif 15Hz		254.0		28.66		33.58		33.09				253.6		28.61		33.59		33.10				253.7		28.64		33.22		32.69

		4		cif 30Hz		383.4		29.80		34.23		33.71				382.8		29.74		34.25		33.76				386.0		29.44		33.66		33.15

Mobile

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Mobile 5 layers
QCIF7.5 - QCIF15 - CIF15 - CIF15 - CIF30

City

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		64		36.27		43.01		44.12				64		36.41		43.00		44.12

		1		qcif 15Hz		127		39.19		44.80		45.82				129		39.33		44.83		45.86

		2		cif 30Hz		256		33.69		42.68		44.27				254		33.62		42.68		44.25

		3		cif 30Hz		515		37.47		44.25		45.82				508		37.35		43.96		45.56

		4		4cif 30Hz		1022		34.09		42.47		44.70				1029		34.21		42.46		44.69

		5		4cif 60Hz		2070		35.58		43.29		45.45				2040		35.71		43.29		45.42

		HHI result, with update and Frext														HHI result, with update, without Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		64		35.19		42.26		43.45				64		35.19		42.26		43.45

		1		qcif 15Hz		127		38.43		44.43		45.46				127		38.43		44.44		45.47

		2		cif 30Hz		257		33.00		42.72		44.29				257		32.85		42.68		44.27

		3		cif 30Hz		509		37.03		44.23		45.67				508		36.95		44.23		45.66

		4		4cif 30Hz		1016		33.88		42.40		44.57				1021		33.70		42.41		44.56

		5		4cif 60Hz		2064		36.02		43.49		45.39				2041		35.86		43.48		45.38

City

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

City 6 layers
QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

Crew

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		97		33.31		36.79		35.24				97		33.71		37.38		35.85

		1		qcif 15Hz		193		36.07		39.20		37.90				192		36.36		39.42		38.17

		2		cif 30Hz		388		33.67		38.61		37.20				385		33.88		38.81		37.44

		3		cif 30Hz		748		36.01		40.10		39.11				749		36.20		40.27		39.29

		4		4cif 30Hz		1512		35.62		40.29		40.36				1491		35.72		40.46		40.57

		5		4cif 60Hz		2986		36.45		40.69		41.20				3011		36.70		40.98		41.56

		HHI result, with update and Frext														HHI result, with update, without Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		95		32.95		36.96		35.35				95		32.96		36.98		35.35

		1		qcif 15Hz		193		36.10		39.47		37.99				193		36.11		39.48		38.00

		2		cif 30Hz		382		33.43		38.73		37.38				383		33.36		38.73		37.38

		3		cif 30Hz		753		36.11		40.46		39.56				756		35.96		40.46		39.54

		4		4cif 30Hz		1498		35.38		40.23		40.47				1499		35.29		40.25		40.47

		5		4cif 60Hz		3010		36.54		40.89		41.64				3006		36.32		40.87		41.59

Crew

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Crew 6 layers
QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

Harbour

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		96		31.90		40.53		42.65				96		32.14		40.55		42.66

		1		qcif 15Hz		194		34.54		41.75		43.71				191		34.68		41.77		43.75

		2		cif 30Hz		380		29.29		40.22		42.08				384		29.44		40.27		42.07

		3		cif 30Hz		745		31.86		41.12		42.87				751		32.07		41.22		42.95

		4		4cif 30Hz		1490		31.26		40.91		42.92				1495		31.44		40.98		42.98

		5		4cif 60Hz		2992		33.02		41.89		43.83				2976		33.20		41.79		43.74

		HHI result, with update and Frext														HHI result, with update, without Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		96		31.33		40.03		42.31				96		31.33		40.03		42.31

		1		qcif 15Hz		190		34.12		41.95		44.04				190		34.12		41.95		44.04

		2		cif 30Hz		387		29.40		40.41		42.37				384		29.13		40.32		42.34

		3		cif 30Hz		753		32.37		41.49		43.21				753		32.22		41.48		43.23

		4		4cif 30Hz		1490		31.54		40.93		42.99				1506		31.33		40.99		43.08

		5		4cif 60Hz		3017		33.76		42.06		43.96				3016		33.46		42.03		43.95

Harbour

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Harbour 6 layers
QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

Soccer

		Nokia result (open loop, GOP32)														Nokia result (close loop, GOP32)

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		97		34.16		40.68		42.36				96		34.48		41.05		42.59

		1		qcif 15Hz		190		37.31		42.95		44.50				192		37.64		43.21		44.71

		2		cif 30Hz		383		32.65		40.74		42.74				384		32.89		41.01		42.93

		3		cif 30Hz		745		36.10		42.63		44.42				743		36.28		42.77		44.55

		4		4cif 30Hz		1511		35.26		42.72		44.71				1494		35.34		42.83		44.78

		5		4cif 60Hz		2985		36.74		43.70		45.68				2981		36.91		43.82		45.76

		HHI result, with update and Frext														HHI result, with update, without Frext

		Layer				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)				Bitrate(kbps)		PSNR_Y(dB)		PSNR_U(dB)		PSNR_V(dB)

		0		qcif 15Hz		97		33.73		40.82		42.35				97		33.73		40.82		42.35

		1		qcif 15Hz		191		37.22		43.20		44.79				191		37.22		43.20		44.79

		2		cif 30Hz		383		32.38		40.85		42.81				382		32.22		40.81		42.76

		3		cif 30Hz		747		36.08		42.94		44.73				747		35.88		42.94		44.70

		4		4cif 30Hz		1496		35.06		42.75		44.80				1496		34.80		42.75		44.79

		5		4cif 60Hz		3005		36.88		43.72		45.78				3013		36.62		43.70		45.74

Soccer

		

Nokia SVC

SVM3.0 with Update, without Frext

Bitrate(kbps)

PSNR(Y)

Soccer 6 layers
QCIF15 - QCIF15 - CIF30 - CIF30 - 4CIF30 - 4CIF60

