	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Hong Kong, 16-18 January, 2005
	Document VCEG-Y08

Filename: VCEG-Y08.doc

Generated: 10 Jan ’05

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Gisle Bjontegaard,
Arild Fuldseth,
Tandberg,
Philip Pedersens vei 22
1366 Lysaker, Norway
	Tel:
Fax:
Email:
	+47 67125125
+47 67125234
gbj@tandberg.no
afu@tandberg.no

	Title:
	Simplified VLC coding of transform coefficients

	Purpose:
	Proposal.

1 Background

The CAVLC used in H.264 proved to be considerably more efficient for transform coefficient coding than the initially used UVLC. However, the CAVLC is also considerably more complex to implement both for encoding and decoding. The CAVLC typically uses 10% of the computer cycles on the decoder side. This document describes a method for coefficient coding that gives the same coding efficiency as CAVLC but reduces complexity by roughly 50%.

2 Summary of the method

The main features are listed. Detailed description will follow below.

· New CBP structure. CBP contains information of coefficients/no_coefficients in every transformed 4x4 block. Therefore no further information is needed for blocks with no non-zero coefficients

· The first parameter to be coded is the position (in scan order) of the last non-zero coefficient

· Reverse scanning is used similar to CAVLC

· Run coding is used as long as the absolute value of coefficients (1

· When a Level > 1 is found there is a switching to level coding which imply that the level of every remaining coefficient (also 0-coefficients) is coded

· Adaptive switch between VLC tables is used both in run- and level coding

· Only structured VLC tables used

· Only information inside a macroblock is used for coding/decoding of a MB

3 CBP

As mentioned, one important factor is that CBP shall contain information about coefficients/no_coefficients in a transform block. This is not always the case in H.264. For instance CBP tells if there are coefficients or not in a 8x8 luma block but not on the 4x4 level. Then in the case of 16x16 intra mode, some CBP information is contained in “Mode”. Therefore a new CBP structure is introduced. It is almost only based on FLC and is briefly described below.

3.1 Inter macroblocks

· 1 bit to signal coefficients (luma or chroma) or not

· If there are coefficients:

· 1 bit/8x8 block to signal luma coefficients or not

· If luma coefficients in a 8x8 block:

· 1 bit/4x4 block for coefficients or not

· Chroma CBP: see below

3.2 Intra 4x4 macroblocks

· 1 bit to signal if all 8x8 blocks have luma coefficients or not

· If not all 8x8 blocks have luma coefficients

· 1 bit/8x8 block to signal luma coefficients or not

· If luma coefficients in a 8x8 block:

· 1 bit/4x4 block for coefficients or not

· Chroma CBP: see below

3.3 Intra 16x16 macroblocks

· 1 bit to signal if there are non-zero coefficients in the DC-transform

· 1 bit to signal if there are AC coefficients in the macroblock

· If there are AC coefficients:

· 1 bit/4x4 block to signal coefficients or not

· Chroma CBP: see below

3.4 Chroma in a macroblock

· Use VLC6 (section 5) to signal one of 3 cases:

1. No chroma coefficients in the MB

2. Only DC coefficients

3. AC coefficients (and possibly DC coefficients)

· If “Only DC coefficients”, use VLC6 to signal one of 3 cases:

1. DC-Cr not DC-Cb

2. DC-Cb not DC-Cr

3. DC-Cr and DC-Cb

· If “AC coefficients”:

· 1 bit for each of Cr/Cb if DC coefficients or not

· 1 bit for each of Cr/Cb if AC coefficients or not

· For each Cr/Cb, if there are AC coefficients:

· 1 bit/4x4 block to signal coefficients or not

4 Coefficient coding

We can have blocks with different number of transform coefficient: 4, 15 or 16. We want to signal the value of each of those. Statistically most of them will be equal to 0. For the ones different from zero 1 bit will be used for sign. The task is therefore to code the absolute values of the transform coefficients which we call Level.

Example 1:

The levels to be coded in a block:

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

· We start by coding the position of the last 1 which is in position 4 (of 0 1 2 3 4 5 etc)

· Use run coding to locate the next 1 (run = 1 in this case)

· Continue in run mode to signal that the two remaining coefficients are 0 (run = 2)

Example 2:

The levels to be coded in a block:

4 2 7 2 0 4 1 0 1 0 0 0 0 0 0 0

· We start by coding the position of the last 1 which is in position 8

· Use run coding to locate the next 1

· Use run coding to locate the 4 and at the same time indicating Level > 1

· Recode 4 in level mode knowing that it is > 1

· Continue in level mode to code all remaining coefficients

· Levels 4 and 7 will result in change of VLC table

4.1 The position of the last coefficient

A combined code is used to code the position of the last non-zero coefficient and whether its Level = 1 or > 1.

The use of VLC for this coding is adaptive. It depends on the type of block and the last position of neighbouring blocks within the MB.

Last_above
position of the last coefficient of the block above (if within the MB)

Last_left
position of the last coefficient of the block to the left (if within the MB)

If Last_above and Last_left are within the MB

Last_pred = (Last_above + Last_left)/2

Else if Last_above is within the MB

Last_pred = Last_above

Else if Last_left is within the MB

Last_pred = Last_left

Else

Last_pred = 0

Then we will use the different VLCs (section 5) in different situations:

VLC7:
Chroma 2x2 DC coefficients

VLC8:
Inter luma 4x4 blocks when there is only 1 4x4 block with coefficients in a 8x8 block

VLC9
Luma 4x4 blocks and Last_pred = 0, Chroma AC blocks

VLC2:
Luma 4x4 blocks and Last_pred = 1-5, Luma 16x16 intra DC and AC blocks

VLC3(1):
With some reordering of codewords. Luma 4x4 blocks and Last_pred = 6-9

VLC3(2):
With another reordering of codewords. Luma 4x4 blocks and Last_pred > 9

The table show the bit allocation for the different situations.

Table 1. Bit allocation for coding of position of the last coefficient and if it is 1 or greater

	Last pos (
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	VLC7
	Level=1
	2
	2
	2
	3
	
	
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	5
	5
	5
	5
	
	
	
	
	
	
	
	
	
	
	
	

	VLC8
	Level=1
	1
	4
	4
	4
	4
	5
	5
	5
	5
	6
	6
	6
	6
	7
	7
	7

	
	Level>1
	7
	8
	8
	8
	8
	9
	9
	9
	9
	10
	10
	10
	10
	11
	11
	11

	VLC9
	Level=1
	2
	3
	3
	4
	4
	4
	4
	5
	5
	5
	5
	6
	6
	6
	6
	7

	
	Level>1
	7
	7
	7
	8
	8
	8
	8
	9
	9
	9
	9
	10
	10
	10
	10
	11

	VLC2
	Level=1
	3
	3
	3
	3
	4
	4
	4
	4
	5
	5
	5
	5
	6
	6
	6
	6

	
	Level>1
	7
	7
	7
	7
	8
	8
	8
	8
	9
	9
	9
	9
	10
	10
	10
	10

	VLC3-1
	Level=1
	5
	5
	5
	5
	4
	4
	4
	4
	4
	4
	4
	4
	5
	5
	5
	5

	
	Level>1
	6
	6
	6
	6
	6
	6
	6
	6
	7
	7
	7
	7
	7
	7
	7
	7

	VLC3-2
	Level=1
	5
	5
	5
	5
	5
	5
	5
	5
	4
	4
	4
	4
	4
	4
	4
	4

	
	Level>1
	7
	7
	7
	7
	7
	7
	7
	7
	6
	6
	6
	6
	6
	6
	6
	6

4.2 Reverse scanning of coefficients

Knowing the location of the last nonzero coefficient scanning starts from this position. If Level of the last coefficient = 1 we start in run-mode. Otherwise we start in level_mode.

4.2.1 Run_mode

Run until the next nonzero coefficient and whether Level of this coefficient = 1 or >1 is coded. There is also a code signalling that all remaining coefficients are 0. Knowing the position we start from there is a maximum value of how large run can be. This is utilized. Separate tables are used the cases where run can be maximum 1 to 9. Then there is a table that covers situations where run can be > 9. The VLC tables and bit allocations are given in Table 2.

Table 2. Bit allocations for coding of run and if the next coefficient = 1 or > 1

	Run (
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	VLC6
	Level=1
	2
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	VLC0
	Level=1
	3
	2
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	4
	5
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	VLC0
	Level=1
	2
	4
	3
	1
	
	
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	5
	7
	6
	
	
	
	
	
	
	
	
	
	
	
	
	

	VLC1
	Level=1
	2
	3
	3
	4
	2
	
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	4
	5
	5
	6
	
	
	
	
	
	
	
	
	
	
	
	

	VLC1
	Level=1
	2
	4
	3
	3
	4
	2
	
	
	
	
	
	
	
	
	
	

	
	Level>1
	5
	5
	6
	6
	7
	
	
	
	
	
	
	
	
	
	
	

	VLC1
	Level=1
	2
	3
	4
	4
	3
	5
	2
	
	
	
	
	
	
	
	
	

	
	Level>1
	5
	6
	6
	7
	7
	8
	
	
	
	
	
	
	
	
	
	

	VLC1
	Level=1
	3
	2
	3
	4
	4
	5
	5
	2
	
	
	
	
	
	
	
	

	
	Level>1
	6
	6
	7
	7
	8
	8
	9
	
	
	
	
	
	
	
	
	

	VLC9
	Level=1
	2
	4
	4
	3
	4
	4
	5
	5
	3
	
	
	
	
	
	
	

	
	Level>1
	5
	5
	6
	6
	6
	6
	7
	7
	
	
	
	
	
	
	
	

	VLC9
	Level=1
	2
	4
	5
	4
	4
	3
	4
	5
	5
	3
	
	
	
	
	
	

	
	Level>1
	5
	6
	6
	6
	6
	7
	7
	7
	7
	
	
	
	
	
	
	

	VLC9
	Level=1
	2
	3
	3
	4
	4
	4
	5
	5
	7
	7
	6
	6
	8
	8
	8
	9

	
	Level>1
	4
	5
	5
	6
	6
	7
	7
	8
	9
	9
	9
	10
	10
	10
	10
	

When the first Level > 1 is found the coding mode is switched to level_mode.

4.2.2 Level_mode

The first event to code in level_mode is to specify the value of a coefficient that is known to be > 1. Then VLC0 is used to code both the absolute value and sign of the coefficient in the following manner:

1
for Level=2

01
for Level=-2

001
for Level=3

0001
for Level=-3

etc.

The remaining Levels (0,1,2,3..) are coded with VLCn where the number of the VLC table is increased in a similar way as used in CAVLC. Initially n = 0. The value of n is updated in the following way:

if(Level > Tab(n)) n = n + 1

where Tab(0:5) = 3,6,12,24,48,(
This adaptation also takes place for the last coefficient.

4.2.3 Sign

For all coefficients 0 and where the sign is not coded together with the absolute value (see above), 1 bit is used to indicate the sign (+ or -).

5 VLC tables

The VLC tables are indicated in Table 3. Each x indicate one bit.

Table 3. VLC tables

	VLC0
	VLC1
	VLC2
	VLC3
	VLC4
	VLC5
	VLC6
	VLC7
	VLC8
	VLC9

	1
	1x
	1xx
	1xxx
	1xxxx
	1xxxxx
	1
	00
	1
	10

	01
	01x
	01xx
	01xxx
	01xxxx
	01xxxxx
	01
	01
	01xx
	11x

	001
	001x
	001xx
	001xxx
	001xxxx
	001xxxxx
	00
	10
	001xx
	01xx

	0001
	0001x
	0001xx
	0001xxx
	0001xxxx
	0001xxxxx
	
	110
	0001xx
	001xx

	
	11100

	
	
	
	
	
	
	
	11101
	
	

	
	
	
	
	
	
	
	11110
	
	

	
	
	
	
	
	
	
	11111
	
	

6 Simulation results

Test conditions similar to the ones in H.264 are used. However, the QCIF sequences are replaced by the corresponding CIF sequences. Frame rates and Qp values are kept the same. So far the method has been implemented on the Tandberg encoder platform, but we are in the process of implementing it in the reference encoder.

Avsnr prerformance relative to CAVLC for the different sequences are listed in the table.

	Sequence
	Bitrate for new entropy coding compared with CAVLC (%)

	Container
	0.45

	News
	0.88

	Foreman
	0.18

	Silent
	-0.15

	Paris
	0.35

	Mobile
	-0.75

	Tempete
	0.15

	Average
	0.16

This shows that coding performance is practically unchanged.

7 Complexity estimation

In order to do complexity estimations we have so far implemented the new coefficient entropy coding in our real time codec. The processing unit is a Tri-media pnx 1500 chip. For complexity estimation we have perfomed an emulation so that we can count processing cycles used for different functions. In both cases, a highly optimized decoder software has been used.

Qp = 32 has been used. Average number of cycles/frame for decoding of each sequence have been counted.

	Sequence
	Reduction of total number of cycles with the new entropy coding compared with using CAVLC (%)

	Container
	-3.3

	News
	-3.1

	Foreman
	-4.1

	Silent
	-4.4

	Paris
	-3.6

	Mobile
	-7.3

	Tempete
	-5.1

	Average
	-4.4

This indicates that the number of computer cycles for coefficient decoding is roughly reduced by almost one half.

8 Conclusions

A new method for entropy coding of transform coefficients have been described. It result in equal coding performance compared to CAVLC. With CAVLC decoding of transform coefficients use typically 10% of the total number of cycles. With the new method the total number of cycles is reduced by 4.4%.

This is a significant computational efficiency reduction and it is proposed to include the method into future work towards less complex encoding/decoding.

File:VCEG-Y08.doc
Page: 5
Date Printed: 12.01.2005

