	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document: JVT-B063r1
Filename: JVT-B063r1.doc

Generated: 2002-01-23

	Title:
	On Random Access and Bitstream Format for JVT Video

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Gary Sullivan
One Microsoft Way
Redmond, WA 98053 USA
	
Tel:
Email:
	
+1 (425) 703-5308
garysull@microsoft.com

	Source:
	Microsoft

1.0
Summary

This proposal contains remarks on two strong requirements of JVT coded video: 1) having random access functionality, and 2) having a bitstream format for carriage in MPEG-2, H.320, and similar bitstream-oriented systems. For context, we focus on the content of Pattaya’s VCEG-O53, as it touches on all the elements to be discussed here. VCEG-O53 starts with an assumption of a particular bitstream format, while we currently have no clear understanding of the intended design for the JVT bitstream format. A structure for a bitstream format is proposed herein. VCEG-O53 also provides the first real input on how to achieve random access capability and is therefore a significant contribution. We discuss the content of VCEG-O53 and advocate some modifications of the syntax proposed therein.

We propose a number of specific actions surrounding random access:

1) Adopting a structure for bitstream formatting, essentially supporting some assumptions in VCEG-O53, with proposed start codes and a specified mechanism for start code emulation prevention.

2) Considering moving the data necessary for random access, when provided, down from the “GOP” layer proposed in VCEG-O53 to a lower layer (i.e., the picture or slice layer).

3) Allowing random access points to start with any picture type (not just I pictures).

4) Using a time tagging structure that improves upon the one proposed in VCEG-O53 by adding support of more general picture clock rates and by referencing the time tags to true time.

5) A more general re-initialization mechanism than supported by the closed GOP flag proposed in VCEG-O53.

6) Further study of the need to support broken link editing, suggesting that if this capability is to be supported, a specified more general way for re-initializing the decoding process than proposed in VCEG-O53 is needed.

2.0
The GOP Data Structure Proposed in VCEG-O53

StartCode:

4 bytes

TimeCode:

3 bytes plus a 1-bit flag

ClosedGOPflag:

1 bit

BrokenLinkFlag:

1 bit

Alignment stuffing:

4 bits

Total:

8 bytes (more than half being start code & stuffing))

3.0
On Bitstream Format, Start Codes, and Start Code Emulation Prevention

We need to have some kind of bitstream format for some systems such as MPEG-2 and H.320. We note that the traditional MPEG-x/H.26x way of designing video syntax has been to scrupulously inspect the possible pathways through the syntax of the video content to ensure that no emulations of start codes are possible. This is an arduous task, and one fraught with peril. More than one last-minute change of syntax or late-patching corrigendum item has been necessary to fix up problems with this approach. We can probably do this again if we want, but it is hard to do. We therefore advocate doing something else.

We propose that we choose some start codes and prevent their accidental emulation by a process. The task of the process will be to take arbitrary sequences/packets of bytes, and carry them in the bitstream without start code emulation. For choosing the start codes themselves, several possibilities present themselves. Several we can choose from include:

1) A set of any known start code sequences, one for each start code we choose to define (a general form)

2) A unique N+1-byte prefix sequence of that indicates the presence of a start code, following this start code indicator prefix with a one-byte or multibyte start code type suffix to indicate what type of start code is present (a less general form in that it assumes structuring into a common prefix and a type code suffix), or

3) A sequence of N bytes of equal value, followed by a single byte that is a different value, followed by a one-byte start code type suffix to indicate what type of start code is present (a less general form than item 2). MPEG so far has been using N=2 with the prefix 0x00 00 01, which seems basically fine – although we will show that it is one byte longer than necessary for our purposes and therefore adds one byte of unnecessary overhead for each start code insertion.

If we want to avoid stepping on MPEG-2 system start codes (something that seems advisable, although perhaps not absolutely necessary), we should choose type 3 with N=1 or 2 using the prefix consisting of N bytes having the value 0x00 followed by a byte having the value 0x01. We advocate doing this, with a one-byte suffix to indicate the type of start code (not using the values used by MPEG-2 Systems). Other cases are more difficult, although similar principles could apply to preventing emulations of such other start codes (although probably requiring some extra processing work).

We propose the following start codes identifiers for JVT video:

1) Configuration information start (0xB0)

2) Random access point start (0xB3, perhaps not needed if can just put random access data at a lower level)

3) Sequence end (0xB1, perhaps not needed)

4) Picture start (0xB6, perhaps with not much following it, just to demarcate the start of the picture access unit, while sending important data with every slice)

5) Slice interleaved packet start (0xB7, to use when not doing data partitioning with the following three start codes)

6) Slice mode/motion info start (0xB9)

7) Slice intra coefficient packet start (0xBA)

8) Slice inter coefficient packet start (0xBB)

We are not terribly adamant about the specific values used for the start code suffix identifiers, although it is probably a good idea to avoid values used by MPEG-2 Systems.

Side Remark: Do JVT video slices need to be sent in order? We hope not, as imposing this constraint could add delay – e.g., buffering delay to wait for slices received out of order on an IP network before doing something with them (such as, hypothetically, putting them into an MPEG-2 Systems stream).

It is also useful to allow extra data to be placed into the bitstream prior to a start code to fill the channel when there is no payload data to send.

For preventing start code emulations, one previous way to do this is described in H.263 Annex E. However, that solution requires bit-oriented processing and is therefore overly burdensome. We propose to use a similar concept, but to do so in a byte-oriented fashion.

We propose to insert a byte of emulation prevention data whenever a string of N+1 bytes of payload data matches either the entire start code prefix or matches the first N bytes of the start code prefix plus the value of the emulation prevention byte. (Note Don’t get lost in the variables below, for MPEG-style start codes, N=2, W=0x00, X=0x01, and Z can be 0xFF.):
1) To send a packet P[] of B bytes, starting with a start code prefix which consists of N or more bytes of the same value W and a last byte of a different value X, followed by an identifying start code type suffix of 1 byte having the value Y, we operate the following pseudocode process which inserts emulation prevention bytes having the value Z (where W, X, Y, and Z have different values from each other, and P[B-1] is not equal to W), where the quantity of extra data to send to fill the channel is specified by E:
int B, N, E, i, j;
byte *P, W, X, Y, Z;
for(j=0; j<N+E; j++) /* start code prefix */
 send_byte(W); /* first byte of start code */
send_byte(X); /* last byte of start code */
send_byte(Y); /* start code type suffix */
for(i=j=0; i<B; i++) {
 if(j >= N && (P[i] == X || P[i] == Z)) {
 send_byte(Z);
 j = 0;
 }
 send_byte(P[i]); /* a byte of data payload */
 j = (P[i] == W) ? j+1 : 0;
}
2) To receive the packet, let’s assume we have already found, read, and discarded the known start code prefix which consists of N or more bytes of the same value W and a last byte of a different value X, and that we wish to read the unknown single-byte start code type suffix into a variable Y and to read the packet of payload data into an array P[] and determine the amount of payload data and place the quantity indication in a variable B, while removing emulation prevention bytes having the value Z (where W, X, Y, and Z have different values from each other, and P[B-1] is not equal to W):
int B, N, j, k, next;
byte *P, W, X, Y, Z;
/* assume start code prefix was already read */
Y = receive_byte(); /* start code type suffix */
for(B=j=0, next=0; more_data() && !next; B++) {
 P[B] = receive_byte();
 k =
(P[B] == W) ? j+1 : 0;
 if(j >= N && !k) {
 next = (P[B] == X);
 B -= (P[B] == Z);
 }
 j=k;
}
if(next) /* another start code found */
 B -= j+1;
Note: This allows arbitrary amount of W-value stuffing prior to a start code.

(A figure might be a better way to illustrate these processes, but pseudocode seems to get the message across.)

The emulation prevention process operates effectively as a state machine with N+1 statues, where the state is the value of j in the decoder when j<N and is N otherwise. The procedures above will (if our analysis is correct) expand the quantity of a large amount of ideal random input payload data by a factor
 of 2-(8N+7), which is small – even when N is small (for N=1, it is 0.00003, and it is 0.0000001 for the traditional MPEG value of N=2). Worst-case expansion of the payload is 1/(N+1), which occurs when the input data is just a string of repeated start code prefixes. If N is increased, the payload expansion factor is reduced in both statistical and worst-case analysis – although the quantity of start code overhead is obviously increased.

The case of N=1 is particularly interesting, because it minimizes start code overhead and also makes the internal state expressable as a binary variable. This can result in simplification of the pseudocode. In this case, the encoder and decoder pseudocode lines that include,
 “(P[i] == W) ? j++ : 0;”
simplify to
 “(P[i] == W);”
and the decoder test
 “if(j >= N && !k)”
simplifies to
 “if(j && !k)”
If we assume random input data, the inverse of the expansion factor is the break-even packet size in bytes at which it becomes more efficient to send more bits of start code in order to reduce the expansion due to emulation prevention byte insertion. For N=1, the break-even point is 215=32kB=256kbits per packet. Only for packets longer than that does it become more efficient on average to use a longer start code. It seems unlikely that the average packet size would be that large. On the other hand, the assumption of an ideal random distribution for the payload data may be questionable.
Note that this emulation prevention process does not depend on knowing how much data is in the packet before starting to send it. Thus it adds no significant delay.

If we consider about what happens at the end of the packet on the decoder side, we realize that it’s easier to know what’s going to happen if the last byte of the data packet is not zero, as this could create an ambiguity about where the data ends (assuming that the first N bytes of the start code prefix are zero). Forcing this to be the case can also let you stuff in any amount of zeros after the end of the payload and before the next start code without losing track of where the end of the payload is. We note that MPEG-4 uses bit-level byte alignment stuffing that always adds between one and eight bits and follows the pattern '0111…'. We propose that JVT video do its stuffing in a similar fashion – however, we propose to flip the value of those bits, making the pattern '1000…' instead of '0111…', so that the last byte is never zero. This enables zero stuffing prior to start codes without data quantity ambiguity.

The next question is whether to send the data through this process all the time, or only for NAL’s that require start codes. The problem with using it only when necessary is that it increases the amount of data that needs to be sent in an unpredictable fashion. If it is important for the video to go through a precisely fixed bit-rate channel, the unpredictable increase in bit rate could possibly be a problem unless you include the start code and stuffing byte insertions in the bit rate control process of the encoder. If you do that, then you can be certain it is possible to send the payload bits through a fixed bit rate pipe. We consider it useful for the amount of data to be carried in a system to be known with precision, rather than having that amount depend on the values of the data itself. This seems like it would reduce the burden of cross-network gateways. On the other hand, since the amount of data that needs to be sent also differs on different networks due to header quantity differences (which depend on how many headers are present and therefore essentially also depend on the values of the data in some fashion), and it may be better to unburden decoders for packet network environments from the need for emulation prevention processing.

4.0
On GOP Alignment Stuffing and GOP StartCode

Also, VCEG-O53 suggests that the random access entry data be optional in the bitstream to define the starting point of a “GOP”. Conventionally, a GOP (not defined in VCEG-O53) is some sequence of pictures (in bitstream order) that starts with an I picture and is preceded by a GOP header. Typically, GOPs are used in broadcast or DVD video at intervals of roughly 0.5 sec to provide locations where a tuner or program index can join the decoding process for the content.

We note that in practice a GOP usually starts at every I frame or at almost every I frame. We note also that more than half of the proposed quantity of GOP header data (the byte-alignment stuffing and the start code) would be eliminated if the other data were simply possible to include in the lower-layer header content for every I frame. Nearly all of the data other than the start code (all but two bits) proposed in VCEG-O53 is just for an absolute time tag. An absolute time tag should be on every I frame anyway. We propose that, rather than having a separate optional header level of syntax called a GOP level, we simply allow the data necessary for enabling random access to be placed in the picture header level of every I frame (or in every frame, for reasons to be explained later in this proposal). This eliminates the need for the extra 4 bytes of GOP start code and the extra stuffing before the next start code. When appropriate, this data could even be pushed further down (into the slice layer).

5.0
On TimeCode

Conventional “SMPTE timecode” is basically what VCEG-O53 has proposed. This form of timecode has very wide support in the studio and broadcast industries, and even appears in the consumer electronics industry. It is valuable to try to maintain compatibility with SMPTE timecode, as VCEG-O53 has proposed.

However, SMPTE timecode has no direct correspondence to true time. It is really designed only to only support two picture clock frequencies: 25 Hz and 30000/1001 Hz. When used with a picture clock frequency that is not an integer number of ticks per second, it drifts away from true time as it progresses, and must be reset occasionally (at undefined time locations up to the discretion of the user and unknown to the receiver) to correct the increasing drift. It is difficult to calculate the actual difference in time between two timestamps. This has caused problems in MPEG-4 (see item 2.8 of N4464, in which this issue has been recognized by MPEG as an unresolved problem, causing a lack of an ability to determine the correct interpretation of the timestamp and a resulting lack of understanding of the actual time intended to be indicated by the MPEG-4 video timestamps) and in MPEG-2 (see Amendment 1 to the 2001 edition, where this type of timecode has been modified by adding additional fields to reference the approximate timecode appropriately to true time).

We propose that a solution be adopted that is consistent with that recently used for the recent MPEG-2 Content Data Extension amendment, but in a more compact form. This is the solution we proposed in COM-16 D.50 in November, 2000.

We propose the following data format for timestamp information as specified below.

The “timebase” should be established at the sequence/configuration layer as the following set of parameters:

base_ups // unsigned integer

base_upp // unsigned integer

counting_type // defined in table 1

full_timestamp_flag // boolean

discontinuity_flag // boolean

count_dropped // boolean

npictures // integer

if(counting_type != '000')

 time_offset // integer

seconds_value // integer

minutes_value // integer

hours_value // integer

The proposed meaning of these parameters is as follows:

base_ups is the number of basic units per second in the reference clock (e.g., 25 or 30000)

base_upp is the number of basic units of the reference per picture period (e.g., 1 or 1001)

counting_type is defined as in Table 1.

full_timestamp_flag indicates whether every timestamp shall be fully specified or whether some timestamps may only contain partial information (depending on memory of values sent previously in the sequence or picture layers).

discontinuity_flag indicates whether the time difference that can be calculated between the starting time of the sequence and the time indicated for the last previous displayed picture can be interpreted as a true time difference. Shall be "1" if no previous picture has been displayed.

count_dropped indicates, if discontinuity_flag is zero, whether some value of npictures was skipped to reduce drift between the time passage indicated in the seconds_value, minutes_value, and hours_value parameters and those of a true clock

npictures indicates the picture count for the first picture in the sequence. Shall be equal to the value of npictures in the header of the first picture after the sequence header.

time_offset, seconds_value, minutes_value, and hours_value indicate the parameters to be used in calculating an equivalent timestamp for the starting time of the sequence. Shall be equal to the corresponding values of these parameters in the header of the first picture after the sequence header, if present in the picture header.

Table 1 Definition of counting_type values

	Value
	Meaning

	000
	no dropping of npictures count values and no use of time_offset

	001
	no dropping of npictures count values

	010
	dropping of individual zero values of npictures count

	011
	dropping of individual max_pps values of npictures count

	100
	dropping of the two lowest (value 0 and 1) npictures counts when seconds_value is zero and minutes_value is not an integer multiple of ten

	101
	dropping of unspecified individual npictures count values

	110
	dropping of unspecified numbers of unspecified npictures count values

	111
	reserved

The timestamp structure for the picture layer is proposed as:

npictures // integer

if(counting_type != '000') {

 if(full_timestamp_flag)

 time_offset // unsigned integer

 else {

 time_offset_flag // boolean

 if(time_offset_flag)

 time_offset // unsigned integer

 }

 if(counting_type != '001')

 count_dropped_flag // boolean

}

if(full_timestamp_flag) {

 seconds_value // 6b unsigned integer 0..59

 minutes_value // 6b unsigned integer 0..59

 hours_value // unsigned integer

}else{

 seconds_flag // boolean

 if(seconds_flag) {

 seconds_value // 6b unsigned integer 0..59

 minutes_flag // boolean

 if(minutes_flag) {

 minutes_value // 6b unsigned integer 0..59

 hours_flag // boolean

 if(hours_flag)

 hours_value // unsigned integer

 }

}

An equivalent timestamp specifying the time of a picture may be computed as follows:

equivalent_timestamp = 60·(60·hours_value + minutes_value) + seconds_value + (base_upp · npictures + offset_value) / base_ups

If any timestamp is incomplete (i.e., full_timestamp_flag is zero and at least one of seconds_flag, minutes_flag, hours_flag, and time_offset_flag is present and zero) the last prior sent value for each missing parameter is used.

Using the timebase parameters, an important derived parameter is defined as follows:

max_pps = ceil(base_ups / base_upp) ,

where ceil(x) is defined as the function of an argument x, which, for non-negative values of x, is equal to x if x is an integer and is otherwise equal to the smallest integer greater than x.

The value of npictures shall not exceed max_pps.

If count_dropped_flag is '1', then

if counting_type is '010', npictures shall be "1" and the value of npictures for the last previous displayed picture shall not be equal to "0" unless a sequence layer is present between the two pictures with discontinuity_flag equal to '1'.

if counting_type is '011', npictures shall be "0" and the value of npictures for the last previous displayed picture shall not be equal to max_pps unless a sequence layer is present between the two pictures with discontinuity_flag equal to '1'.

if counting_type is '100', npictures shall be "2" and the seconds_value shall be zero and minutes_value shall not be an integer multiple of ten and npictures for the last previous displayed picture shall not be equal to "0" or "1" unless a sequence layer is present between the two pictures with discontinuity_flag equal to '1'.

if counting_type is '101' or '110', npictures shall not be equal to one plus the value of npictures for the last previous displayed picture modulo max_pps unless a sequence layer is present between the two pictures with discontinuity_flag equal to '1'.

6.0
On ClosedGOPflag

The ClosedGOPflag proposed in VCEG-O53, which is based on that in MPEG-2, indicates whether any pictures after the random access point may contain references to pictures that precede the random access point in bitstream order. This would allow a decoder to know whether it is possible to properly decode all of the pictures that follow the random access point.

However, things were simpler in the MPEG-2 than they are now in the JVT. If a decoder starts decoding at a random access point for which ClosedGOPflag = 0, it can be assured that by decoding the I frame, it will then be able to decode the next P frame, and then all of the remaining pictures of all picture types in the stream after that P frame can be decoded too. This is not true in the JVT design. If all that is available is ClosedGOPflag, there is no assurance that any P frames of subsequent JVT video that follow an I frame can be decoded. The decoder simply does not have any way to determine whether it can ever start decoding and displaying the video (except for I frames). It must be careful about even attempting to decode any P or B pictures, since the decoder may be in the midst of attempting to decode some video when it suddenly encounters a picture reference parameter attached to some isolated motion vector that refers to a picture that the decoder simply does not have.

One bit is simply not enough information to provide any real random access capability for JVT video. What we need is a more complete indication of when the decoder can actually begin to decode and display the pictures if it decodes the I picture now. One bit can’t do that.

There are two types of data that we see as justified for providing adequate information to guide the decoding process after a random access point:

1. We will call the first type of indication a “pre-roll count”. This is an indication of how many frames prior to the current frame need to have been encountered and decoded by a best-effort decoding process in order to be assured that this frame and all subsequent frames can be properly decoded.

2. We will call the second type of indication an “initialization delay” parameter. This is an indication of how much time (or how many following pictures in bitstream order) must pass before decoding of the remaining pictures in the sequence can be assured.

We propose allowing either or both of these indications in the bitstream, at the encoder’s discretion.

There are basically two fundamental alternatives that we see for how to assume the decoding process is initialized:

1. We will call the first type of decoding “best-effort decoding”. In best-effort decoding we initialize all unavailable frames to mid-level gray (or black, or some other known value, or unknown garbage) and start decoding all frames but consider them completely correct in content only after the indicated conditions are fulfilled.

2. We will call the second type of decoding “assured decoding”. Assume that the decoder decodes only the I frame and then waits until the indicated conditions are fulfilled before attempting to decode any more non-I frames with the assurance that the remaining frames contain no references to unavailable data.

We propose adopting the best-effort alternative, as it provides encoders with maximum flexibility on how to encode subsequent pictures (for example, updating only a small part of each picture with intra information), while not burdening the decoder with work it wouldn’t already be capable of doing if it can decode the video stream at all. This will also allow random access capabilities to be enabled at P or B picture locations, not just at I picture locations. This is why we advocate not restricting random access points to I picture locations in the bitstream.

If both of these two types of data are present, the data can be used in two different ways:

1. In isolation, as an indication that when one of the two conditions is fulfilled, the following pictures in the sequence can be decoded.

2. Jointly, as an indication that when both of the two conditions have been fulfilled, the following pictures in the sequence can be decoded.

We therefore propose allowing a total of three types of indications:

1. A pre-roll count, to be used in isolation (0 indicates unspecified or indefinite pre-roll needed, 1 indicates no pre-roll needed, 2 indicates one picture in bitstream order, 3 indicates two pictures, etc.)

2. An initialization delay, to be used in isolation (0 indicates unspecified or indefinite delay, 1 indicates no delay needed, 2 indicates one picture clock frequency tick, 3 indicates two picture clock frequency ticks, etc.)

3. A combination of a pre-roll count with an initialization delay, to be used jointly – only when both conditions are fulfilled is decodability assured.

7.0
On BrokenLinkFlag

The BrokenLinkFlag proposed in VCEG-O53 indicates a crude splice point in a video stream as in MPEG-2. After BrokenLinkFlag = 1, there is no assurance of decodability of future data, as future frames may reference frames prior to the location of the broken link.

As with the ClosedGOPflag, the BrokenLinkFlag again does not provide sufficient information to enable random access. It suffers from the same problems as ClosedGOPflag, as there is no assurance in VCEG-O53 of ever being able to start decoding the bitstream once a broken link has been indicated. This is because, unlike in the case of MPEG-2, we have no simple way to determine when we will reach a point in the stream that does not refer to past, unavailable content.

We should study whether we can really support this kind of bitstream-chopping style of editing in JVT video, after the learning experiences from MPEG-2 and MPEG-4. The support of broken link editing also requires close analysis of the HRD/VBV buffering issues involved in trying to feed the incoming spliced stream into a partially-full buffer from prior video.

Our understanding is that simply ending a stream and starting a new stream from scratch, perhaps in a separate logical channel, may be a preferable way to support stream editing/splicing capability.

However, if we do wish to support broken link editing, then combining a broken link indication with an initialization delay parameter as described above could enable decoding to begin properly again after a broken link.

8.0
Conclusions

Contribution VCEG-O53 brings up a number of issues surrounding random access and bitstream format for JVT video. In the context of a detailed review of its content, we have proposed a number of specific actions and areas of further study.

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image1.wmf]
	[image: image2.png]1S0
NS

	[image: image3.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Microsoft Corp.
	

	Mailing address
	One Microsoft Way, Redmond WA 98053 USA
	

	Country
	USA
	

	Contact person
	Gary Sullivan
	

	Telephone
	+1 (425) 703-5308
	

	Fax
	+1 (425) 706-7329
	

	Email
	garysull@microsoft.com
	

	Place and date of submission
	2nd JVT Meeting, Jan 29- Feb 1, Geneva
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	On Random Access and Bitstream Format for JVT Video
	

	Contribution number
	JVT-B063
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image4.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image5.wmf]
	2.1 The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image6.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image7.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	In process.

	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image8.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

� It is easily shown (using the professorial definition of “easily”) that pj=255/256j+1 for j=0 to N-1, and pN=1/256N, and that the expansion factor is 2pN/256=2/256N+1=2-(8N+7).

�Change made to pseudo-code in r1 version to simplify it without changing its function.

File:JVT-B063r1draft1.doc
Page: 4
Date Printed: 1/27/2002

